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Abstract: The electrocarboxylation of α,α-dichloroarylmethane derivatives in the presence of CO2

was achieved, providing several α-chloroarylacetic acid derivatives with modest yields but high
selectivity (chlorinated vs. non-chlorinated or dicarboxylic acid products). The obtained products
were then involved in several chemical transformations, underlining their potential as versatile inter-
mediates in synthetic chemistry. A mechanism was also proposed based upon a control experiment
and cyclic voltammetry (CV) study.

Keywords: carboxylation reaction; electrochemical reduction; α-chlorophenylacetic acids

1. Introduction

α-chlorophenylacetic acid derivatives 1 are versatile synthetic intermediates involved
in the synthesis of several drugs such as (1) amides or thioureas derivatives 2 used in
the treatment of diseases that are at least partially mediated by vanilloid receptors 1
(VR1/TRPV1 receptors) [1] or (2) M-14659 3, cephalosporin, obtained by semi-synthesis,
exhibiting a broad spectrum of antibacterial activity (Scheme 1a) [2]. Therefore, several
chemical methods were reported to have access to α-chlorophenylacetic acids (mainly
oxidation of α-chloroaryl acetaldehydes [3] or chlorination of α-hydroxyarylacetic acid [4])
but none of them proved to be general (Scheme 1b). As far as electrochemical approaches
are concerned, the electrocarboxylation reaction of α-chlorobenzyl derivatives has been
extensively studied [5–11]. Contrariwise, the electrocarboxylation of α,α-dihalobenzyl
species [12] and, more particularly, α,α-dichlorobenzyl species remains more elusive. To
the best of our knowledge, only two articles from the group of Silvestri (one original arti-
cle and a review) deal with the electrocarboxylation reaction of α,α-dichloroarylmethane
derivatives 4 [13,14]. In addition to being limited to only one example (α-chlorophenylacetic
acid 1a from α,α-dichlorophenylmethane 4a), the experimental conditions and the electro-
chemical set-up are not properly described (diaphragmless cell, Al anode, Zn cathode, DMF,
n-Bu4NBr (0.1 M), 100 A.m−2, 1.87 F.mol−1), no isolated yield (52% vs. converted substrate)
was given for 1a and no spectral data were provided. Moreover, the reaction proceeded
with a poor selectivity (s), thus affording a 64/36 mixture of α-chlorophenylacetic 1a acid
and phenylacetic acid 5a. Therefore, the selective reduction in one of the two benzylic
geminal chlorine atoms remains a challenging task. Since the publication of these articles,
electrosynthesis has undergone a rebirth, mainly during the last ten years, providing easily
accessible and reproducible conditions for synthetic chemists [15–20]. We thus would like
to report our contribution to the electrocarboxylation reaction of α,α-dichloroarylmethane
4 derivatives in order to provide an efficient and selective synthesis of α-chloroarylacetic
acid derivatives 1 (Scheme 1c).
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diazomethane ) by the sum of the NMR yields of 6b and the over-reduced product 7b. 
Starting from the aluminum anode as reported by Silvestri et al. [13] but in acetonitrile as 
a solvent instead of DMF, we have obtained a 66/34 mixture of α-chlorodiphenylacetic 
methyl ester 6b and the over-reduced diphenylacetic methyl ester 7b (s = 66%) in low (23% 
and 12%) NMR yields, respectively (Table 1, entry 1). As we were aware of the crucial role 
of the consumable anode in this type of reaction [21–24], we then examined the nature of 
this metallic electrode (Table 1, entries 2–4). Other metals such Co, Zn or Mg provided 
lower NMR yields, along with a significant amount of diphenylacetic methyl ester 7b. 
Whereas in THF no reaction occurred (Table 1, entry 5), other aprotic polar solvents such 
as DMF and DMA (Table 1, entries 6 and 7) allow the reaction to proceed in 17% and 42% 
NMR yields, respectively, of 6b, along with non-negligible amounts of 7b (11% and 20% 
NMR yields, respectively). DMA was thus chosen as the solvent to study the influence of 
the cathode on the reaction performances (Table 1, entries 8–11). Among all cathodes 
tested, only stainless steel (SS) improved the NMR yield of 6b to 54%, while reducing the 
NMR yield of 7b to only 5% (s = 91%). As long as the charge is concerned, a 1.8 F/mol 
charge resulted in the complete selectivity of 6b (s > 99%, only traces of 7b), but at the 
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2. Results
2.1. Influence of Reaction Parameters

