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Highlights 10 

 Northward soybean deployment requires environmental characterisation using eco-climatic 11 

factors 12 

 Envirotyping explained 88% of the genotype by environment interactions 13 

 Five environment types contrasted by the intensity and timing of stresses 14 

 Combine specific and broad adaptation is best suited in the target population of environments 15 

 16 

Abstract 17 

In the context of the European protein deficit and the need for climate change mitigation by agriculture, 18 

soybean (Glycine max L. Merr) is of major interest to farmers and breeders. Expanding the crop to new 19 

cultivation areas requires understanding and control of the Genotype by Environment Interactions (GEI) that 20 

impede the genetic gain. New envirotyping methods, including the Target Population of Environments (TPE) 21 

characterisation, are key to the development of efficient breeding programs for specific or broad adaptations. 22 

The objectives were to (i) determine the environment types describing the European early soybean TPE, (ii) 23 

characterise the distribution and repeatability of the environment types across the TPE to identify the best 24 

suited adaptation strategy and (iii) demonstrate the importance of assessing the alignment between multi-25 

environmental trials and the TPE for breeding decisions. In this study, 602 environments from France to 26 

Russia were clustered into five environment types using twelve eco-climatic factors, i.e. environmental 27 



variables that were calculated over specific phenological periods, such as the number of days below 15°C 28 

between flower induction and first flower stages or the solar radiation quantity between first pod and first 29 

seed stages. These factors were previously identified as main drivers of GEI for yield in early maturity 30 

soybean (maturity groups ‘000’ and ‘00’). The environmental clustering explained 88% of the GEI effect on 31 

soybean yield. The five environment types that composed the TPE, mainly contrasted in the intensity and 32 

timing of stresses related to temperature (cold stress during the vegetative growth and heat stress during the 33 

reproductive growth) and water availability (precipitation amount, evapotranspiration and drought 34 

throughout the crop cycle). Interestingly, we observed geographical and temporal variations in the 35 

environment types distributions across the TPE as well as in their repeatability. These variations attested to 36 

the TPE heterogeneity and thus suggested that selection strategies based on either specific or broad 37 

adaptations should be combined. For example, specific adaptations to the third and fourth environment types 38 

were best suited in Eastern Europe while the broad adaptation to all environment types could be 39 

recommended in Western Europe. When broad adaptation was required, we demonstrated the need to assess 40 

the alignments between the environment types frequencies in the TPE and those observed when multi-41 

environmental trials were conducted. This work will contribute to improving the existing soybean germplasm 42 

by considering the risks linked with weather variations and unpredictability so as to design elite soybean 43 

according to environment type. 44 

 45 

Key words 46 

Envirotyping, Multi-environment trial, Target population of environments, Soybean, Weighted selection47 



1. Introduction 48 

 Breeders aim to create cultivars that outperform the existing germplasm under a large set of growing 49 

conditions across the cultivation area. Spatial considerations and year-to-year variations in weather scenarios 50 

can considerably affect the relative performances of cultivars and make breeding decisions more complex 51 

(Cooper & DeLacy, 1994). This phenomenon, called Genotype by Environment Interactions (GEI), limits 52 

the genetic gain by decreasing the effective heritability of traits, i.e. the ability to identify superior genotypes 53 

statistically (Brennan et al., 1981; Basford & Cooper, 1998). When the GEI are low, cultivars can be 54 

identified that perform well across a wide range of conditions; this is referred to as broad adaptation (Cooper 55 

& Byth, 1996). Alternatively, when there are greater GEI, certain cultivars can perform better than others 56 

within a restricted set of conditions. This is referred to as specific adaptation (Cooper & Byth, 1996). Crop 57 

growth models have become increasingly popular to unravel the complexity of the ecophysiological 58 

mechanisms and processes underlying GEI (Millet et al., 2019; Rincent et al., 2019; Casadebaig et al., 2021; 59 

Bustos-Korts et al., 2022). These models offer the possibility of connecting plant physiological processes 60 

with environmental variables (Chenu et al., 2017). For instance, they can be used to calculate climatic 61 

variables over specific simulated phenological periods. Known as environmental covariates or Eco-climatic 62 

Factors (EFs), they can be treated as explanatory variables of complex traits, including yield (Schoving et 63 

al., 2022, Elmerich et al., 2023). 64 

To capture the GEI effect, breeders traditionally evaluate genotypes across Multi-Environment Trials 65 

(METs) that include a set of locations and years, referred to as environments. Such trials aim to characterise 66 

the environmental conditions in which the crops are likely to be grown. These conditions correspond to the 67 

Target Population of Environments (TPE) (Podlich & Cooper, 1998). Due to seasonal variability and the 68 

practical constraints that restrict the number of genotypes and environments tested in METs the environments 69 

sampled in METs often offer a biased representations of the TPE (Podlich et al., 1999). An extension of the 70 

breeder’s equation used to quantify genetic gain was recently developed to explicitly account for the 71 

influence of the MET-TPE alignment on trait predictions (Cooper et al., 2023). Thus, weighted analyses 72 

based on representativity assessments of trials can enable breeders to correct for this bias and select 73 

germplasm that is better adapted to a TPE. This requires an upstream characterisation and understanding of 74 

the TPE through identification of the key environmental classes affecting the performance of the genotypes. 75 



These environmental classes, referred to as environment types , regroup environments (location x year) in 76 

which genotypes have similar performances (Chenu et al., 2013). The classification can be performed 77 

according to geographical regions (Döttinger et al., 2023), stress factors patterns (Chapman et al., 2000) or 78 

effects on performance traits such as yield levels or maturity dates (Chauhan et al., 2013; Kurasch et al., 79 

2017). While useful to describe environmental variables affecting crop productivity, these classification 80 

criteria do not attest to the performance stability of the genotypes. Consequently, the best approach for 81 

breeding purposes is grouping or clustering environments based on environment variables that are key drivers 82 

of GEI (Annicchiarico, 2021). The challenge is to identify these drivers and use them to cluster environments 83 

into environment types that define the TPE. This approach minimises GEI within environment types but  84 

maximises them between environment types (Chenu et al., 2011; Bustos-Korts et al., 2022). 85 

Leguminous crop deployments have been accelerated to address European protein deficits (Marraccini et 86 

al., 2020; Ayerdi Gotor & Marraccini, 2022). Among legumes, soybean (Glycine max L. (Merrill)) seems to 87 

be a good candidate to become a major oleo-protein crop for both food and feed (Sudarić, 2020). European 88 

soybean production is  currently low, and importations greatly exceed exportations (FAOSTAT, 2021). 89 

Although recent studies demonstrate the potential of soybean crop in Europe, few breeding efforts have been 90 

made to adapt soybean in Northern Europe (Boulch et al. 2021; Karges et al., 2022). Under highly divergent 91 

weather conditions in France, Elmerich et al. (2023) identified the main EFs driving GEI in semi-92 

indeterminate soybeans from two early maturity groups (‘000’ and ‘00’). Various GEI-drivers were identified 93 

depending on maturity groups and the nature of the GEI (genotypes by location or locations by year),. The 94 

GEI-drivers occurred mainly during the overlapping period of vegetative and reproductive growths. Cold 95 

stress during the vegetative growth, solar radiation intensity during the pod emission and maximum 96 

temperature before maturity were the main climatic variables that impacted GEI. 97 

The potential early soybean cultivation area is wide in Northern Europe as it extends from France to 98 

