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Abstract

Semantic image segmentation is an essential task for autonomous vehicles and

self-driving cars where a complete and real-time perception of the surroundings

is mandatory. Convolutional Neural Network approaches for semantic segmen-

tation standout over other state-of-the-art solutions due to their powerful gen-

eralization ability over unknown data and end-to-end training. Fisheye images

are important due to their large field of view and ability to reveal information

from broader surroundings. Nevertheless, they pose unique challenges for CNNs,

due to object distortion resulting from the Fisheye lens and object position. In

addition, large annotated Fisheye datasets required for CNN training is rather

limited. In this paper, we investigate the use of Deformable convolutions in

accommodating distortions within Fisheye image segmentation for fully resid-

ual U-net by learning unknown geometric transformations via variable shaped

and sized filters. The proposed models and integration strategies are exploited

within two main paradigms: single(front)-view and multi-view Fisheye images
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Front View Fisheye Images and Labels

Right View Fisheye Images and Labels

Back View Fisheye Images and Labels

Left View Fisheye Images and Labels

Figure 1: WoodScape dataset image examples and their labels from four views: TOP LEFT:

Front-view, TOP RIGHT: Back-view, BOTTOM LEFT: Right-view, BOTTOMRIGHT: Left-

view

segmentation. The validation of the proposed methods is conducted on syn-

thetic and real Fisheye images from the WoodScape and the SynWoodScape

datasets. The results validate the significance of the Deformable fully residual

U-Net structure in learning unknown geometric distortions in both paradigms,

demonstrate the possibility in learning view-agnostic distortion properties when

trained on the multi-view data and shed light on the role of surround-view im-

ages in increasing segmentation performance relative to the single view. Finally,

our experiements suggests that Deformable convolutions are a powerful tool that

can increase the efficiency of fully residual U-Nets for semantic segmentation of

automotive fisheye images.

Keywords: Fisheye Image Segmentation, Multi-view Data Augmentation,

Deformable Convolutions, Deep Convolutional Neural Networks

1. Introduction

Semantic segmentation is defined as the process of pixel-wise labeling of

images in order to extract important objects, such as pedestrians, road lanes,
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buildings, traffic signals etc, while incurring detection tasks at the same time.

In the essence of autonomous driving, images acquired via Fisheye cameras are5

useful as they capture large areas of surrounding scenes thanks to their broad

field of view. Fisheye data are of particular importance, as they pave the way for

safer automotive low speed manoeuvring such as parking, collision avoidance,

and right turn resistance where an accurate full coverage is required. As a

result, they provide valuable information given many applications and allow for10

a proficient autonomous scene understanding.

Semantic segmentation solutions via Convolutional Neural Networks (CNNs)

standout over other state-of-the-art solutions, due to the ability of CNNs to be

trained end-to-end, as well as their powerful generalization ability over new data.

CNNs are significant as they allow the modeling of prior knowledge regarding15

geometric transformations thanks to their model capacity, and translational in-

variance modules (e.g. max pooling layers) [8]. Due to the current availability of

high performance Graphics Processing Units (GPUs) and excellent open source

deep learning frameworks, CNN-based solutions for semantic segmentation have

registered a breakthrough in different applications with the field of autonomous20

driving being no exception to the rule [14, 35, 27].

A pioneering approach for image segmentation is the U-Net model [25], that

is a symmetric encoder/decoder structure with skip connections. The encoder

part is a contracting path composed of stacked convolutional and max pool-

ing layers, whereas the decoder part is an expanding path composed of de-25

convolutional or bilinear upsampling layers. Layers within the encoder are ded-

icated to capturing contextual information in order to detect objects/classes

present in an image. On the other hand, the decoder layers help precise lo-

calization of patterns, thus indicating where in the image an object is located.

As an image moves further into the contracting layers, it decreases in size but30

increases in depth of its learnt contextual features. In contrast, the decoder

layers increase size but decrease its depth, thus retaining the model’s localiza-

tion ability. Skip connections combine symmetrical contextual and positional

features from opposing convolutions in the two corresponding paths. In addi-
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tion to concatenating features from corresponding encoder/decoder layers [25],35

skip connections could also be used to combine features from consecutive lay-

ers within the same encoder/decoder parts. A very well-known structure that

makes use of inter-layer nested skip connections is the Residual-Unet proposed

in [23]. The nested connections combine features from different layers of the

encoder parts (or decoder parts), thus, evading the deterioration of information40

throughout the internal layers of the networks.

1.1. Related works on semantic segmentation of large field of view automotive

images

Compared to perspective images, segmentation of Fisheye images via tradi-

tional CNNs encounter several challenges. A major limitation of CNNs is that45

they are highly dependent on the existence of large-scale annotated training

Fisheye datasets to gain their generalization ability. Till now, there is a scarcity

in the public fully-annotated datasets of Fisheye images dedicated to road scene

understanding1. Moreover, acquiring and annotating such a dataset is rather

expensive and laborious. Up until our knowledge, there have been only three50

public datasets for Fisheye images with semantic segmentation ground truths.

The OmniScape dataset [31], the WoodScape dataset, and the SynWoodScape

dataset [30].

Another limitation for CNNs is their ability to model new or unknown ge-

ometric transformations. CNNs can learn some transformations known to the55

user such as an object position or orientation. However, these approaches are

limited in their ability to model new tasks with variable or unknown geometric

properties [8]. In Fisheye images, these drawbacks are particularly persistent

due to the distorted nature of objects in the image depending on the view angle

of the object acquired relative to the Fisheye camera. Thus, there are countable60

limitations to traditional CNNs generalization ability because of large non-linear

distortion [36].

1https://sites.google.com/view/omnicv2022/useful-datasets
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Some studies have addressed these limitations by reconstructing the Fisheye

lens using data augmentation techniques on perspective image datasets, or by

extracting omnidirectional images from simulators in order to allow the learn-65

ing of the underlying geometric representation in the images. For instance,

several works used a tangent transformation on perspective datasets to simu-

late the Fisheye lens [27, 9, 26]. Other studies used the resulting transformed

images with different architectures based on planar conventional convolutions

[10, 26, 24]. Despite their significance, one could point out that the generated70

images are not as rich in information and do not hold the same field of view as the

real Fisheye data. This sheds light on the importance of proposing alternative

methods to data augmentation, where the augmented images share similar ac-

quisition and surrounding properties as the target dataset. On the other hand,

other researchers proposed methods based on the spherical representation of75

omnidirectional images, such as equirectangular, panoramic or spherical repre-

sentations based on the icosahedron subdivision to model a sphere [29]. These

methods can be adapted to Fisheye images since an equirectangular image can

be considered as an intermediate representation of a Fisheye image.