In order to investigate this transformation, we first turned our attention to the simple
commercially available α,α-dichlorodiphenylmethane 4b as a substrate in order to study the
main reaction parameters (For a complete study of the reaction parameters, see Supporting
Information). For the purpose of clarity, we have used the selectivity value which consists
of the percentage obtained by dividing the NMR yield of the desired α-chlorophenylacetic
acid methyl ester 6b (obtained after an esterification step with trimethylsilyl diazomethane)
by the sum of the NMR yields of 6b and the over-reduced product 7b. Starting from the
aluminum anode as reported by Silvestri et al. [13] but in acetonitrile as a solvent instead of
DMF, we have obtained a 66/34 mixture of α-chlorodiphenylacetic methyl ester 6b and the
over-reduced diphenylacetic methyl ester 7b (s = 66%) in low (23% and 12%) NMR yields,
respectively (Table 1, entry 1). As we were aware of the crucial role of the consumable
anode in this type of reaction [21–24], we then examined the nature of this metallic electrode
(Table 1, entries 2–4). Other metals such Co, Zn or Mg provided lower NMR yields, along
with a significant amount of diphenylacetic methyl ester 7b. Whereas in THF no reaction
occurred (Table 1, entry 5), other aprotic polar solvents such as DMF and DMA (Table 1,
entries 6 and 7) allow the reaction to proceed in 17% and 42% NMR yields, respectively,
of 6b, along with non-negligible amounts of 7b (11% and 20% NMR yields, respectively).
DMA was thus chosen as the solvent to study the influence of the cathode on the reaction
performances (Table 1, entries 8–11). Among all cathodes tested, only stainless steel (SS)
improved the NMR yield of 6b to 54%, while reducing the NMR yield of 7b to only 5%
(s = 91%). As long as the charge is concerned, a 1.8 F/mol charge resulted in the complete
selectivity of 6b (s > 99%, only traces of 7b), but at the expense of a lower, 33%, NMR yield
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(Table 1, entry 12), whereas a 3.2 F/mol charge provided a higher amount of 7b (11% NMR
yield) without improving the NMR yield of 6b (54%, Table 1, entry 13). Regarding the
intensity of the electrolysis, higher or lower intensities (10 or 30 mA instead of 20 mA)
did not improve the NMR yield of 6b (39% and 50%, respectively, Table 1, entries 14–15).
Finally, the reduction in the concentration of 4b from 83 mM to 35 mM had a positive
impact on both the NMR yield of 6b (55%) and the selectivity, delivering only a 5% NMR
yield of 7b (s > 92%). Under these conditions, a Faraday efficiency of 36.2% was calculated
(see Supplementary Materials for calculations detail). In conclusion, after a careful study
of the reaction parameters, we have found that the nature of the cathode, the solvent and
the concentration has a major influence on the reaction, improving the results obtained by
Silvestri [13] for compound 1a in terms of the yield and selectivity.