Russia (approximately between the 45° and the 50° parallels). However, areas dedicated to soybean 99 

production remain low (3.6% of the total crops harvested in 2021) (FAOSTAT, 2021). Compared with other 100 

regions of the globe, Europe presents a substantial diversity of climatic scenarios (Woollings, 2010). Thus, 101 

GEI for yield are expected to be large, which will reduce the heritability of yield-related traits (Holland et 102 

al., 2003). 103 



To date, the spatial and temporal characterisation of the European soybean TPE is unknown, especially 104 

when GEI-drivers are used. Attempts to show the potential of dividing the TPE for specific adaptation have 105 

not considered GEI per se nor the environmental characterisation (Kurasch et al., 2017; Döttinger et al., 106 

2023). Those advances would enable breeders to position their cultivars on the market and contribute to 107 

designing better breeding strategies. The objectives will be to (i) determine the environment types that 108 

describe the European early soybean TPE using GEI-drivers, (ii) characterise the distribution and 109 

repeatability of environment types across the TPE to propose the best-suited adaptation strategy, and (iii) 110 

demonstrate the importance of MET-TPE alignment in breeding decisions and cultivars recommendations. 111 

 112 

2. Material and Methods 113 

2.1. Datasets 114 

Two datasets were used in this study; they differed in data sources and use purposes. Tested and virtual 115 

environments (a combination of location x year) were used in order to establish an adequate number of 116 

environments. Dataset A consisted of 112 environments in an unbalanced combination of 60 locations and 117 

five years (2017-2021). Terres Inovia, the French technical institute for oil and protein crops, used Multi-118 

environment trials (METs) to test post-inscription cultivars in those environments 119 

(https://www.myvar.fr/resultats/campagne-177.html). The trials were conducted with rigorous chemical and 120 

mechanical weed management. Even though biotic stresses are limited for soybean in Northern Europe, 121 

annual trials are evaluated by a committee and then validated or rejected (and thus were not used in this 122 

study). A total of 57 cultivars from two early maturity groups (‘000’ and ‘00’) were tested (supplementary 123 

table S1). The METs for the two maturity groups were conducted independently in France, between the forty-124 

fifth and the fiftieth north parallels.  125 

Dataset B consisted of a panel of untested environments across Europe. The studied early maturity groups 126 

‘000’ and ‘00’ soybean cultivars are grown from France to Russia in locations situated between the forty-127 

fifth° and the fifty-second parallels. This area includes regions in France, Germany, Belgium, Switzerland, 128 

the Czech Republic, Poland, Ukraine and Russia. Forty-nine locations were selected across this axis over a 129 

span of ten years (2012 to 2021) to produce 490 virtual environments. 130 



Meteorological data for the two datasets were extracted from the Agri4Cast Resources Portal 131 

(https://agri4cast.jrc.ec.europa.eu/dataportal/). The closest grid point (in kilometres) was attributed to each 132 

environmental location. Daily minimum and maximum temperatures (°C), daily solar radiation (MJ m−2 133 

day−1) and daily precipitation (mm) were extracted from 1 January to 31 December. Soil parameters extracted 134 

from raster files produced by the European Soil Data Centre (https://esdac.jrc.ec.europa.eu/) were used to 135 

characterise the soil of each location (1 km/1 km grid) using QGIS3 (v. 3.14.1). Clay content (%), silt content 136 

(%), sand content (%), gravel content (%), organic carbon content (%), total nitrogen content (%) and bulk 137 

density (g cm−3) from topsoil and subsoil were extracted as well as the depth available to roots (cm). 138 

 139 

2.2. Eco-climatic factors calculation 140 

A previous study using Dataset A (Elmerich et al., 2023), identified 20 out of 126 Eco-climatic Factors 141 

(EFs) for their primary impact on Genotype by Environment Interactions (GEI). The 126 EFs used in this 142 

study consisted of climatic variables calculated between two developmental stages (i.e. phenophases). Five 143 

major categories of environmental variables were used: period duration, temperature, water, solar radiation 144 

and stresses. Seven soybean phenophases were used: Sowing to EMergence (SEM), EMergence to Flower 145 

Initiation (EMFI), Flower Induction to First Flower (FIFF), First Flower to First Pod (FFFP), First Pod to 146 

First Seed (FPFS), First Seed to End of Pod (FSEP), End of Pod to Physiological Maturity (EPPM). These 147 

phenophases were calculated based on the simulation of stages using the DSSAT-CROPGRO-soybean model 148 

(Boote et al., 1998; Jones et al., 2003; Hoogenboom et al., 2019). The 126 EFs were sorted using partial least 149 

square regression and the variable importance in projection scores. This enabled identification of the main 150 

GEI-drivers. 151 

 152 

2.3. Environmental classification based on k-means clustering 153 

Clustering consists of grouping individuals into an optimal number of clusters based on one or a set of 154 

variables. In our study, the aim was to group the 602 environments (Datasets A and B) into clusters that 155 

represented the environment types; the intra-cluster GEI were minimised and the inter-cluster GEI were 156 

maximised. The environmental classification should be defined according to crucial environmental factors 157 

that affect GEI in the Target Population of Environments (TPE) (Annicchiarico, 2021). 158 



The set of 20 EFs identified by Elmerich et al. (2023) appeared to be too large for the clustering. Usually, 159 

the number of variables used for clustering ranges from 6 to 12 (Corlouer et al., 2019; Schoving et al., 2022). 160 

Thus, 888 896 clustering models were tested (i.e. the combination of 6 to 12 EFs among the 20). K-means 161 

clustering was performed with R software (v4.2.1) using the Euclidean distance measure and the complete 162 

linkage method. For each clustering model, the optimal number of clusters was determined using the nbclust 163 

package in the R software (v4.2.1). 164 

 165 

2.4. Linear models 166 

Each model was tested using R software (v4.2.1). 167 

For each k-means model, a linear mixed-effects model – Equation 1 (E1) – was applied on the data of 168 

Dataset A (112 environments). Only cultivars tested at least three times in each cluster were kept. The model 169 

tested the fixed effects of Genotype (G), Cluster (C) and Genotype by Cluster Interactions (G x C), and the 170 

random effect of the Environments nested in the Clusters C(E) across the network: 171 

Y μ 	G C G	 C C E ε ,      (E1) 172 

where Yijk is the seed yield of genotype i in cluster j in the environment k, µ is the population mean, Gi stands 173 

for the effect of genotype i, Cj stands for the effect of cluster j, (G x C)ij stands for the effect of the interaction 174 

between genotype i and cluster j and Cj(Ek) stands for the effect of the environment k nested in the cluster j. 175 

The residual is εijk. 176 

A linear model – Equation 2 (E2) – was applied to the data of Dataset A (112 environments) to test the 177 

effects of the EFs used in the clustering on the GxC: 178 

GC 	∑ α EF 	 εijk, (p ∈ [6;12]), 	 	 	 	 	 	 (E2) 179 

where, GCijk is the genotype by cluster interaction effect of genotype i in cluster j in the environment k, and 180 

αn stands for the linear regression coefficient of the eco-climatic factor n, EFn. The residual is εijk. 181 

The evaluation of each model was based first on the significance of the GxC effect. A significant GxC 182 

effect indicated that there was some variation among genotypes in their rank orders between clusters. To 183 

ensure that the significance of the GxC effect was not driven by a single or a few genotypes and clusters, the 184 



percentage of significant interactions between specific genotypes and clusters was calculated. Finally, the 185 

capacity to explain the GxC effect using the EFs drawn on in the clustering model was evaluated. 186 