Contrastingly, Sekkat et al. proposed in [31] a framework that simulates80

real omnidirectional images using their calibration parameters. The authors

generated Fisheye images from a virtual hyper-realistic open-world game (GTA-

V) simulating a real city. This framework was extended in [31] by the same

authors with OmniScape, a synthetic dataset using both GTA-V and CARLA

simulators, the latter being an open-source simulator for autonomous driving85

research.

The use of synthetic datasets can be limited when dealing with the segmen-

tation of real data. This essentially depends on the realistic textures that can

be generated from the simulator [29]. Moreover, synthetic Fisheye data can

only be generated via known calibration parameters. In real Fisheye datasets,90

each camera has unique calibration parameters. As a result, the deformation

of objects can be different from one camera to another. Moreover, the degree

of distortion of an object depends on the Fisheye acquisition camera position,
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orientation, object position and the field of view. As a result, segmenting ob-

jects within Fisheye data is rather subjected to multiple challenges caused by95

the variability in acquisition parameters and as a result the degree of object

distortion. In this paper, we are interested in proposing a geometry-agnostic

method that is able to learn the distortions produced by an omnidirectional

camera directly from the resulting real images.

One approach to learning unknown geometric transformations is via De-100

formable convolutions as proposed by [8]. Deformable convolutions allow learn-

ing geometric deformations customized to each dataset while training. Thus,

instead of fixed kernel sizes over all the network layers, the method proposes

learnable size and shape kernels. The variable kernel size effect is generated

by shifting the regular sampling locations by a 2D offset thanks to an addi-105

tional convolutional layer learned end-to-end with the main convolutions in the

network. Deformable convolutions have shown promising potential for object

detection and segmentation tasks given perspective images [8]. Due to their

powerful ability in modeling geometric transformations, persistent in Fisheye

data, these components have rightfully raised interest regarding their ability to110

accommodate Fisheye geometric characteristics as explored in [9, 21].

Ahmed and Lecue [1] demonstrated that learning the shape of convolution

kernels in non-Euclidean hyperbolic spaces is better than deformable kernel

methods, but the proposed method was not tested in real Fisheye images. Play-

out et al. [22] proposed an adaptation protocol to adapt models trained on115

perspective images to Fisheye images using deformable convolutions. Hu et al.

[13] proposed a semantic segmentation network dedicated for panoramic images

of outdoor scenes based on a distortion convolutional module that aims to cor-

rect the image deformation. Nevertheless, the real added value of the Deformed

convolutional has not yet been assessed within U-Net like structures for Fisheye120

image segmentation.

The main contributions of the paper lie within the scope of investigating

Deformable convolutions as a proficient substitute to convolutional layers for

Fisheye image segmentation for fully residual U-Net, in both front-view and
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multi-view scene processing. In addition, we also explore the tendency of images125

from different views to ameliorate segmentation performance and the efficiency

of the U-net variants. Finally, we highlight the role of Deformable convolutions

in aiding view-agnostic learning. We note that the objective is not dedicated

to achieving better than state-of-the-art results, but to shed light on the true

added value of Deformable convolutions in U-Net like models for Fisheye image130

segmentation. This paper also provide baseline results on the newly released

Synwoodscape dataset.

The rest of the paper is organized as follows. Section 2 presents the concept

of Deformable convolutions and provides brief overviews of two important public

Fisheye datasets, the WoodScape and the SynWoodScape datasets. Section 3135

elaborates on the proposed Deformable Residual-Unet model, as well as the

explored multiple frameworks and integration strategies. Section 4 evaluates the

relevance of the proposed Deformed Residual-Unet on several datasets. Finally,

Section 5 concludes this paper with future works.

2. Preliminaries140

2.1. Deformable Convolutions Concept

Deformable convolutions are convolutional layer variants that allow learning

of unknown geometric transformations via variable shaped and sized kernels/-

filters, rather than fixed sized convolutions over the entire network structure

[8]. Instead of customizing the kernels as adopted by many state-of-the-art ap-145

proaches [15, 6, 16], the variable shaped filter effect is simulated via adding

2D offsets to the regular sampling locations. The novel locations are obtained

in correspondence with the geometric properties of the input via the addition

of a fractional offset to the original input followed by a bilinear interpolation.

To generate the fractional offsets, an additional convolutional layer is added150

to the network and trained simultaneously with the traditional convolutional

layer of the model. In such a way, the kernel shapes and sizes are learned to

accommodate the unknown deformations particular to each dataset. The offset
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convolution filter has the same filter size as that of the regular convolutions and

the same stride. The offset convolutional filter takes the original input sample155

and produces an output of the same spatial resolution. The output indicates

the desired fractional offsets that are to be applied to each pixel in the input

conforming with the geometrical distortion. The integer positions of the new

sampled inputs are obtained via bilinear interpolation. The final input to the

original network convolutions is the new sampled input obtained by the addition160

of the integer offset/relative positions to the original input pixels. The process

is demonstrated in Figure 4.

2.2. Benchmark datasets

In this paper, we used two well-known datasets, WoodScape [36] and its

synthetic version the SynWoodScape [30]. From the WoodScape dataset, 8234165

annotated images were collected asynchronously from the four different view

angles of a vehicle. The semantic annotations are provided relative to 10 classes

including road, lanemarks, curb, person, rider, vehicle, bicycle, motorcycle, traf-

fic sign, in addition to the void class. Samples of the dataset are shown in Fig-

ure 1. From a closer look at the dataset characteristics as shown in Figure 2,170

it is realized that there is a high class size imbalance relative to the occupancy

of particular classes in the entire images. Moreover, these classes are often

located at the periphery of the Fisheye images, which means they are highly

distorted. 8000 annotated images from the SynWoodScape dataset were used.