Table 1. Optimization of the reaction conditions.
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Entry Anode/Cathode Solvent Conc. (mM) Charge
(F/mol) i (mA) NMR Yield

6b/7b (%) 1
Selectivity,

s (%) 2

1 Al/NiFoam ACN 83 2.6 20 23/12 66
2 Co/NiFoam ACN 83 2.6 20 13/11 54
3 Zn/NiFoam ACN 83 2.6 20 4/7 36
4 Mg/NiFoam ACN 83 2.6 20 6/17 26
5 Al/NiFoam THF 83 2.6 20 nr/- -
6 Al/NiFoam DMF 83 2.6 20 17/11 61
7 Al/NiFoam DMA 83 2.6 20 42/20 68
8 Al/Glassy C DMA 83 2.6 20 32/26 55
9 Al/Graphite DMA 83 2.6 20 25/24 51
10 Al/Ni DMA 83 2.6 20 36/10 78
11 Al/SS DMA 83 2.6 20 54/5 91
12 Al/SS DMA 83 1.8 20 33/traces >99
13 Al/SS DMA 83 3.2 20 54/11 83
14 Al/SS DMA 83 2.6 10 39/6 87
15 Al/SS DMA 83 2.6 30 50/8 86
16 Al/SS DMA 125 2.6 20 29/7 81
17 Al/SS DMA 35 2.6 20 55(48) 3/<5 >92

1 NMR yields were determined on 1H NMR spectra of the crude product (after an esterification step with TMS
diazomethane) in the presence of dimethyl terephthalate as an internal standard. 2 Selectivity (s) determined on
crude mixture by 1H NMR using an internal standard, as follows: (NMR yield of 6b/(NMR yield of 6b + NMR
yield 7b)) × 100. 3 Isolated yield. SS: stainless steel. nr: no reaction. Bold text indicates the parameter which has
been modified.

2.2. Scope and Limitations

With these optimal conditions in hand, we then moved to the study of the scope and
limitations of our methodology. Since only a few α,α-dichloroarylmethane derivatives 4
are commercially available, we put some efforts in their synthesis. By using conditions
reported by Hegarty et al. starting from commercially available aromatic aldehydes 8 (PCl5,
toluene, rt; see Section 3 below and Supplementary Materials for more details) [25], we
were able to obtain several α,α-dichloroarylmethane derivatives 4. Next, the scope and
limitations of the electrochemical carboxylation reaction were studied (Scheme 2).
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Generally speaking, even if a complete conversion was observed, modest yields
of around 50% were obtained, but a high selectivity (Cl (1 or 6) vs. H (5 or 7) and/or
dicarboxylated product (8 or 9)) were observed (s = 60–96%). Regarding the modulation
of the Ar part, electron-withdrawing or -donating groups can be introduced, with electro-
donating groups providing higher isolated yields (1e, 37% vs. 1i, 55%) and selectivities
(1e, s = 60% vs. 1i, s = 78%). Fluoride and bromine at the para position are also well-
tolerated (1d, 53% and 1g, 48%, respectively). The introduction of a methyl substituent at
the para or ortho position afforded the desired product in acceptable yields (1c, 54% and
1j, 48%), whereas a methyl at the meta position resulted in a drop of the yield to 36% for
compound 1h. As far as the methyl substituent is concerned, an ortho substitution gave a
lower selectivity than a meta and para substitution (s = 63% for 1j vs. s = 90 and 86% for 1c
and 1h, respectively). The phenyl group at the para position provided the desired product
in a low yield and modest selectivity (1f, 32%, s = 67%). It is worthy of note that during
the silica gel purification of 1l, the chlorine atom was substituted by a methoxy group
due to the presence of methanol in the mobile phase, affording compound 10 in a 24%
isolated yield. We have also tried to vary the R1 substituent. Accordingly, a phenyl can be
introduced, affording a decent 48% yield and excellent selectivity (s = 96%) for compound
6b. Starting from α,α,α-trichlorotoluene, methyl ester 6k bearing a gem-dichloro group
was successfully obtained in a modest 23% yield but a good level of selectivity (s = 81%).
However, some products remain problematic with otherwise improved methodology. In
the case of thiophene derivatives, a complex mixture was obtained, whereas the formation
of the product with an N-Ts indole moiety was not observed. Finally, compound 1m was
formed but as an inseparable mixture with 5m (25% NMR yield, s = 45%).