 187 

2.5. Genotype plus genotype by block of environments biplot 188 

Complementary principal component analyses were conducted on environment-centred genotype by 189 

environment, grouped by environment type, matrix (Cooper & DeLacy, 1994; Yan & Kang, 2003; Laffont 190 

et al., 2013). The Genotype plus Genotype by Block of environments biplot (GGB biplot) displays the 191 

genotype and genotype by block effects of a multi-environment trial dataset. The blocks of environments in 192 

our study were the environment types.  193 

The GGB biplots can be interpreted such that genotypes located near the origin might either have all their 194 

values close to the environment means (low performance variation), given that the data were environment 195 

centred, or their variability is located in another dimension. Similarly, environments close to the origin may 196 

have little variability across genotypes or may not fit well in two dimensions. Genotypes that are close 197 

together have similar performance across environment types (Chapman et al., 1997). The R package gge was 198 

used for the analyses (Laffont et al., 2013). 199 

The GGB biplots allowed us to assess genotypic performance across environment types. Their 200 

construction required a balanced multi-environmental trial dataset. Thus, two multi-environmental trials 201 

including varied years and locations were used in our study. The first multi-environmental trial (MET1) 202 

included seven cultivars from maturity group ‘00’ and 28 environments grouped in three environment types. 203 

The second multi-environment trial (MET2) included five cultivars from maturity group ‘000’ and 44 204 

environments grouped in three environment types. 205 

 206 

2.6. Weighted and unweighted multi-environment trial data 207 

A MET dataset from 2018 was used that included ten ‘00’ cultivars that were tested in twelve locations. 208 

For the unweighted selection strategy, the mean performance by genotypes was calculated as the arithmetic 209 

mean of the performance in the twelve locations. The means of the ten genotypes were ranked from 1 to 10. 210 

For the weighted selection strategy, the mean performance was calculated – Equation 3 (E3) – (Podlich et 211 

al., 1999). 212 



	 ∑ ∑                   (E3) 213 

where wk is the weighted mean performance of the genotype k, ei is the frequency of occurrence of the 214 

environment type i in the TPE, yjk is the phenotypic performance of the genotype k in environment j, and Ei 215 

is the number of environments of type i in the MET. 216 

 217 

3. Results 218 

3.1. Eco-climatic factors set used for environmental clustering 219 

A total of 888 896 clustering models were tested. Each model used a unique combination of Eco-climatic 220 

Factors (EFs) that were identified as major Genotype by Environment Interactions (GEI) drivers in a previous 221 

study conducted by Elmerich et al. (2023). The best clustering model was identified based on the selection 222 

criteria detailed in section 2.5. In this model, 1.3% of the genotype yield variance was explained by the 223 

Genotype by Cluster Interactions (GxC) effect. The complete analyse of variance table can be found in 224 

supplementary table 2. Finally, the combination of EFs used in this clustering model allowed 88% of the 225 

GxC effect to be explained. 226 

This model used a set of 12 EFs to define five clusters. The 12 EFs were: the number of days below 15°C 227 

from Flower Induction to First Flower (FIFF) and from the First Flower to First Pod (FFFP), the duration of 228 

the FFFP period, the photothermal quotient during FFFP, the minimal temperature from First Pod to First 229 

Seed (FPFS), the solar radiation quantity during FPFS, the evapotranspiration potential during FPFS, the 230 

photoperiod from First Seed to End of Pod (FSEP), the number of days above 30 and 34°C during FSEP, the 231 

photoperiod from End of Pod to Physiological Maturity (EPPM) and the number of days above 30°C during 232 

EPPM. 233 

 234 

3.2. Characterisation of the five environment types 235 

The selected clustering model allowed the identification of five clusters that were referred to as 236 

environment types. The twelve EFs used for the clustering strongly discriminated the environment types (p-237 

value < 0.001 for each EF) (Fig. 1). 238 



 239 

Fig. 1. Characterisation of the five environment types by the 12 eco-climatic factors used for the clustering. 240 
The phenophases are indicated in parenthesis with the following stages: Flower Induction (FI), First Flower 241 
(FF), First Seed (FS), First Pod (FP), End Pod (EP) and Physiological Maturity (PM). The smaller inner 242 
circle represents the minimum value and the outer cycle represents the maximal value for each eco-climatic 243 
factor. The colours of the lines indicate the environment type: blue for the first environment type (ET-1), 244 
green for the second environment type (ET-2), orange for the third environment type (ET-3), yellow for the 245 
fourth environment type (ET-4) and red for the fifth environment type (ET-5). 246 

 247 

As each environment was initially characterised by a set of 126 EFs, the latter were used to precisely 248 

describe the environment types if a significant difference was observed (p-value < 0.05) (Table 1). The first 249 

environment type (ET-1) differed greatly in the high quantity of solar radiation (ca. 1088 MJ m-2), 250 

precipitation (ca. 153 mm) and potential evapotranspiration (ca. 231 mm) as well as important cold stress 251 

(ca. 26 days below 10°C) during the vegetative growth. The ET-1 reproductive growth conditions showed 252 

low precipitation (ca. 82 mm) and ETP (ca. 187 mm) as well as high thermal amplitude (ca. 13°C) and heat 253 

stress (ca. 12.7 days above 30°C). The second environment type (ET-2) was characterised by non-stressful 254 

conditions during the vegetative growth followed, during the reproductive growth, by high water stress (ca. 255 

0.47), solar radiations (ca. 1131 MJ m-2) and thermal amplitude (ca. 12.8 °C), with both chilling (ca. 17 days 256 

below 15°C) and heat stress (ca. 7.3 days above 30°C) at the beginning and the end of the period respectively. 257 

The third environment type (ET-3) was distinguishable by the absence of stressful or extreme conditions 258 

throughout the crop cycle. The fourth environment type (ET-4) was denoted by the low precipitation (ca. 70 259 

mm), warm temperature (ca. 18 °C) and short duration (ca. 39 days) of the vegetative growth. The ET-4 260 



reproductive growth conditions were differentiated by high solar radiation intensity (ca. 23 MJ m-2 d-1), high 261 

water (ca. 0.37) and severe heat stress (ca. 6 days above 34°C). The fifth environment type (ET-5) showed 262 

high precipitation (ca. 154 mm), solar radiation quantity (ca. 1084 MJ m-2), cold stress (ca. 27 days below 263 

10°C) and period duration (ca. 56 days) during the vegetative growth. The ET-5 reproductive growth was 264 

differentiated by the high precipitation (ca. 164 mm) and the low water stress index (ca. 0.11), the solar 265 

radiation intensity (ca. 18.1 MJ m-2 d-1), the thermal amplitude (ca. 10.3 °C) and the heat stress (ca. 4 days 266 

above 30°C). Among the 602 environments used for the clustering, 83 (13.8%) belonged to ET-1, 106 267 