The semantic segmentation annotation is provided for 25 classes. We choose175

to use 20 classes by aggregating classes, such as ego-vehicle that was included

to four-wheeler vehicles. By taking a closer look at the class size distribution

given in Figure 3, we realize that the dataset is characterized with a high class

imbalance relative to its percentage occupancy in the images. For example, the

four-wheeler vehicle class may occupy about 90% of the image area in some180

sample images, the water class can at most occupy less than 1% of the image.
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Figure 2: The WoodScape dataset class size distribution indicating the average possible size

(pixel occupancy) of each class in the dataset. A high size imbalance between classes in the

dataset is mainly due to the road class, which is the most prominent class in size.
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Figure 3: The SynWoodScape dataset class size distribution indicating the average size of

each class in the dataset. The road, four-wheeler vehicle and building classes are the most

prominent in size, indicating a high size imbalance between them and the other classes in the

dataset.

3. Proposed Method

In this section, we present the concept of Deformable convolutional layers

and its implementation within the segmentation framework for Fisheye datasets.

We further elaborate on the proposed Deformed Residual-Unet model, the un-185
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Bilinear
Interpolation

Deformable Convolution with billinear
interpolation 
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Image with new sampled
input to  

convolutional filters 

Figure 4: Deformable convolution concept. The Deformable convolution effect is generated via

an additional convolutional layer (green) followed by bilinear interpolation. The convolutional

filter generates fraction offsets whereas the bi-linear interpolation transforms the fractional

offset to integral positions. The new sampled input is the addition of the original input (blue

dots) to the offset integral positions.

derlying building blocks, and the different integration strategies and investigated

paradigms.

3.1. Proposed architecture

The adopted baseline U-Net like architecture is a fully Residual-Unet as pro-

posed by [17] based on [23]. Compared to the original implementation of the190

U-Net architecture, the adopted fully Residual U-Net has two main upgrades.

First, instead of concatenation between encoder and decoder layers, the concate-

nation is replaced with addition, thus allowing the network to evade vanishing

gradient problems. In addition to the long skip connections, the network also

has internal nested connections between the different convolutional blocks com-195

posing the encoder and decoder layers. In this way, the network improves the

flow of information and avoids deterioration of information through the internal

layers of the network.

The network is a 4-stage encoder/decoder architecture with long skip con-

nection between per-stage encoder and decoder blocks. Long skip connections200

combine features from each convolutional block in the encoder part with its
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Figure 5: DRU-EnD(+2) model where the Deformable convolution is injected up to the nth

level of the Residual-Unet before the first layer of the Residual Convolutional block (CRB) in

both the encoder and decoder parts.

corresponding equivalent in the decoder part. The Residual-Unet is constituted

of two main building blocks: the convolutional residual blocks (CRB) and the

convolutional decoder blocks (CDB). The Convolutional Residual blocks (CRB)

is composed of 5 convolutional layers each followed by batch normalization with205

residual connections existing between the first convolutional layer and the 4th

convolutional layer. The output from the first and 4th convolutional blocks are

added and fed to the last convolutional layer. The combination of the different

outputs from different convolutions per layer allows a more fine-grained feature

extraction. The CDB is composed of transposed convolutions followed by batch210

normalization.

The encoder is composed of 4 ensembles of CRB followed each by a max

pooling layer. On the other hand, the decoder is composed of CDB and CRB.

The input to each CRB in the encoder is the output of the block that precedes,

whereas the input to each CRB in the decoder is the addition of the correspond-215

ing CRB in the same encoder stage with that of the output of the convolutional

decoder blocks in the stage preceding it.
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The proposed model builds upon the architecture proposed by [23] and the

Deformable convolutions in [8]. Thus, we extend upon the fully Residual U-Net

by replacing convolutional blocks with the Deformable convolution according220

to several integration strategies. Our contribution is at the level of the first

convolutional layer of the CRB. Thus, we replace the regular 2D convolution

adopted by the deformed convolutional block demonstrated previously. In such

a way, we allow the network to take into consideration spatial and geometric

aspects while training. In the following, we will elaborate on the proposed225

integration strategies.

3.2. Integration Strategies

We investigate different integration strategies of the Deformable convolu-

tional block onto the Residual-Unet Baseline. The proposed model is de-

noted as Deformable Residual-Unet (DRU). The most simplest integration230

is at the input level of the Residual-Unet where we replace the first convo-

lutional layer with that of the Deformable convolutional block. We denote this

model by DRU-L(+1). Alternatively, we also explore the possibility of in-

tegrating the Deformable convolutional block at the last convolutional block

with kernel size greater than one in the decoder layer. We denote this model235

by DRU-Dec(+1). Finally, DRU-EnD(+n) demonstrates the integration

of Deformable convolutions up to the nth stage of the Residual-Unet, i.e., in

the nth convolutional block of the encoder and its corresponding convolutional

block at the decoder. Experiments were carried out with n “ 1, 2 and 3. The

corresponding models are denoted as DRU-EnD(+1), DRU-EnD(+2), and240

DRU-EnD(+3).

3.3. Explored Paradigms

We investigate the proficiency of Deformable-Unet given three main

paradigms: Front-view train front-view test, multi-view train multi-

view test and multi-view train front-view test. In the state of the art,245

datasets dedicated for autonomous driving like CityScapes [7] and CamVid [3]

12



contain images from just the front-view front cameras. In this essence, we focus

on the first paradigm, i.e., front-view train front-view test, on conduct-

ing training via just the front-view image for WoodScape and SynWoodScape

similar to the works of [4, 7].250

In addition to front-view, we also explore the adaptability of the proposed

model given multi-view Fisheye image segmentation. The main intuition is

to explore the possibility of a view-agnostic model that can generalize well by

considering the different information and learnt features from multiple views.

We note that, in this paradigm, left and right Cameras in the WoodScape and255

SynWoodScape datasets are facing down resulting in very specific images where

a large amount of pixels represent the road and the ego-vehicle. This paradigm,

denoted multi-view train multi-view test, is similar to the most recent

state-of-the-art works that aim to learn on acquired Fisheye images. This is

demonstrated by the different models and experiments proposed in [36].260

In the last paradigm, denoted multi-view train front-view test, we ad-

dress the possibility of exploiting images from the different surround views in

order to increase the segmentation performance on single front-view data. Up

to our knowledge, this idea is novel to the state of the art as it endorses data

augmentation via the different image views from the four Fisheye cameras. Our265

code and models can be found in this github repository 2.