2.3. Versatile Transformations of the α-Chlorophenylacetic Acid 1a

In order to demonstrate the synthetic utility of the α-chloroarylacetic acids, we have
turned our attention to several chemical transformations (Scheme 3).
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Scheme 3. Chemical transformations on α-chlorophenylacetic acid 1a. a (1) (COCl)2 (1.1 equiv),
DMF (5 drops), CH2Cl2; (2) BnNH2 (1.3 equiv), Et3N (1.3 equiv), CH2Cl2. b TMSCHN2 (2.5 equiv),
toluene/MeOH (7:3 v/v), 0 ◦C, rt. c NaN3 (2 equiv), n-Bu4NHSO4 (0.15 equiv), H2O/CHCl3 (1:1
v/v).

First, the acid moiety was submitted to an amidation reaction via the corresponding
acid chloride in the presence of benzyl amide, affording the amide derivatives 11 in 59%.
An esterification was also possible by using trimethylsilyldazomethane in a mixture of
toluene and methanol to give the chlorinated ester 6a in almost quantitative yields. More
interestingly, the chlorine atom of 6a can be submitted to nucleophilic substitution in the
presence of sodium azide under liquid/liquid phase-transfer conditions, leading to 12 in
an excellent yield. The product 12 is of particular interest as it paves the way to the access
of non-proteogenic α-amino acid derivatives [26,27].
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2.4. Mechanistic Considerations

Finally, control experiments and CV analyses were performed to gain insight into
the mechanism (Scheme 4). We first checked whether the reaction proceeded exclusively
under electrochemical conditions by performing the reaction without a current for 1.5 h.
No product was detected by an NMR analysis of the crude mixture (Scheme 4a). Then, the
reaction was performed at 20 mA for 36 min (1.8 F/mol) and, then, the mixture was stirred
for one additional hour without a current. The result was almost identical to that obtained
when the reaction was stopped after the 1.8 F/mol electrolysis (see also Table 1, entry 12),
indicating that the presence of Al3+ presumably formed at the anode during electrolysis is
not involved in the reaction.
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Scheme 4. Mechanistic considerations: (a) control experiments; (b) plausible mechanism; (c) alterna-
tive pathway. 1 1H NMR yield determined on the crude mixture by using dimethyl terephthalate as
an internal standard.

According to previous reports [13,14] and our own study (see Supplementary Materials
for CV experiments) ((a) The reduction potential of PhCHCl2 in DMA (Ered = −2.2 V/SCE)
was found to be similar to previously reported value in DMF, see ref [28] and supporting
information. (b) Our attempts to determine the reduction potential of CO2 in DMA failed
(see supporting information). (c) Our attempts to clarify the exact role of the Al3+ by CV
have not been conclusive (see Supporting Information)), we have proposed a plausible
mechanism (Scheme 4b). First, the α,α-dichloroarylmethane derivatives PhRCCl2 4 would
be reduced at the cathode (Ered = −2.2 V/SCE for R = H and Ered = −1.8 V/SCE for
R = Ph in DMF) [28] thanks to a two electron process to provide the corresponding α-chloro
anion A which then would add to CO2 (Ered = −2.2 V/SCE in DMF) [29] to give the α-
chlorophenylacetic carboxylate B flanked by an aluminum counter-ion. Simultaneously,
the aluminum anode plate would be oxidized to afford the corresponding aluminum (III)
cation in solution. This aluminum counter-ion is expected to stabilize the carboxylate anion
generated during the electrolysis which is generally unstable under the electrochemical
conditions [7] and also to avoid its possible transformation into mandelic acid [13]. Finally,
the expected product 1 would be obtained after aqueous work-up. The by-product 5 could
be obtained by the further reduction in B at the cathode followed by aqueous work-up.
Nevertheless, due the close proximity between the reduction potential of CO2 and that
of some of the α,α-dichloroarylmethane derivatives 4, a mechanism first involving the
reduction in CO2 to form the corresponding radical anion followed by the radical coupling
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with 4• (resulting from the one electron reduction in 4 at the cathode) cannot totally be
ruled out (Scheme 4c).