(17.6%) belonged to ET-2, 161 (26.7%) belonged to ET-3, 93 (15.4%) belonged to ET-4 and 159 (26.4%) 268 

belonged to ET-5.269 



Table 1. Description of the five environment types identified by clustering. For each Eco-climatic Factor (EF), the environment type effect was tested by 
Kruskal-Wallis non-parametric tests. When this effect was significant, a Dunn’s multiple comparison test was performed in order to determine environment 
types (using Bonferroni adjusted p-values). In the table, yellow and blue shadings correspond to the highest and lowest EF means, respectively, that significantly 
differed from the others. The EFs written in bold correspond to those used for the k-means clustering. Abbreviations used in the table: evapotranspiration (ET), 
potential evapotranspiration (ETP), photothermal quotient (PTQ). The duration ranged from 5 to 52 days. The photoperiod ranged from 12.83 to 16.31 hours. 
The solar radiation intensity ranged from 5.3 to 29.7 MJ m² d-1. The solar radiation quantity ranged from 86 to 758 MJ m². The PTQ ranged from 0.59 to 3.72. 
The precipitation amount ranged from 0 to 246 mm. The ET ranged from 2 to 141 mm. The ETP ranged from 8 to 154 mm. The water stress index ranged from 
0 to 0.99. The minimum, average and maximum temperatures ranged from 0 to 22.9°C, 1.8 to 29.5°C and 3 to 37.1°C, respectively. The number of days with a 
minimal temperature below 10 or 15°C ranged from 0 to 50 days in both cases. The number of days with a minimal temperature above 30 or 34°C ranged from 
0 to 18 days and 0 to 10 days, respectively. The thermal amplitude ranged from 2.5 to 18.7°C. 

Enviro
nment
types 

Variables 
Sowing - 

Emergence 
Emergence - 

Flower Induction
Flower Induction 

- First Flower 
First Flower - 

First Pod 
First Pod - First 

Seed 
First Seed - End 

Pod 

End Pod - 
Physiological 

Maturity 
Overview 

ET-1 

Duration/Photoperiod   Long period     Short days Short days   Wet, cold and 
shaded conditions 
during vegetative 

growth. Dry, warm 
and sunny 

conditions during 
reproductive 

growth 

Solar radiation  Quantity and PTQ  Quantity    PTQ  Quantity     

Water availability 
 Precipitation and 

ETP 
 Precipitation, ET 

and ETP 
 ET  Precipitation    ETP  ETP 

Temperature 

min  Cold stress  Cold stress      T° min     
moy        Amplitude  Amplitude  Amplitude   

max  T° max    Heat stress Heat stress    Heat stress   

ET-2 

Duration/Photoperiod       Long period Long period Short period   

No stressful 
conditions during 
vegetative growth. 

Very dry, sunny 
and variable 
temperatures 

during the 
reproductive 

growth 

Solar radiation        PTQ  Quantity  PTQ   

Water availability       

 Precipitation 
  ETP and Water 

stress 

 Precipitation and 
ET 

 

 Precipitation and 
ET 

ETP and Water 
stress 

Water stress Water stress 

Temperature 

min       Chilling stress  T° min     
moy          Amplitude    Amplitude 

max           
 Heat stress 

(34°C) 
 Heat stress 

(30°C) 

ET-3 
Duration/Photoperiod         Long days     Low stressful 

conditions Solar radiation      PTQ  PTQ       



Water availability            ET   throughout the 
crop cycle. 

Temperature 
min        Cold stress  T° min     
moy      Amplitude         
max     Heat stress      Heat stress   

ET-4 

Duration/Photoperiod Short period Short period Short period Short period   Long days Long days 

Short, dry and 
warm conditions 

during the 
vegetative growth. 
Dry, hot and sunny 

during the 
reproductive 

growth 

Solar radiation  Quantity and PTQ  Quantity and PTQ  Quantity and PTQ  PTQ  Intensity, PTQ  Intensity  Intensity 

Water availability 
 Precipitation, ET 

and ETP 
 Precipitation, ET 

and ETP 
 Precipitation, ET 

and ETP 
 Precipitation   

 Precipitation 
 

 ET 

ETP and Water 
stress 

ETP and Water 
stress 

Temperature 

min 

 T° min 
 

 T° min 
Chilling stress Chilling stress  T° min  T° min  T° min 

Cold stress Cold stress 

moy            T° average  T° average 

max  T° max 
 T° max and Heat 

stress 
 T° max  T° max 

 T° max and Heat 
stress 

 Heat stress  Heat stress 

ET-5 

Duration/Photoperiod Long period   Long period     Short days Short days 

Long, wet and cold 
conditions during 
vegetative growth. 

Wet, cool and 
shaded conditions 

during the 
reproductive 

growth 

Solar radiation 
 Intensity 

  Quantity    PTQ  Quantity  Intensity and PTQ  Intensity 
Quantity and PTQ 

Water availability 
 Precipitation, ET 

and ETP 
 ET and ETP  Precipitation  Precipitation 

 Precipitation 
 Precipitation and 

ET 
 Precipitation and 

ET 
ETP and Water 

stress 
ETP and Water 

stress 
ETP and Water 

stress 

Temperature 

min  Cold stress   Chilling stress Chilling stress  T° min    T° min 

moy        Amplitude  Amplitude 
 Amplitude and T° 

average 
 Amplitude and T° 

average 

max  T° max     
 T° max and Heat 

stress 
 T° max and Heat 

stress 
 Heat stress  Heat stress 

 



3.3. Environment types occurrences in the European early soybean target population of environments 224 

Fig. 2 displays the frequencies of environment types for the Dataset B (49 locations over 10 years).  The 225 

first environment type (ET-1) (10.6% in Dataset B) occurred principally in France and Germany. The second 226 

environment type (ET-2) (19.1% in Dataset B) was present at least one year in all locations from France to 227 

the middle of Ukraine. The third environment type (ET-3) (28% in Dataset B) occurred at least one year in 228 

42 locations but showed high frequencies in locations situated in central Europe. The fourth environment 229 

type (ET-4) (16.7% in Dataset B) characterised mostly Eastern Europe locations and a few Southern France 230 

environments. The fifth environment type (ET-5) (25.5% in Dataset B) was present from France to Poland 231 

with high frequencies in Northern France, Belgium, Switzerland and Germany. 232 

Moreover, around 12% of the TPE locations presented low environment types repeatability (i.e. most 233 

frequent environment type frequency < 33%), 53% presented intermediate environment types repeatability 234 

(i.e. 33% < most frequent environment type frequency ≤ 66%) and 35% presented high environment types 235 

repeatability (i.e. most frequent environment type frequency > 66%) (Couëdel et al., 2021). 236 

 237 

Fig. 2. Environment types frequency of occurrence from France to Russia (European early soybean 238 
production area) over ten years. For the 49 locations of Dataset B, the environment types’ frequency of 239 
occurrence was calculated and represented on the map using pie charts. The colours of each pie section 240 
indicate the environment type: blue for the first environment type (ET-1), green for the second environment 241 
type (ET-2), orange for the third environment type (ET-3), yellow for the fourth environment type (ET-4) 242 
and red for the fifth environment type (ET-5). 243 

 244 



The temporal distribution (2012-2021) of the five environment types was highly dependent on the 245 

environment types considered (Fig. 3). In contrast to the other years, the years 2013, 2014, 2014, 2017, 2018 246 

and 2020 were largely dominated by only one environment type.  The ET-3 and ET-4 were present each year 247 

(at least in 6 or 4 locations, respectively), while ET-1, ET-2 and ET-5 were not represented in 2, 2 and 1 year, 248 

respectively. 249 

 250 

Fig. 3. Temporal distribution of the five environment types from 2012 to 2021 using the 49 locations in 251 
Dataset B. The colours indicate the environment type: blue for the first environment type (ET-1), green for 252 
the second environment type (ET-2), orange for the third environment type (ET-3), yellow for the fourth 253 
environment type (ET-4) and red for the fifth environment type (ET-5). 254 
 255 