3.4. Computation Complexity and Model Parameters

In order to evaluate the computational complexity of the proposed models,

we compute the amount of multiply–accumulate operations (MAC) following

the flops counter described in the GitHub repository3. The computational com-270

plexity is measured in Giga MACs and the number of parameters in Millions.

Results are Benchmarked in Table 1 given an input of dimensions 512 ˆ 512.

The Baseline model corresponds to the fully residual U-Net with rectangular

2https://github.com/rosanajurdi/WoodScape-Segmentation-Project
3https://github.com/sovrasov/flops-counter.pytorch
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Models Computational Complexity Model Parameters

(Giga MACs) (Millions)

Baseline 125.20 19.65

DRU-L(+1) 125.39 19.65

DRU-Dec(+1) 127.23 19.66

DRU-EnD(+1) 127.42 19.65

DRU-EnD(+2) 128.95 19.68

DRU-EnD(+3) 129.71 19.73

Table 1: Computational Complexity measured in multiply–accumulate operations (Giga

MACs) and Model Parameters in Millions, for the integration strategies of the Deformable

Convolutional layer.

convolutions. These results show that the integration of Deformable convolu-

tions into the network adds only a small overhead on model parameters and275

computation. Figure 6 presents the overhead, relative to the baseline model,

for different values of the number of layers where Deformable convolutions are

applied. The Deformable convolution seems to have a slightly bigger overhead

when applied on the deconvolution layer. The size increase in the deconvolution

layer explains this result. It can also be noticed that the increase in computa-280

tional complexity seems linear while the number of parameters increases in a

less linear fashion.

3.5. Connections to related work

Deformable Convolutions

Due to their powerful ability in modeling geometric transformations, several285

works have extended upon the concept of Deformable convolutions in order to

adapt CNN methods to Fisheye data [9, 21]. For instance, the authors of [9]

proposed the concept of Restricted Deformable Convolution where the central

location of the filters are rather fixed while the other locations are learned via

the convolutional mapping layer. Alternatively, the authors of [21] proposed to290

deploy the Deformable convolutions on top of CNNs pre-trained on perspective
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Figure 6: Deformable convolution overheads, relative to the Baseline set at p0, 0q.

images and to finetune the structure via a tiny sample of annotated Fisheye

images. Moreover, they investigated the minimal number of samples needed

to adapt traditional CNNs on Fisheye images via the concept of Deformable

convolutions. Despite their significance, however, up to our knowledge, none of295

these works adopted or investigated the validity of exploiting the Deformable

convolutional component within U-Net like structures. Evidently, the U-Net is

a very well-known and adopted segmentation model. The contribution of this

work is driven by the importance of having deployment mechanisms able to

accommodate objects with different scales and deformations at the higher level300
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layers of the CNNs. These layers are mainly dedicated to encoding semantic

features over spatial locations as noted in [8]. In a U-Net or a U-Net like struc-

ture, this relationship is imposed by the skip connections existing between the

Encoder and Decoder layers. The main intuition behind the work is that the ad-

dition of the Deformable component at corresponding convolutions per-stage in305

a U-Net can sufficiently increase the networks ability to learn geometric features

specific to the Fisheye images and their characteristics, therefore enhancing the

segmentation performance.

Data augmentation

In comparison to the state of the art, works of [2] and [11] exploit data aug-310

mentation methods that can be considered as random rotated cropping with

the constraint of using the omnidirectional representation, either by using a

Fisheye calibration model, or a 3D representation of a sphere. For instance, the

tangent images proposed in [11] could be thought of as a data augmentation

method based on dedicated cropping relative to a plane tangent to the icosahe-315

dron representation of a sphere. Despite their significant role in transforming

omnidirectional data to perspective data with low distortions, this method is

more useful for high-resolution equirectangular images. Moreover, it results in

multiple crops with redundancy, since the same object in the scene can be in-

cluded in multiple crops, leading to more computational time to segment the320

same objects in the scene. Moreover, sub-sectioning spherical data into per-

spective ones with low distortion, may result in information loss particularly

relative to the global position of the objects of interest. We argue that our pro-

posed augmentation method preserves the holistic spatial understanding of the

Fisheye images lost via random cropping. This will in turn positively impact325

the segmentation performance as the Fisheye image properties are preserved

and learnt through training. In this paper, we propose to exploit surround view

data for augmentation in order to preserve the holistic spatial understanding

and properties of a Fisheye image. We argue that the exploitation of multi-view

data augmentation allows better feature representation particular to the Fisheye330
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 Fisheye Images Groundtruth Baseline Segmentation Best model Segmentation

Front-View
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Figure 7: Qualitative Results on the SynWoodScape dataset: Fisheye Image, Ground-truth,

Baseline (Residual Unet segmentation) and Best model performance (DRU-EnD(+3))

data at hand.

4. Experimental results

Experiments are conducted on the WoodScape dataset of real images4 and

the SynWoodScape dataset [30] of synthetic images generated using the same

calibration parameters as the real ones. In the following, we first describe the335

experimental setup and analyze the results on the multiple paradigms.