3. Materials and Methods
3.1. General Information

Reactions were performed using oven dried glassware under an inert atmosphere of
nitrogen. Unless otherwise noted, all reagent-grade chemicals and solvents were obtained
from commercial suppliers and were used as received. Toluene was dried over an MBRAUN
MB SPS-800 apparatus (MBRAUN inertgas-system gmbh, Garching, Germany). Reactions
were monitored by thin-layer chromatography with silica gel 60 F254 pre-coated aluminum
plates (0.25 mm). Visualization was performed under UV light, phosphomolybdic acid or
KMnO4 oxidation. Chromatographic purification of compounds was achieved with 60 silica
gel (40–63 µm). Melting points were measured on a WME Köfler hot-stage (Stuart SMP3)
and are uncorrected (Barloworld Scientific France SAS, Nemours, France). Infrared spectra
(IR) were recorded on a PerkinElmer Spectrum 100 Series FT-IR spectrometer. Liquids and
solids were applied on the Single Reflection Attenuated Total Reflectance (ATR) Accessories
(PerkinElmer, Wellesley, MA, USA). Data are reported in cm−1. 1H Spectra (300 MHz) and
13C NMR spectra (75 MHz) were recorded on a Bruker Advance 300 (Bruker, Billerica, MA,
USA). Processing and analysis of the spectra were performed with the Topspin 3.6 software
(Bruker, Billerica, MA, USA) on a PC workstation. Data appear in the following order:
chemical shifts in ppm which were referenced to the internal solvent signal, number of
protons, multiplicity (s, singlet; d, doublet; t, triplet; q, quadruplet; dd, doublet of doublet,
ddd, doublet of doublet of doublet, dt, doublet of triplet; ddt, doublet of doublet of triplet,
td, triplet of doublet; tdd, triplet of doublet of doublet; m, multiplet, ABq, AB system) and
coupling constant J in Hertz. Accurate mass measurements (HRMS) were performed by
the Mass Spectrometry Laboratory of the University of Rouen and were recorded with a
Waters LCP 1er XR spectrometer (Waters, Milford, CT, USA). The electrosynthesis were
carried out by means of IKAElectraSynth® 2.0 apparatus. Electrodes were all purchased
from IKA®(IKA, Staufen, Germany). Cyclic Voltammetry (CV) measurements were carried
out with an OrigaFlex®potentiostat/galvanostat by means of three electrodes (Origalys,
Rilleux-la-Pape, France).

3.2. General Procedure for the Synthesis of α,α-Dichloro Benzyl Derivatives 4 [25]

To a dry 10 mL flask containing PCl5 (1.3 equiv), dry toluene (5 mL) was added
the corresponding aldehyde (1 equiv) and the mixture was then stirred for 16 h. After
completion, the reaction was diluted with 20 mL EtOAc and washed two times with 20 mL
saturated NaHCO3 aqueous solution, then once with 10 mL brine. The organic layer was
dried over MgSO4, filtered, and concentrated at 40 ◦C under 80 mbar pressure. The residue
was purified by silica gel column chromatography (100/0 EP:EtOAc to 95/5) to obtain the
corresponding α,α-dichloro aryl compounds 4. As mentioned by the authors and due their
high reactivity, products 4 were generally used rapidly after their synthesis; 4a, 4j and 4k
were commercially available and were used as received.

α,α-dichloro-4-methyltoluene 4c: Following the general procedure with 4-methylbenzaldehyde
(300 mg, 2.5 mmol), the title compound 4c was obtained as a white solid (367 mg, 84%).
1H NMR (300 MHz, CDCl3) δ 7.49–7.46 (m, 2H, CHAr), 7.23–7.20 (m, 2H, CHAr), 6.70 (s,
1H, CH), 2.39 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ 140.3 (CAr), 137.8 (CAr), 129.6
(CHAr), 126.1 (CHAr), 72.0 (CH), 21.4 (CH3). The spectral data were in agreement with those
previously reported [30].