3.4. Genotypic performance linked with envirotyping 256 

Stratifying environments by environment types using Genotype plus Genotype by Block of environments 257 

biplots (GGB biplot) enabled the interpretation of cultivar responses in the TPE. With the GGB biplot 258 

representation cultivars can be compared by projecting a perpendicular from the genotype to the environment 259 

type vector for any particular environment type. Cultivars that are further along in the positive direction of 260 

the environment type vector have higher yields than other cultivars in said environment type, and vice versa. 261 

In the multi-environmental trial 1 (MET1), which included seven cultivars and 28 environments grouped in 262 

three environment types, the cultivar GEN2 was strongly positively correlated with ET-4 and positively 263 

correlated with ET-1 and ET-5, and GEN4 was also positively correlated with ET-4 but negatively correlated 264 

with ET-1 and ET-5 (Fig. 4a). In the multi-environmental trial 2 (MET2), which included five cultivars and 265 

44 environments grouped in three environment types, the cultivars GEN8 and GEN11 were both negatively 266 
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correlated with all environment types whereas GEN9, GEN10 and GEN11 were positively correlated with 267 

ET-1 but negatively correlated with ET-5 (Fig. 4b). 268 

 269 

Fig. 4. Environment-standardised Genotype plus Genotype by Block of environments biplots illustrating 270 
contrasted cultivars’ performances depending on environment types in two multi-environmental trials from 271 
the Dataset A. (a) The first multi-environmental trial included seven cultivars from maturity group ‘00’ (GEN 272 
1 to GEN 7) and 28 environments (e1 to e28) grouped in three environment types (ET-1, ET-4 and ET-5). 273 
(b) The second multi-environment trial included five cultivars from maturity group ‘000’ (GEN 8 to GEN 274 
12) and 44 environments (e29 to e72) grouped in three environment types (ET-1, ET-3 and ET-5). The 275 
percentages of the total genotype plus genotype by environment variation explained by the main two principal 276 
components are shown in parentheses. The colours indicate the environment type: blue for the first (ET-1), 277 
orange for the third (ET-3), yellow for the fourth (ET-4) and red for the fifth (ET-5). 278 

 279 

3.5. MET-TPE alignment for MET data evaluation 280 

In the 2018 Multi-Environment Trials (MET) dataset presented in Table 2, one environment belonged to 281 

ET-1 (8.3%), seven belonged to ET-2 (58.3%), three belonged to ET-3 (25%), one belonged to ET-4 (8.3%) 282 

and zero belonged to ET-5 (0%). This MET did not satisfactorily represent the frequencies of environment 283 

types within the TPE (14, 18, 27, 15 and 26%, respectively for ET-1 to ET-5). Changes in cultivar ranks 284 

between unweighted and weighted data were observed and ranged from no change (Genotype 3, 6 and 8) to 285 

a six-rank position change (Genotype 9). If a breeder was allowed to keep only 10% of the tested cultivars 286 

for future testing and/or deployment, his choices would differed depending on the strategy. For instance, 287 

Genotype 4 would surely be advanced if data were weighted by the environment types frequencies observed 288 

in the TPE but would most likely have been eliminated if data were unweighted. 289 



 290 

Table 2. Example of the use of unweighted vs. weighted data analyses on the final breeding decisions. The 291 
Target Population of Environments (TPE) consists of five types of environments with a frequency of 292 
occurrence of 0.14, 0.18, 0.27, 0.15 and 0.26, respectively. Ten genotypes were evaluated across 12 293 
environments within a Multi-Environment Trial (MET) included in the Dataset A. In this MET, the first 294 
environment type (ET-1) has been sampled in the MET environment 1, the second environment type (ET-2) 295 
has been sampled in MET environments 2 to 8, the third environment type (ET-3) has been sampled in MET 296 
environments 9 to 11, the fourth environment type (ET-4) has been sampled in MET environment 12 and the 297 
fifth environment type (ET-5) has not been sampled in the MET. The grain yield performance of the 298 
genotypes is expressed in quintals by hectare. The estimated mean yield performance and rank are given for 299 
each genotype. 300 

 Environment Types in MET Data analyses 

 
ET-1 

(  = 0.14) 1 
ET-2 

(  = 0.18) 1 
ET-3

(  = 0.27) 1 
ET-4 

(  = 0.15) 1 
Unweighted Weighted 

Env. in MET 1 2 3 4 5 6 7 8 9 10 11 12 Mean Rank Mean Rank

Genotype 1 51.1 28.4 46.4 25.4 30.2 34.1 43.7 33.6 41.7 34.9 38.6 37.7 37.2 9 29.2 6
Genotype 2 50.3 40.0 44.1 24.0 27.5 36.2 48.8 30.6 44.5 38.8 42.2 34.6 38.5 4 29.8 3
Genotype 3 41.1 28.7 43.2 20.9 30.4 36.6 43.1 31.5 45.3 37.4 32.1 37.1 35.6 10 27.5 10
Genotype 4 52.5 30.5 47.0 24.6 34.5 30.4 45.3 33.1 43.1 42.0 31.7 40.8 38.0 6 30.1 2
Genotype 5 49.1 30.5 48.0 23.0 32.2 39.7 46.8 32.4 42.2 35.7 40.4 36.1 38.0 5 29.2 5
Genotype 6 54.5 27.4 45.2 25.4 36.2 42.2 47.9 33.2 42.9 38.0 43.1 39.0 39.6 1 31.0 1
Genotype 7 52.4 33.7 52.8 24.5 34.5 35.8 46.8 32.9 35.7 36.3 42.2 37.1 38.7 3 29.7 4
Genotype 8 48.0 33.3 51.5 24.3 29.7 31.2 45.1 33.6 46.5 37.3 36.4 36.1 37.8 7 29.1 7
Genotype 9 42.0 35.2 54.8 25.6 31.2 41.4 48.4 33.9 43.9 39.6 38.9 35.0 39.2 2 28.9 8
Genotype 10 41.0 31.4 48.9 25.2 31.5 38.3 44.9 33.2 38.3 39.0 40.5 38.4 37.6 8 28.4 9

1Frequency of each environment type in the TPE 301 

 302 

4. Discussion 303 

4.1. Five environment types characterised the European early soybean target population of environments 304 

The environmental clustering using twelve Eco-climatic Factors (EFs) that contrasted in terms of climatic 305 

variables and phenophases explained 88% of the cultivar yield variation attributed to Genotype by Cluster 306 

interaction (GxC). Thanks to the clustering, breeders will be able to minimise the GxC variance in their 307 

prediction models and focus more on the genetic variation per se (Messina et al., 2018). The highly significant 308 

and large GxC variance component compared to the genotype and cluster effects demonstrated the interest 309 

in defining environment types within the European early maturity soybean production area. It would be 310 

interesting to confront this model performance with a richer database.  311 

The results highlighted five environment types that represent the European early soybean TPE. The first 312 

environment type (ET-1) was characterised by wet, cold and shaded conditions during the vegetative growth 313 



and warmth and high radiation but no drought conditions during the reproductive growth. The second 314 

environment type (ET-2) showed no stressful conditions during the vegetative growth but showed drought 315 

stress, high radiation and variable temperatures during the reproductive growth. The third environment type 316 