4https://woodscape.valeo.com/home

17

https://woodscape.valeo.com/home


Table 2: Mean Intersection over Union (mIoU) results on the SynWoodScape dataset (Syn-

thetic images) when trained and tested on single-view images, validated over 3 Monte Carlo

Simulations

Residual-Unet DRU-L(+1) DRU-Dec(+1) DRU-EnD(+1) DRU-EnD(+2) DRU-EnD(+3)

Building 88.06˘ 3.08 87.81˘ 1.96 88.36˘ 1.86 89.92˘ 0.31 90.23˘ 1.09 90.51˘ 0.28

Fence 2.38˘ 3.33 2.11˘ 2.90 0.32˘ 0.33 9.90˘ 8.10 8.05˘ 5.19 14.80˘ 6.76

Four-wheeler vehicle 83.38˘18.84 93.51˘ 4.19 92.66˘ 1.82 93.38˘ 5.49 95.72˘ 3.26 97.45˘ 0.06

Ground 58.40˘23.39 54.42˘ 7.53 64.43˘ 7.15 71.50˘ 3.84 58.04˘18.21 79.39˘ 2.90

Other 56.30˘16.25 60.36˘11.35 61.11˘12.29 68.03˘ 1.39 66.57˘ 1.74 66.00˘ 1.52

Pedestrian 44.06˘20.59 47.34˘13.10 46.64˘10.40 55.11˘ 2.71 58.71˘ 1.56 58.52˘ 3.93

Pole 31.85˘10.62 33.33˘ 9.25 30.98˘ 2.00 39.98˘ 2.56 42.32˘ 5.44 44.89˘ 5.14

Rail track 46.42˘27.43 11.12˘16.97 41.03˘26.84 58.26˘28.01 73.37˘17.52 80.47˘12.02

Road 91.68˘ 9.06 95.11˘ 2.58 96.09˘ 0.40 96.55˘ 2.54 97.51˘ 1.46 98.31˘ 0.11

Road line 74.04˘16.69 78.69˘10.87 77.80˘ 4.27 84.54˘ 1.62 86.37˘ 2.32 87.00˘ 2.30

Sidewalk 76.01˘17.29 74.42˘ 4.66 78.16˘ 0.93 83.93˘ 6.45 85.62˘ 7.75 89.78˘ 1.18

Sky 93.73˘ 1.92 94.34˘ 1.57 94.12˘ 0.95 95.16˘ 0.53 95.16˘ 0.20 95.14˘ 0.16

Static 38.95˘10.53 34.70˘14.62 38.18˘ 3.27 42.79˘ 1.68 49.14˘ 8.00 54.87˘ 1.49

Terrain 2.23˘ 1.88 3.37˘ 3.68 3.66˘ 4.95 2.02˘ 1.59 8.18˘ 3.00 3.60˘ 2.57

Traffic light 46.03˘25.09 52.66˘14.85 51.59˘12.27 62.86˘ 2.96 56.48˘ 3.32 61.40˘ 0.21

Traffic sign 21.70˘17.07 28.26˘15.61 26.41˘15.77 39.38˘ 4.46 37.76˘ 2.62 41.15˘ 3.06

Two-wheeler vehicle 14.97˘ 1.72 19.34˘ 7.00 18.34˘ 1.67 22.43˘ 7.14 21.45˘10.24 19.88˘ 3.00

Vegetation 65.30˘18.86 71.16˘11.91 69.90˘11.88 77.49˘ 0.72 78.20˘ 2.28 78.97˘ 0.91

Wall 27.98˘31.23 36.70˘23.70 33.45˘19.18 52.96˘ 8.02 58.09˘ 9.11 59.92˘ 3.70

Water 17.22˘24.09 16.28˘14.05 17.81˘16.03 29.40˘ 5.40 24.91˘ 9.34 33.72˘ 2.67

Average 44.41˘17.47 45.76˘10.05 47.81˘ 6.31 55.98˘ 1.44 56.76˘ 4.97 59.80˘ 0.39

4.1. Settings

To insure reproducibility, we deployed the experimental framework and fully

Residual-Unet model presented in [17]. The Deformable convolutions can be

found in this github repository5. For the loss, we use the cross entropy loss.340

Models were initialized randomly and trained from scratch. Thus, we do not

use pre-trained layers. The methods were evaluated using the mean Intersection

over Union (mIoU). Training was conducted via the Adam optimizer with a

batch size of 2 over 45 epochs. The learning rate was set to 5ˆ10´4 and halved

each 20 epochs if the validation performance did not improve.345

For pre-processing, we have resized the RGB images to a size of 512 ˆ 512

and normalized them to a pixel value between 0 and 1. The datasets were split

into train and validation based on an (80 %, 20 %) partition respectively. Cross-

validation was done on three folds of the data and results were averaged over

5https://github.com/4uiiurz1/pytorch-deform-conv-v2/blob/master/deform_conv_

v2.py
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three Monte-Carlo simulations. Our code is publically available on GitHub 6.350

4.2. Front-view Fisheye Image Segmentation

In this section, we present results for the different integration strategies of the

Deformable convolution on the fully Residual-Unet model when trained on single

front-view images from both the synthetic and real datasets via the cross entropy

loss. We note that the real dataset includes 9 classes whereas the synthetic355

dataset contains 20 classes. In order to establish a baseline performance, we

train the traditional fully Residual-Unet in [17] via the same training strategy

as the proposed models.

The results obtained on mean Intersection over Union (mIoU) on both

datasets, shown in Table 2 and Table 4, indicate the significance of the proposed360

method for Fisheye datasets. Thus, the integration of the Deformable compo-

nent at corresponding convolutional layers from the encoder and decoder paths,

as the case of DRU-EnD(+1), DRU-EnD(+2), and DRU-EnD(+3), increases

the average mIoU significantly relative to the Residual-Unet baseline model. In

fact, it is evident from both tables that, as the number of injected Deformable365

components increases, the segmentation performance relative to Fisheye data

increases as well. This indicates the ability of the Deformable convolutions in

accommodating intrinsic Fisheye characteristics and geometric transformations

specific to a particular view, here the front-view. Thus, one can say that, as

the number of Deformable components increases per level ensemble encoder/de-370

coder layers, the model is then further able to capture the intrinsic geometric

distortions properties dependent or related to the camera pose and location.

This paves the way to the possibility of deploying a single model for single-view

segmentation given computation constraints.

4.3. Multi-view Fisheye Image Segmentation375

In addition to front-view, we also present results for the different integration

strategies of the Deformable convolutions when trained on multi-view Fisheye

6https://github.com/rosanajurdi/WoodScape-Segmentation-Project
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Table 3: Mean Intersection over Union (mIoU) results on SynWoodScape dataset (Synthetic

images) when trained and tested on multi-view images, validated over 3 Monte Carlo Simula-

tions.