3.3. General Procedure A for the Synthesis of α-Chloroarylacetic Acid Derivatives 1

In a dry electrochemical cell (10 mL vial from IKA) containing n-Bu4NBr (33 mg,
0.1 mmol) DMA (7 mL) was added and α,α-dichloro aryl derivates 4 (0.25 mmol) under
nitrogen. The electrodes (aluminum electrode as anode and stainless steel as cathode) were
installed, and carbon dioxide was bubbled through the solution for 5 min using a CO2
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balloon. The reaction was carried out at room temperature for 48 min, with a constant
current of 20 mA and a charge of 3.2 F.mol−1. After completion, the electrodes were rinsed
subsequently with EtOAc, HCl 1M and then water. The reaction mixture was diluted with
15 mL of EtOAc and washed with 15 mL of HCl 0.5 M. The aqueous phase was washed
a second time with 10 mL of EtOAc and then the combined organic extract was washed
three times with 10 mL of HCl 0.5 M. The organic layer was dried over MgSO4, filtered
and concentrated under reduced pressure. The NMR yield was measured by 1H NMR of
crude by means of dimethyl terephthalate as internal standard (0.25 equiv, 12.2 mg). The
residue was purified by silica gel column chromatography (5/25/70 MeOH:CH2Cl2:PE,
then 1/20/79 HCOOH:Et2O:PE) to obtain the corresponding α-chloroarylacetic acid 1.

3.3.1. mmol Procedure

In a dry electrochemical cell (20 mL vial from IKA) containing n-Bu4NBr (110 mg,
0.34 mmol) DMA was added (16 mL) and α,α-dichlorotoluene 4a (126 mL, 1.00 mmol)
under nitrogen. The electrodes (aluminum electrode as anode and stainless steel as cathode)
were installed, and carbon dioxide was bubbled through the solution for 5 min using a
CO2 balloon. The reaction was carried out at room temperature for 48 min, with a constant
current of 20 mA and a charge of 3.2 F.mol−1. After completion, the electrodes were rinsed
subsequently with EtOAc, HCl 1M and then water. The reaction mixture was diluted with
30 mL of EtOAc and washed with 30 mL of HCl 0.5 M. The aqueous phase was washed
a second time with 20 mL of EtOAc and then the combined organic extract was washed
three times with 20 mL of HCl 0.5 M. The organic layer was dried over MgSO4, filtered
and concentrated under reduced pressure. The residue was purified by silica gel column
chromatography (5/25/70 MeOH:CH2Cl2:PE, then 1/20/79 HCOOH:Et2O:PE) to obtain
the corresponding 2-chloro-2-phenylacetic acid 1a as a white solid (75 mg, 44%).

2-chloro-2-(4-methylphenyl)acetic acid 1c: Following the general procedure A with 4c (46
mg, 0.26 mmol), the title compound 1c was obtained as a white solid (26 mg, 54%).
mp = 89–90 ◦C. 1H NMR (300 MHz, CDCl3) δ 10.55 (bs, 1H, CO2H), 7.40–7.38 (d, J = 8.2 Hz,
2H, CHAr), 7.21–7.19 (d, J = 8.2 Hz, 2H, CHAr), 5.35 (s, 1H, CH), 2.36 (s, 3H, CH3). 13C NMR
(75 MHz, CDCl3) δ 174.3 (CO2H), 139.8 (CAr), 132.0 (CAr), 129.7 (CHAr), 127.9 (CHAr), 58.6
(CH), 21.3 (CH3). IR (neat) n 2323, 1721, 1512, 1412, 1286, 1201, 912, 804, 787 cm−1. HRMS
(TOF-ESI−): calcd for C9H8Cl2O2 [(M-H)−]: 183.0218; found: 183.0206.