(ET-3) was distinguishable by the absence of stressful or extreme conditions throughout the crop cycle. The 317 

fourth environment type (ET-4) was marked by the short, dry and warm conditions during the vegetative 318 

growth as well as by the dry, hot and high radiation conditions during the reproductive growth. The fifth 319 

environment type (ET-5) was characterised by long, wet and cold conditions during the vegetative growth as 320 

well as wet, cool and shaded conditions during the reproductive growth. The environment types could be 321 

referred to as follows: ‘Temperate Humid’, ‘Temperate dry’, ‘Temperate with no stress’, ‘Warm dry’ and 322 

‘Cool humid’, respectively (IPCC, 1997). The different environment types were primarily contrasted by the 323 

intensity and timing of stresses relative to temperatures (cold stress during the vegetative growth and heat 324 

stress during the reproductive growth) and water availability (precipitation amount, evapotranspiration and 325 

drought). Despite disconnected/juxtaposed geographical areas, our classification is consistent with the 326 

classification established by Schoving et al. (2022) that identified environment classes on the basis of levels 327 

of temperatures and drought stresses. Our non-a priori approach allowed us to identify the combinations of 328 

stresses and conditions to which soybean cultivars are expected to similarly respond. This envirotyping 329 

approach allowed to define the first European typology of environments for soybean and can be used to 330 

design new trial networks or improve existing ones.  331 

 332 

4.2. Varied occurrences of environment types in the target population of environments 333 

The results demonstrated that the environment types distribution in the TPE over ten years (from 2012 to 334 

2021) was heterogenous and lack generalities. Contrary to the six mega-environments defined by Kurasch et 335 

al. (2017), in the early soybean TPE, environment types’ occurrences neither followed annual (one year 336 

corresponding to one environment type) nor geographical (longitudinal or latitudinal) distributions. This 337 

difference could be attributed to our wider study area and to the environmental descriptors that were based 338 

on maturity dates in their study as opposed to EFs. The ET-1 showed low repeatability, ET-2 and ET-5 339 

showed intermediate repeatability, the ET-4 showed high repeatability and the ET-3 equally showed 340 

intermediate and high repeatability. The identification of highly repeatable environment types (mainly 341 



located in Eastern Europe) is key to designing breeding strategy for specific adaptation. In environments 342 

where specific adaptation appears best suited, the interactions between genotypes and other environmental 343 

characteristics, such as soil properties, cultural practices or biotic stress incidences could be investigated. On 344 

the other hand, the highlight of low environment types repeatability in Western Europe will help breeders 345 

aim for broad adaptation, as future growth conditions are highly unpredictable (de la Vega & Chapman, 346 

2006). The broad adaptation of cultivars could be reached by designing more plastic cultivars, i.e. cultivars 347 

having traits with a large reaction norm, leading to a stable performance under a large set of growing 348 

conditions (Sambatti & Caylor, 2007). Future work should evaluate soybean above and below ground traits 349 

plasticity in response to the main EFs driving GEI to identify relevant traits to focus on for broad adaptation. 350 

Among these, cold stress during the early vegetative growth has never been investigated and seems of great 351 

importance (Elmerich et al., 2023). 352 

Variations in the spatial and temporal distribution of the environment types across the TPE revealed the 353 

complexity to design efficient breeding programs that will control possible genotype by environment 354 

interactions and select for climate adaptation as much as. In the context of climate change, these five 355 

environment types could be conserved but their spatial and temporal distributions could be affected. Thus, 356 

monitoring the environment types distribution will be essential.   The perspectives will be to simulate virtual 357 

environments using different forecasting climate scenarios, e.g. SSP5-8.5 and SSP2-4.5 (IPCC, 2022) and 358 

confront our results to a projected environment types distribution (Bustos-Korts et al., 2016). 359 

 360 

4.3. Environmental characterisation, an informative tool for breeding decisions  361 

The environmental characterisation aimed to increase the understanding of GEI effects. This is a crucial 362 

step when attempting to expand a new crop northward, and to assist breeders dealing with GEI (Chenu, 363 

2015). In our study, the GEI effect, was larger for yield, compared with the genotype effect. The same ranking  364 

was previously reported in the literature (Dreccer et al., 2007; Chenu et al., 2011). 365 

Using METs conducted in France, differences in genotypes performances were observed across 366 

environment types. Thanks to the environmental characterisation of the European early soybean TPE, 367 

predictions can be made on genotypes performances in non-tested locations that belong to the same 368 

environment type. Better precision in these predictions could be achieved especially in Eastern Europe where 369 



specific adaptation appears to be best suited. For instance, GEN 2 showed its best performance in ET-4; 370 

therefore, it could be advised for use in Eastern Europe or used as a parent to develop bi-parental populations. 371 

Envirotyping could increase performances predictions for new targeted areas in locations where trials have 372 

not been conducted. The environment types frequencies within the TPE constitute an interesting result to 373 

position current elite soybean cultivars on the market, according to their performance in each environment 374 

type. It could also be used to design new cultivars specifically adapted to an environment type. This approach 375 

allows the crop yield potential to be maximised for a targeted region and to match farmers’ needs for  376 

improved and locally designed germplasm (Annicchiarico, 2021). 377 

A huge challenge when analysing METs for breeding purposes is evaluating how METs data match the 378 

TPE in order to improve breeding decisions and enhance the genetic gain over generations. Comparisons 379 

between weighted and unweighted MET phenotypic data support the importance of MET-TPE alignment 380 

evaluation (Podlich et al., 1999; Cooper et al., 2023). Our results confirmed the efficiency of this approach 381 

when climatic scenarios at the MET scale derived from the TPE (Table 2). When dealing with large and 382 

complex GEI effects, as observed in the Western European soybean production area, breeders should weight 383 

their phenotypic data and consider the MET-TPE alignment, particularly if they are selecting for broad 384 

adaptation. 385 

 386 

5. Conclusion 387 

This study is the first to European described early soybean Target Population of Environments (TPE) to 388 

control Genotype by Environment Interactions (GEI) for breeding purposes. Environmental characterisation 389 

based on GEI-drivers is a powerful tool to tackle GEI and accelerate soybean genetic gain. Our method 390 

explained a large part (88%) of the yield variation that is due to the GEI effects. The five environment types 391 

observed across Europe and their repeatability varied in terms of geographical and temporal distributions. 392 

The results underlined the necessity to combine specific (maximising cultivars performances in a given 393 

environment type) and broad adaptations (maximising cultivars yield stabilities over different environment 394 

types) depending on locations. Envirotyping represents a necessary progression within the era of data-driven 395 

plant improvement (Xu, 2016; Crossa et al., 2021). These approaches allowed us to better predict genotypic 396 

performances within specific environment types and improve the positioning of cultivars in the marketplace. 397 



Moreover, as demonstrated in this study, a better MET data interpretation and utilisation can be reached 398 

through MET-TPE alignment evaluation. To enhance the deployment of soybean northward, perspectives 399 

should be to design ideotypes that outperform the existing germplasm for specific or multiple environment 400 

types across the TPE. 401 

 402 

Acknowledgements 403 

The authors would like to thanks Roman FERRANT for his comments on the adequacy between our 404 

observations and his knowledge and field experience. The authors are thankful to Johanna YOUNOUS for 405 

her advises on statistical analysis. The authors are grateful to Hélène FREROT and Philippe DEBAEKE for 406 

their insightful comments on the ecophysiological modelling. The “SOJA Terres Inovia-GEVES-407 