Residual-Unet DRU-L(+1) DRU-Dec(+1) DRU-EnD(+1) DRU-EnD(+2) DRU-EnD(+3)

Building 90.81˘ 0.98 91.76˘ 0.78 91.97˘0.14 91.53˘ 0.64 91.47˘ 0.20 91.49˘ 0.20

Fence 8.88˘ 3.83 16.99˘ 1.11 18.87˘0.94 17.69˘ 5.58 19.34˘ 2.67 19.49˘ 3.14

Four-wheeler Vehicle 97.42˘ 1.20 98.49˘ 0.87 98.99˘0.08 98.34˘ 0.61 98.82˘ 0.09 98.73˘ 0.05

Ground 65.5˘ 7.54 79.67˘18.76 90.21˘0.22 78.99˘ 9.46 81.72˘13.17 89.15˘ 1.44

Other 72.92˘ 2.99 75.73˘ 1.25 74.95˘0.38 75.48˘ 0.51 71.67˘ 1.08 71.74˘ 0.94

Pedestrian 58.32˘ 3.36 62.53˘ 5.23 65.45˘1.28 64.37˘ 1.67 62.38˘ 1.79 62.88˘ 0.90

Pole 36.57˘ 6.20 46.24˘ 4.10 48.59˘1.46 46.81˘ 3.22 44.89˘ 4.44 45.62˘ 1.67

Rail track 73.10˘19.85 76.51˘18.01 89.06˘2.34 73.25˘15.19 88.80˘ 0.81 87.87˘ 0.55

Road 97.07˘ 0.89 98.17˘ 0.85 98.91˘0.18 98.42˘ 0.52 98.64˘ 0.45 98.59˘ 0.27

Road line 84.4˘ 2.21 87.71˘ 3.84 89.31˘1.64 88.11˘ 1.50 88.94˘ 0.66 89.00˘ 0.48

Sidewalk 78.14˘ 7.58 84.70˘ 7.90 92.10˘1.02 87.56˘ 4.89 89.46˘ 4.86 89.88˘ 2.07

Sky 94.48˘ 0.25 94.72˘ 0.61 94.91˘0.01 94.80˘ 0.23 94.67˘ 0.20 94.73˘ 0.16

Static 53.45˘ 5.75 63.46˘ 5.34 69.13˘0.36 62.35˘ 6.04 65.98˘ 1.83 65.84˘ 0.68

Terrain 5.14˘ 4.24 13.03˘ 5.06 13.74˘7.10 9.04˘ 4.97 10.07˘ 5.94 10.08˘ 4.06

Traffic light 63.53˘ 3.09 68.62˘ 1.50 68.89˘0.15 69.04˘ 1.53 65.18˘ 0.60 65.24˘ 1.85

Traffic sign 44.04˘ 5.05 51.28˘ 1.21 50.55˘1.87 50.41˘ 2.69 45.74˘ 2.10 46.55˘ 2.99

Two-wheeler vehicle 43.86˘ 1.81 51.45˘ 6.45 54.17˘1.04 51.96˘ 2.16 51.24˘ 3.48 43.21˘ 3.96

Vegetation 79.75˘ 1.13 81.11˘ 0.40 81.14˘0.31 80.82˘ 0.54 80.61˘ 0.31 80.68˘ 0.22

Wall 56.68˘ 6.09 66.99 ˘ 4.62 66.11˘0.82 63.54˘ 4.56 65.19˘ 2.62 64.49˘ 2.93

Water 35.55˘ 5.77 36.91 ˘ 3.92 32.07˘0.18 33.82˘ 7.74 38.07˘ 2.76 37.82˘ 2.37

Average (Multi-View) 61.98˘ 3.77 67.30˘ 4.46 69.46˘0.02 66.82˘ 3.38 67.64˘ 2.28 67.65˘0.63

Average (Single-View) 60.35˘ 4.85 66.16 ˘ 6.51 69.84˘0.77 66.51˘ 4.32 68.08˘ 2.86 68.28˘0.12

images from the real and synthetic dataset via the cross entropy loss. We com-

pare relative to the Residual-Unet baseline. Results benchmarked in Table 5 and

Table 3 reveal that the addition of the Deformable convolutional components380

has ameliorated segmentation performance over the different integration strate-

gies. This corroborates the ability of the Deformable convolutional component

in learning geometric features specific to the dataset at hand. In fact, one can

consider a trade-off between the number of Deformable convolutions necessary

to increase segmentation performance and the size of the training data. From385

Table 5 and Table 3, we can gather that the addition of the Deformable com-

ponent simply at the first stage of the fully Residual U-Net convolutional is

sufficient so as to increase segmentation performance significantly. This paves

the way to the possibility of learning view-agnostic geometric features via the

injection of the Deformable component at simply one encoder/decoder layer390

within the U-Net like architecture.

Comparing these results relative to the single-view real Fisheye image seg-
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Table 4: Mean Intersection over Union (mIoU) results on the WoodScape dataset (Real im-

ages) when trained and tested on single-view images, validated over 3 Monte Carlo Simulations

Residual-Unet DRU-L(+1) DRU-Dec(+1) DRU-EnD(+1) DRU-EnD(+2) DRU-EnD(+3)

Road 96.47˘0.50 96.28˘ 0.52 96.36˘ 0.47 96.14˘ 0.44 96.65˘0.37 96.76˘ 0.29

Lanemarks 61.65˘2.62 62.65˘ 1.12 57.42˘ 6.64 61.51˘ 0.74 61.53˘5.07 65.77˘ 1.70

Curb 73.50˘2.68 70.02˘ 5.39 71.71˘ 1.76 72.77˘ 0.47 72.00˘2.52 72.11˘ 0.93

Person 36.12˘3.26 29.77˘14.94 37.27˘11.42 34.88˘ 3.48 47.44˘5.12 56.19˘18.96

Rider 28.53˘9.12 37.69˘ 4.92 33.16˘ 4.80 36.75˘ 9.96 45.46˘6.93 49.19˘ 4.64

Vehicles 91.41˘2.77 91.85˘ 1.38 91.26˘ 1.58 90.20˘ 4.72 93.96˘0.26 94.18˘ 0.30

Bicycle 72.39˘5.96 67.67˘ 1.30 69.28˘ 4.60 65.71˘ 6.01 73.14˘2.30 67.83˘ 4.00

Motorcycle 19.35˘4.73 18.16˘ 8.10 21.21˘ 5.03 20.97˘12.76 28.22˘3.96 25.45˘12.97

Traffic sign 83.93˘10.2 88.23˘ 6.23 83.61˘16.50 89.44˘ 9.30 87.04˘8.67 90.58˘ 9.99