3.4. Synthesis of Methyl Methyl 2-Chloro-2-phenylacetate 6a

The 2-chloro-2-phenylacetic acid 1a (1.00 g, 5.86 mmol) was then dissolved in
toluene/methanol mixture (10 mL, 7:3 v/v) and cooled to 0 ◦C. TMS diazomethane (2M
in hexanes, 2.17 mL, 14.7 mmol) was then added until a yellow coloration persisted in
the solution. The solution was then stirred for 30 min at 0 ◦C and then 30 min at r.t. The
solution was then quenched with acetic acid (0.1 mL), MeOH was evaporated and the
residual toluene solution was diluted with ethyl acetate. The organic phase was washed
with HCl 1M and saturated with aqueous NaHCO3 solution and then water. The organic
layer was dried over MgSO4, filtered and concentrated under reduced pressure. Methyl 2-
chloro-2-phenylacetate derivatives 6 (1.06 g, 5.74 mmol, 98%) was obtained as a transparent
oil. 1H NMR (300 MHz, CDCl3) δ 7.51–7.48 (m, 2H, CHAr), 7.40–7.36 (m, 3H, CHAr), 5.37 (s,
1H, CH), 3.78 (s, 3H, CH3). Spectroscopic data were in agreement with those previously
reported [31].

3.5. General Procedure B for the Synthesis of Methyl 2-Chloro-2-phenylacetate Derivatives 6b,k

In a dry electrochemical cell (10 mL vial from IKA) containing n-Bu4NBr (33 mg,
0.1 mmol), DMA was added (7 mL) and α,α-dichloro aryl derivates 4 (0.25 mmol) under
nitrogen. The electrodes (aluminum electrode as anode and stainless steel as cathode) were
installed, and carbon dioxide was bubbled through the solution for 5 min using a CO2
balloon. The reaction was carried out at room temperature for 48 min, with a constant
current of 20 mA and a charge of 3.2 F.mol−1. After completion, the electrodes were rinsed
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subsequently with EtOAc, HCl 1M and then water. The reaction mixture was diluted
with 15 mL of EtOAc and washed with 15 mL of HCl 0.5 M. The aqueous phase was
washed a second time with 10 mL of EtOAc and then the combined organic extract was
washed three times with 10 mL of HCl 0.5 M. The organic layer was dried over MgSO4,
filtered and concentrated under reduced pressure. The crude mixture was then dissolved
in toluene/methanol mixture (7:3 v/v) and cooled to 0 ◦C. TMS diazomethane was then
added until a yellow coloration persisted in the solution. The solution was then stirred for
15 min at 0 ◦C and then 15 min at r.t. The solution was then quenched with acetic acid and
extracted with ethyl acetate and washed with saturated aqueous NaHCO3 solution, HCl 1M
and then water. The NMR yield was measured by 1H NMR of crude by means of dimethyl
terephthalate as internal standard (0.25 equiv, 12.2 mg). The residue was purified by silica
gel column chromatography (5/25/70 MeOH:CH2Cl2:PE, then 1/20/79 HCOOH:Et2O:PE)
to obtain the corresponding methyl 2-chloro-2-phenylacetate derivatives 6.

Methyl 2-chloro-2,2-diphenylacetate 6b: Following the general procedure B with 4b (59 mg,
0.25 mmol), the title compound 6b was obtained as colorless oil (31 mg, 48%). 1H NMR
(300 MHz, CDCl3) δ 7.42–7.26 (m, 10H, CHAr), 3.78 (s, 3H, CH3). Spectroscopic data were
in agreement with those previously reported [32].

3.6. Procedure for the Synthesis of 2-Methoxy-2-(4-methoxyphenyl)acetic Acid 10

Compound 10 was obtained after a slight modification of the general procedure A.
The crude product was dissolved in MeOH, SiO2 was added and the resulting mixture
was stirred overnight at room temperature. After filtration and evaporation of MeOH, the
resulting mixture was purified according to general procedure A. Starting from 1l (48 mg,
0.25 mmol), the title compound 10 was obtained as a white solid (12 mg, 24%). 1H NMR
(300 MHz, CDCl3) δ 7.37–7.32 (m, 2H, CHAr), 6.93–6.88 (m, 2H, CHAr), 4.73 (s, 1H, CH), 3.81
(s, 3H, CH3), 3.39 (s, 3H, CH3). Spectroscopic data were in agreement with those previously
reported [33].