Partenaires” are acknowledged for the open access trial dataset. 408 

 409 

Authors contribution 410 

CE, GB and BL designed the study. CE, MG and BL conducted the data analysis. CE, GB, PJ, MG, MPF 411 

and BL wrote the manuscript. All authors read, commented on and approved the final version. 412 

 413 

References 414 

Annicchiarico, P. (2021). Breeding gain from exploitation of regional adaptation: An alfalfa case study. 415 

Crop Science, 61(4), 2254–2271. https://doi.org/10.1002/csc2.20423 416 

Ayerdi Gotor, A., & Marraccini, E. (2022). Innovative Pulses for Western European Temperate Regions: 417 

A Review. Agronomy, 12(1), Article 1. https://doi.org/10.3390/agronomy12010170 418 

Basford, K. E., & Cooper, M. (1998). Genotype×environment interactions and some considerations of 419 

their implications for wheat breeding in Australia This review is one of a series commissioned by the 420 

Advisory Committee of the Journal. Australian Journal of Agricultural Research, 49(2), 153–174. 421 

https://doi.org/10.1071/a97035 422 

Boote, K. J., Jones, J. W., Hoogenboom, G., & Pickering, N. B. (1998). The CROPGRO model for grain 423 

legumes. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding Options for Agricultural 424 

Production (Vol. 7, pp. 99–128). Springer Netherlands. https://doi.org/10.1007/978-94-017-3624-4_6 425 



Brennan, P. S., Byth, D. E., Drake, D. W., Lacy, Ihd., & Butler, D. G. (1981). Determination of the 426 

location and number of test environments for a wheat cultivar evaluation program. Australian Journal of 427 

Agricultural Research, 32(2), 189–201. https://doi.org/10.1071/ar9810189 428 

Bustos-Korts, D., Boer, M. P., Layton, J., Gehringer, A., Tang, T., Wehrens, R., Messina, C., de la Vega, 429 

A. J., & van Eeuwijk, F. A. (2022). Identification of environment types and adaptation zones with self-430 

organizing maps; applications to sunflower multi-environment data in Europe. Theoretical and Applied 431 

Genetics. https://doi.org/10.1007/s00122-022-04098-9 432 

Bustos-Korts, D., Malosetti, M., Chapman, S., & van Eeuwijk, F. (2016). Chapitre 3—Modelling of 433 

Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a 434 

Synthesis of Crop Growth Modelling, Genetics and Statistics. In X. Yin & P. C. Struik (Eds.), Crop Systems 435 

Biology (pp. 55–82). Springer International Publishing. https://doi.org/10.1007/978-3-319-20562-5_3 436 

Casadebaig, P., Gauffreteau, A., Landré, A., Langlade, N., Mestries, E., Sarron, J., Trépos, R., Vincourt, 437 

P., & Debaeke, P. (2021). Optimized cultivar deployment improves the efficiency and stability of sunflower 438 

crop production at national scale. https://doi.org/10.1101/2020.09.21.306076 439 

Chapman, S. C., Cooper, M., Hammer, G. L., & Butler, D. G. (2000). Genotype by environment 440 

interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are 441 

related to location effects on hybrid yields. Australian Journal of Agricultural Research, 51(2), 209–222. 442 

https://doi.org/10.1071/ar99021 443 

Chapman, S. C., Edmeades, G. O., & Crossa, J. (1997). Genotype by environment effects and selection 444 

for drought tolerance in tropical maize. I. Two mode pattern analysis of yield | SpringerLink. Euphytica, 95, 445 

1–9. 446 

Chauhan, Y. S., Solomon, K. F., & Rodriguez, D. (2013). Characterization of north-eastern Australian 447 

environments using APSIM for increasing rainfed maize production. Field Crops Research, 144, 245–255. 448 

https://doi.org/10.1016/j.fcr.2013.01.018 449 

Chenu, K. (2015). Chapter 13—Characterizing the crop environment – nature, significance and 450 

applications. In V. O. Sadras & D. F. Calderini (Eds.), Crop Physiology (Second Edition) (pp. 321–348). 451 

Academic Press. https://doi.org/10.1016/B978-0-12-417104-6.00013-3 452 



Chenu, K., Cooper, M., Hammer, G. L., Mathews, K. L., Dreccer, M. F., & Chapman, S. C. (2011). 453 

Environment characterization as an aid to wheat improvement: Interpreting genotype–environment 454 

interactions by modelling water-deficit patterns in North-Eastern Australia. Journal of Experimental Botany, 455 

62(6), 1743–1755. https://doi.org/10.1093/jxb/erq459 456 

Chenu, K., Deihimfard, R., & Chapman, S. C. (2013). Large-scale characterization of drought pattern: A 457 

continent-wide modelling approach applied to the Australian wheatbelt – spatial and temporal trends. New 458 

Phytologist, 198(3), 801–820. https://doi.org/10.1111/nph.12192 459 

Chenu, K., Porter, J. R., Martre, P., Basso, B., Chapman, S. C., Ewert, F., Bindi, M., & Asseng, S. (2017). 460 

Contribution of Crop Models to Adaptation in Wheat. Trends in Plant Science, 22(6), 472–490. 461 

https://doi.org/10.1016/j.tplants.2017.02.003 462 

Cooper, M., & Byth, D. E. (1996). Understanding plant adaptation to achieve systematic applied crop 463 

improvement—A fundamental challenge. In Plant Adaptation and Crop Improvement (M. Cooper and G. L. 464 

Hammer, pp. 5–23). IRRI. 465 

Cooper, M., & DeLacy, I. H. (1994). Relationships among analytical methods used to study genotypic 466 

variation and genotype-by-environment interaction in plant breeding multi-environment experiments. 467 

Theoretical and Applied Genetics, 88(5), 561–572. https://doi.org/10.1007/BF01240919 468 

Cooper, M., Powell, O., Gho, C., Tang, T., & Messina, C. (2023). Extending the breeder’s equation to 469 

take aim at the target population of environments. Frontiers in Plant Science, 14. 470 

https://www.frontiersin.org/articles/10.3389/fpls.2023.1129591 471 

Corlouer, E., Gauffreteau, A., Bouchet, A.-S., Bissuel-Bélaygue, C., Nesi, N., & Laperche, A. (2019). 472 

Envirotypes Based on Seed Yield Limiting Factors Allow to Tackle G × E Interactions. Agronomy, 9(12), 473 

Article 12. https://doi.org/10.3390/agronomy9120798 474 

Couëdel, A., Edreira, J. I. R., Pisa Lollato, R., Archontoulis, S., Sadras, V., & Grassini, P. (2021). 475 

Assessing environment types for maize, soybean, and wheat in the United States as determined by spatio-476 

temporal variation in drought and heat stress. Agricultural and Forest Meteorology, 307, 108513. 477 

https://doi.org/10.1016/j.agrformet.2021.108513 478 

Crossa, J., Fritsche-Neto, R., Montesinos-Lopez, O. A., Costa-Neto, G., Dreisigacker, S., Montesinos-479 

Lopez, A., & Bentley, A. R. (2021). The Modern Plant Breeding Triangle: Optimizing the Use of Genomics, 480 



Phenomics, and Enviromics Data. Frontiers in Plant Science, 12. 481 

https://www.frontiersin.org/article/10.3389/fpls.2021.651480 482 

de la Vega, A. J., & Chapman, S. C. (2006). Defining Sunflower Selection Strategies for a Highly 483 