Average 62.59˘2.63 62.48˘ 2.82 62.36˘ 4.73 63.15˘ 2.84 67.27˘0.67 68.67˘ 3.87

Table 5: Mean Intersection over Union (mIoU) on the WoodScape dataset (Real images) for

multi-view, validated over 3 Monte Carlo Simulations

Residual-Unet DRU-L(+1) DRU-Dec(+1) DRU-EnD(+1) DRU-EnD(+2) DRU-EnD(+3)

Road 86.92˘2.40 90.45˘ 2.82 89.70˘0.41 91.76˘ 1.21 90.88˘2.32 88.12˘2.32

Lanemarks 49.39˘6.80 56.43˘ 6.13 60.15˘5.06 65.05˘ 4.38 62.99˘8.57 58.93˘5.14

Curb 42.52˘3.93 47.67˘ 3.37 49.18˘6.84 56.29˘ 3.02 52.03˘5.35 49.72˘4.75

Person 12.99˘1.58 22.62˘ 9.36 22.03˘2.33 28.20˘10.17 21.02˘9.57 19.10˘8.34

Rider 6.64˘3.44 13.16˘ 4.19 16.61˘5.03 26.25˘ 5.65 22.87˘1.74 18.15˘2.27

Vehicles 66.91˘0.87 70.27˘13.03 72.37˘1.26 77.82˘ 3.83 74.24˘7.15 69.53˘4.49

Bicycle 13.09˘7.26 27.63˘10.41 24.40˘4.33 31.94˘ 4.22 24.55˘4.21 21.89˘2.70

Motorcycle 5.56˘4.84 19.05˘13.08 16.40˘1.80 23.58˘ 6.19 16.94˘5.51 14.33˘6.81

Traffic sign 3.50˘3.89 8.58˘ 5.50 7.06˘1.20 12.87˘ 3.88 4.34˘1.28 4.38˘1.27

Average (Multi-view) 38.08˘2.67 45.08˘ 6.32 45.26˘2.64 50.95˘ 2.98 46.50˘3.85 43.80˘0.79

Average (Front-view) 58.17˘5.03 73.91˘ 7.46 70.82˘2.93 72.16˘ 4.05 66.60˘8.05 62.19˘3.18

mentation experiments in Table 4 and Table 3, we realize that whereas the

segmentation performance for front-view segmentation increases as the number

of injected Deformable convolutions increases in the ensemble encoder/decoder395

layers, it is sufficient for multi-view segmentation to add the Deformable com-

ponent within only the first layer of U-Net like structure. Our intuition to

explain the reason is the size of the dataset under consideration. Thus, given

small datasets, regular models are rather unable to learn unknown geometric

properties due to insufficient samples. Therefore as the number of Deformable400

components increases, the model is further able to learn the geometric properties

better. Given a large dataset, it is only sufficient to add the Deformable com-

ponent at only one corresponding encoder/decoder layer to guarantee agreeable

segmentation performance.
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4.4. Data Augmentation Via Surround-view Data405

In addition to the multi-view training multi-view testing, we have also regis-

tered performances on multi-view training front-view testing. Results are bench-

marked in the last row of Table 5 and compared to that of Table 4. Indeed, the

training on multi-view images has resulted in an increase in segmentation per-

formance in comparison to training on just single-view data. Thus, whereas the410

training on single-view data has resulted in a best case performance of about

67 % with the injection of the Deformable components across 3 consecutive

layers of the U-Net model, with multi-view training, it was sufficient to just

add the Deformable component given only the first layers of the U-Net with a

performance that outperformed the single view training by about 72.16 %. In415

this context, similarities could be drawn between this experiment and the work

in [18] that sheds light on the importance of multi-task learning for increasing

segmentation performances. Results obtained are promising and pave the way

to studying the validity of Deformable convolutions within multi-task networks

such as the OmniDet model as proposed by [18]. Moreover, the training on420

multi-view Fisheye images could be demonstrated as yet another approach for

data augmentation via view-agnostic data.

Despite the significance of the proposed method, however, we do admit to

certain limitations. By taking a closer look at the tables, we can gather that cer-

tain classes are rather small sized objects in the case of terrain (e.g. terrain) or425

with multiple dis-continuities (e.g. fence). Despite the improved performance

over the baseline Residual-Unet, overall segmentation performance is rather

limited when it comes to small objects. Thus, the method shares the same limi-

tation with regard to imbalanced-sized objects as the one existing in perspective

data. One possible solution is via an augmented memory or memory bank [12]430

that saves under-presented objects and sample over represented ones in order

to ensure a balanced representation of the different classes given the task at

hand. Thus, this approach allows the network to have access to more balanced

and diverse training data. In addition, maintaining a large dictionary with a

queue of data samples as proposed by [12], encourages the model to learn diverse435
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and representative features. In this way, it can balance the importance given

to different instances, including those from underrepresented classes, as they

all contribute to building a consistent dictionary. Another possible solution is

via the integration of certain prior information regarding the data distribution,

characteristics of the classes (size of objects or their location), or domain-specific440

information to guide the learning process and improve the handling of imbal-

anced datasets. Similar to [33], the proposed method can distinguish between

objects despite varying deformations in their shapes, nevertheless, one could

make use of the querying system explored in [33] to enhance the presence and

the training for under-represented classes.445

To further enhance instance segmentation methods, it is worth exploring

training frameworks that address class imbalance, as this remains a challenge

in the field. The promising results achieved by the discriminative query em-

bedding learning in boosting query-based models in suggest that incorporating

techniques to explicitly handle class imbalance may lead to even more signifi-450

cant performance gains. For instance, considering data augmentation strategies

or class re-weighting during training could help the model better cope with

underrepresented classes, ultimately improving segmentation accuracy. Addi-

tionally, investigating methods that dynamically adjust the importance given to

different instances based on their rarity or difficulty may also contribute to bet-455

ter handling class imbalance in the context of instance segmentation. Overall,

by integrating these considerations into the training process, we anticipate fur-

ther progress in developing robust and accurate instance segmentation models

for real-world applications. Integrating Deformable convolution within SgNet

could also be an option for handling class imbalance. Sg-Nets are networks that460

can handle class imbalance via dynamic mask predictions of sub-regions within

videos/images and via multi-task learning (detection, segmentation, and track-

ing). By allowing the tasks to share features and co-adapt, it could potentially

improve the overall performance on all classes, including the less frequent ones

[20].465
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4.5. Models efficiency