3.7. Procedure for the Synthesis of N-Benzyl-2-chloro-2-phenylacetamide 11

Product 11 was synthesized following the procedure reported in the literature [34], as
follows: oxalyl chloride (273 mL, 3.22 mmol, 1.1 equiv) and DMF (5 drops) were added to a
0 ◦C solution of 2-chloro-2-phenylacetic acid 1a (500 mg, 2.93 mmol, 1 equiv) in anhydrous
CH2Cl2 (5 mL) in an oven-dried schlenk tube. The reaction mixture was allowed to warm
to room temperature, stirring for 1 h. The solution was then transferred by cannula to
a solution of benzyl amine (417 mL, 3.81 mmol, 1.3 equiv) and triethylamine (514 mL,
3.81 mmol, 1.3 equiv) in anhydrous CH2Cl2 (5 mL) at 0 ◦C. The suspension was stirred
for 4 h and then the reaction was quenched by the addition of HCl (1 M). The reaction
mixture was extracted with CH2Cl2 (25 mL × 3) and the combined organic layers were
washed with brine, dried over Na2SO4 and concentrated. The residue was purified by flash
chromatography (hexane/dichloromethane = 2/1) which furnished the desired product
(450 mg, 59%) as white solid. 1H NMR (300 MHz, CDCl3) δ δ 7.46–7.27 (m, 10H, CHAr),
7,00 (br s, 1H, NH) 5.43 (s, 1H, CH), 4.52 (d, 3J = 5.8 Hz, 2H, CH2). Spectroscopic data were
in agreement with those previously reported [35].

3.8. Procedure for the Synthesis of Methyl 2-Azido-2-phenylacetate 12

The title product was synthesized according to a reported procedure [36], as follows:
Methyl 2-chloro-2-phenylacetate 6a (194 mg, 1 mmol) was mixed with NaN3 (130 mg,
2 mmol) and tetrabutylammonium hydrogensulfate (50 mg, 0.15 equiv) in a mixture of
water (1 mL) and chloroform (1 mL). The reaction was allowed to stir at room temperature
for 24 h in the dark, after which time the aqueous layer was removed and the organic
layer was washed with water (3 × 10 mL) and dried over sodium sulfate. The solvent was
removed carefully by rotary evaporation under reduced pressure without heating. The title
compound 12 was obtained as a colorless oil (191 mg, 99%). 1H NMR (300 MHz, CDCl3)
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δ 7.41–7.37 (m, 5H, CHAr), 4.99 (s, 1H, CH), 3.76 (s, 3H, CH3). Spectroscopic data were in
agreement with those previously reported [37].

4. Conclusions

In conclusion, we have reported on an efficient and selective electrocarboxylation
reaction of α,α-dichlorobenzyl compounds 4 to afford the corresponding α-chloroaryl acetic
acid derivatives 1 with moderate isolated yields but high selectivity (the other chlorine
atom is not affected by the reduction process). Several α-chloroaryl acetic acid derivatives
with different substitution patterns, both on the methylene carbon at the benzylic position
and the aromatic ring, were obtained. Moreover, we have demonstrated the versatility
of the obtained products by modulating either the carboxylic acid part (ester or amide
formation) or the chlorine atom (introduction of an azide moiety en route to the synthesis
of non-proteogenic α-amino acids). Finally, thanks to control experiments and a cyclic
voltammetry study, a plausible mechanism was proposed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28186704/s1; complete study of reaction parameters,
cyclic voltammetry analyses, faraday efficiency calculations, general procedure for the synthesis of
all compounds, spectral data and copies of NMR for compounds 1a,c–j,l–m, 4c–j,l–m, 6a,b,k, 10, 11,
12. Refs. [38–41] are cited in Supplementary Materials.
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