Heterogeneous Target Population of Environments. Crop Science, 46(1), 136. 484 

https://doi.org/10.2135/cropsci2005.0170 485 

Döttinger, C. A., Hahn, V., Leiser, W. L., & Würschum, T. (2023). Do We Need to Breed for Regional 486 

Adaptation in Soybean? Evaluation of Genotype-by-Location Interaction and Trait Stability of Soybean in 487 

Germany. Plants, 12(4), Article 4. https://doi.org/10.3390/plants12040756 488 

Dreccer, M. F., Borgognone, M. G., Ogbonnaya, F. C., Trethowan, R. M., & Winter, B. (2007). 489 

CIMMYT-selected derived synthetic bread wheats for rainfed environments: Yield evaluation in Mexico and 490 

Australia. Field Crops Research, 100(2), 218–228. https://doi.org/10.1016/j.fcr.2006.07.005 491 

Elmerich, C., Boulch, G., Faucon, M.-P., Lakhal, L., & Lange, B. (2023). Identification of Eco-Climatic 492 

Factors Driving Yields and Genotype by Environment Interactions for Yield in Early Maturity Soybean 493 

Using Crop Simulation. Agronomy, 13(2), 322. https://doi.org/10.3390/agronomy13020322 494 

FAOSTAT. (2021). Food and Agriculture Organization Corporate Statistical Database. 495 

https://www.fao.org/faostat/en/#data/QCL 496 

Holland, J. B., Nyquist, W. E., & Cervantes-Martínez, C. T. (2003). Estimating and interpreting 497 

heritability for plant breeding: An update. In Plant breeding reviews (Jules Janick, Vol. 22). John Wiley & 498 

Sons. 499 

Hoogenboom, G., Porter, C. H., Boote, K. J., Shelia, V., Wilkens, P. W., Singh, U., White, J. W., Asseng, 500 

S., Lizaso, J. I., Moreno, L. P., Pavan, W., Ogoshi, R., Hunt, L. A., Tsuji, G. Y., & Jones, J. W. (2019). The 501 

DSSAT crop modeling ecosystem. In Advances in Crop Modeling for a Sustainable Agriculture (pp. 173–502 

216). Burleigh Dodds Science Publishing. https://doi.org/10.19103/AS.2019.0061.10 503 

IPCC. (1997). Revised 1996  IPCC guidelines for national greenhouse gas inventories: Reference Manual 504 

(Volume 3) (Houghton J.T., Meira L.G., Filho L.G., Lim B., Treanton K., Mamaty I., Bonduki Y., Griggs 505 

D.J. and Callender B.A.). Intergovernmental Panel on Climate Change. 506 

IPCC. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. (Contribution of Working 507 

Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change). 508 



Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., 509 

Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal 510 

of Agronomy, 18(3–4), 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7 511 

Karges, K., Bellingrath-Kimura, S. D., Watson, C. A., Stoddard, F. L., Halwani, M., & Reckling, M. 512 

(2022). Agro-economic prospects for expanding soybean production beyond its current northerly limit in 513 

Europe. European Journal of Agronomy, 133, 126415. https://doi.org/10.1016/j.eja.2021.126415 514 

Kurasch, A. K., Hahn, V., Leiser, W. L., Vollmann, J., Schori, A., Bétrix, C.-A., Mayr, B., Winkler, J., 515 

Mechtler, K., Aper, J., Sudaric, A., Pejic, I., Sarcevic, H., Jeanson, P., Balko, C., Signor, M., Miceli, F., 516 

Strijk, P., Rietman, H., … Würschum, T. (2017). Identification of mega-environments in Europe and effect 517 

of allelic variation at maturity E loci on adaptation of European soybean: Soybean Adaptation to Europe. 518 

Plant, Cell & Environment, 40(5), 765–778. https://doi.org/10.1111/pce.12896 519 

Laffont, J.-L., Wright, K., & Hanafi, M. (2013). Genotype Plus Genotype × Block of Environments 520 

Biplots. Crop Science, 53(6), 2332–2341. https://doi.org/10.2135/cropsci2013.03.0178 521 

Marraccini, E., Gotor, A. A., Scheurer, O., & Leclercq, C. (2020). An Innovative Land Suitability Method 522 

to Assess the Potential for the Introduction of a New Crop at a Regional Level. Agronomy, 10(3), 1–24. 523 

https://doi.org/10.3390/agronomy10030330 524 

Messina, C. D., Technow, F., Tang, T., Totir, R., Gho, C., & Cooper, M. (2018). Leveraging biological 525 

insight and environmental variation to improve phenotypic prediction: Integrating crop growth models 526 

(CGM) with whole genome prediction (WGP). European Journal of Agronomy, 100, 151–162. 527 

https://doi.org/10.1016/j.eja.2018.01.007 528 

Millet, E. J., Kruijer, W., Coupel-Ledru, A., Alvarez Prado, S., Cabrera-Bosquet, L., Lacube, S., 529 

Charcosset, A., Welcker, C., van Eeuwijk, F., & Tardieu, F. (2019). Genomic prediction of maize yield across 530 

European environmental conditions. Nature Genetics, 51(6), 952–956. https://doi.org/10.1038/s41588-019-531 

0414-y 532 

Podlich, D. W., & Cooper, M. (1998). QU-GENE: A simulation platform for quantitative analysis of 533 

genetic models. Bioinformatics, 14(7), 632–653. https://doi.org/10.1093/bioinformatics/14.7.632 534 



Podlich, D. W., Cooper, M., Basford, K. E., & Geiger, H. H. (1999). Computer simulation of a selection 535 

strategy to accommodate genotype environment interactions in a wheat recurrent selection programme. Plant 536 

Breeding, 118(1), 17–28. https://doi.org/10.1046/j.1439-0523.1999.118001017.x 537 

Rincent, R., Malosetti, M., Ababaei, B., Touzy, G., Mini, A., Bogard, M., Martre, P., Le Gouis, J., & van 538 

Eeuwijk, F. (2019). Using crop growth model stress covariates and AMMI decomposition to better predict 539 

genotype-by-environment interactions. Theoretical and Applied Genetics, 132(12), 3399–3411. 540 

https://doi.org/10.1007/s00122-019-03432-y 541 

Sambatti, J. B. M., & Caylor, K. K. (2007). When is breeding for drought tolerance optimal if drought is 542 

random? New Phytologist, 175(1), 70–80. https://doi.org/10.1111/j.1469-8137.2007.02067.x 543 

Schoving, C., Champolivier, L., Maury, P., & Debaeke, P. (2022). Combining multi-environmental trials 544 

and crop simulation to understand soybean response to early sowings under contrasting water conditions. 545 

European Journal of Agronomy, 133, 126439. https://doi.org/10.1016/j.eja.2021.126439 546 

Sudarić, A. (2020). Soybean for Human Consumption and Animal Feed. IntechOpen. 547 

Woollings, T. (2010). Dynamical influences on European climate: An uncertain future. Philosophical 548 

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1924), 3733–549 

3756. https://doi.org/10.1098/rsta.2010.0040 550 

Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants. Theoretical and 551 

Applied Genetics, 129(4), 653–673. https://doi.org/10.1007/s00122-016-2691-5 552 

Yan, W., & Kang, M. S. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and 553 

agronomists. CRC Press. 554 

 555 