We define the efficiency of the model as the ratio of the workload (GMACs)

over the IoU. Figure 8 presents the results for the four models: single view versus

multiple views, WoodScape versus SynWoodScape. The baseline model without

deformable layers is systematically requiring more GMACs per IoU. The best470

efficient tends is obtained when either a single layer from the encoder or the

decoder applied a Deformable convolution. The gap tends to narrow as more

Deformable convolutional layers are added to the network layers. Still, the fully

Deformable residual-Unet (6 layers) outperforms the baseline. As a result, the

Deformable layers induce a more efficient network for fully residual-UNets. The475

behavior for SynWoodScape is similar for single and multiple views. The close

IoU values of these two models on SynWoodScape explains this result. For the

same reasons the gap is rather broader for WoodScape.

We would like to note here that increasing the number of Deformable con-

volution injections into the Unet architecture may not mean an increase in seg-480

mentation performance over the architectures with lower injections. The lack of

increasing improvement when incorporating additional deformable convolutions

could be related to the possibility that the deformable convolutions may al-

ready capture the necessary spatial information within the existing layers of the

model. As a result, introducing more Deformable convolutions may not signifi-485

cantly contribute to the overall performance as the model’s architecture carried

with the Deformable convolution may have reached a performance saturation.

To achieve further advancements in segmentation performance, more intricate

architectures with greater capacity for capturing the Deformable characteristics

of objects would be necessary.490

5. Conclusion and Future Work

In this paper, we have investigated Deformable convolutions for Fisheye

image segmentation. The proposed method shows the promising potential of

Deformable convolutions in modeling unknown geometric transformations and
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distortions existent in Fisheye images. Using the proposed method we achieved495

an investigation study with multiple integration strategies of the deformable con-

volutional blocks in the residual Unet. We further shed light on the importance

of exploiting surround-view data as an effective data augmentation method for

front-view Fisheye image segmentation. The experiments have shown for the

front view that the more we add deformable convolutional blocks the more the500

results improve. We also found out that training on surround view images im-

proves the results on the front view compared with when we just train on the

front view images. Finally, we highlights the increased efficiency of fully resid-

ual U-Net when Deformable convolutions substitutes rectangular convolutions

on both WoodScape and SynWoodScape datasets.505

The conducted experiments have shown that the deformable convolutional

blocks offer a finer and more efficient modelling for Fisheye images, therefore

future work may involve the integration of these blocks into other backbone

architecture or multi task networks dedicated for omnidirectional images or for

other tasks like instance segmentation, detection and optical flow estimation. It510

may also involve integration of prior knowledge regarding the objects possible

positions, and shapes, or depth maps, as constraints in order to improve seg-

mentation performances and counter-react the class size imbalance within the

datasets.

In recent years, transformer-based approaches have emerged as powerful515

tools for image segmentation [34, 19]. These approaches leverage the strengths

of transformers in capturing long-range dependencies and context information

that may potentially make it a powerful tool for data with larger fields of view.

While such approaches have shown promising results in semantic segmenta-

tion tasks, its applicability to Fisheye data remains unexplored. In this con-520

text, an intriguing avenue for future research lies in exploring the potential

synergy between transformer-based approaches and Deformable convolutions.

Fisheye images pose unique challenges due to their distorted perspective and

wide field of view. By integrating Deformable convolutions into the Transformer

framework for segmentation, it may be possible to enhance the model’s ability525
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to capture and adapt to the deformations and irregularities inherent in fish-

eye images while preserving the transformer model’s computational efficiency.

For example, the authors of [33] propose a new training framework to improve

query-based instance segmentation methods, which also fall under the category

of image segmentation. The framework leverages dataset-level uniqueness and530

transformation equivariance to enhance instance separation and achieve more

robust instance-query matching. By querying instances across the entire train-

ing dataset, the model learns more discriminative queries, resulting in significant

performance gains on benchmark datasets. Such architecture and method could

benefit from the previliges of Deformable convolutions in order to learn complex535

patterns in the data.

Interpretability methods aim to provide insights into how a neural network

makes decisions and quantifies the importance of different components or op-

erations within the network architecture. In this context, future work could

also include exploring interpretability tools and techniques [32, 28] in order to540

quantify and asses the true added value of deformable convolutions and how

they impact networks performance and behavior.

Adversarial attacks are known to exploit the weaknesses of deep learning

models with semantic segmentation models being no exception to the rule [5].

Despite the ability of the proposed model to learn unknown geometric distortions545

from Fisheye images, future work may include studying further the robustness

of the model relative to adversarial distortions, which are carefully crafted to

deceive the segmentation network. Furthermore, there is an opportunity to

gain insights from alternative models on their approach to handling adversarial

attacks and incorporate these techniques into our own network [5]. Finally,550

it is crucial to assess the model’s capacity for resilience and robustness when

confronted with perturbed inputs, especially under adversarial conditions.
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I., Milz, S., Mäder, P., 2021. Omnidet: Surround view cameras based

multi-task visual perception network for autonomous driving. CoRR650

abs/2102.07448. arXiv:2102.07448.

[19] Liang, J., Zhou, T., Liu, D., Wang, W., 2023. Clustseg: Clustering for

universal segmentation. arXiv:2305.02187.

[20] Liu, D., Cui, Y., Tan, W., Chen, Y., 2021. Sg-net: Spatial granularity

network for one-stage video instance segmentation. arXiv:2103.10284.655

[21] Playout, C., Ahmad, O., Lecue, F., Cheriet, F., 2021a. Adaptable de-

formable convolutions for semantic segmentation of fisheye images in au-

tonomous driving systems. arXiv preprint arXiv:2102.10191 .
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