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1.

Introduction

Breeders aim to create cultivars that outperform the existing germplasm under a large set of growing conditions across the cultivation area. Spatial considerations and year-to-year variations in weather scenarios can considerably affect the relative performances of cultivars and make breeding decisions more complex [START_REF] Cooper | Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments[END_REF]. This phenomenon, called Genotype by Environment Interactions (GEI), limits the genetic gain by decreasing the effective heritability of traits, i.e. the ability to identify superior genotypes statistically [START_REF] Brennan | Determination of the location and number of test environments for a wheat cultivar evaluation program[END_REF][START_REF] Basford | Genotype×environment interactions and some considerations of their implications for wheat breeding in Australia This review is one of a series commissioned by the Advisory Committee of the Journal[END_REF]. When the GEI are low, cultivars can be identified that perform well across a wide range of conditions; this is referred to as broad adaptation [START_REF] Cooper | Understanding plant adaptation to achieve systematic applied crop improvement-A fundamental challenge[END_REF]. Alternatively, when there are greater GEI, certain cultivars can perform better than others within a restricted set of conditions. This is referred to as specific adaptation [START_REF] Cooper | Understanding plant adaptation to achieve systematic applied crop improvement-A fundamental challenge[END_REF]. Crop growth models have become increasingly popular to unravel the complexity of the ecophysiological mechanisms and processes underlying GEI [START_REF] Millet | Genomic prediction of maize yield across European environmental conditions[END_REF][START_REF] Rincent | Using crop growth model stress covariates and AMMI decomposition to better predict genotype-by-environment interactions[END_REF][START_REF] Casadebaig | Optimized cultivar deployment improves the efficiency and stability of sunflower crop production at national scale[END_REF][START_REF] Bustos-Korts | Identification of environment types and adaptation zones with selforganizing maps; applications to sunflower multi-environment data in Europe[END_REF]. These models offer the possibility of connecting plant physiological processes with environmental variables [START_REF] Chenu | Contribution of Crop Models to Adaptation in Wheat[END_REF]. For instance, they can be used to calculate climatic variables over specific simulated phenological periods. Known as environmental covariates or Eco-climatic Factors (EFs), they can be treated as explanatory variables of complex traits, including yield [START_REF] Schoving | Combining multi-environmental trials and crop simulation to understand soybean response to early sowings under contrasting water conditions[END_REF][START_REF] Elmerich | Identification of Eco-Climatic Factors Driving Yields and Genotype by Environment Interactions for Yield in Early Maturity Soybean Using Crop Simulation[END_REF].

To capture the GEI effect, breeders traditionally evaluate genotypes across Multi-Environment Trials (METs) that include a set of locations and years, referred to as environments. Such trials aim to characterise the environmental conditions in which the crops are likely to be grown. These conditions correspond to the Target Population of Environments (TPE) [START_REF] Podlich | QU-GENE: A simulation platform for quantitative analysis of genetic models[END_REF]. Due to seasonal variability and the practical constraints that restrict the number of genotypes and environments tested in METs the environments sampled in METs often offer a biased representations of the TPE [START_REF] Podlich | Computer simulation of a selection strategy to accommodate genotype environment interactions in a wheat recurrent selection programme[END_REF]. An extension of the breeder's equation used to quantify genetic gain was recently developed to explicitly account for the influence of the MET-TPE alignment on trait predictions [START_REF] Cooper | Extending the breeder's equation to take aim at the target population of environments[END_REF]. Thus, weighted analyses based on representativity assessments of trials can enable breeders to correct for this bias and select germplasm that is better adapted to a TPE. This requires an upstream characterisation and understanding of the TPE through identification of the key environmental classes affecting the performance of the genotypes.

These environmental classes, referred to as environment types , regroup environments (location x year) in which genotypes have similar performances [START_REF] Chenu | Large-scale characterization of drought pattern: A continent-wide modelling approach applied to the Australian wheatbelt -spatial and temporal trends[END_REF]. The classification can be performed according to geographical regions [START_REF] Döttinger | Do We Need to Breed for Regional Adaptation in Soybean? Evaluation of Genotype-by-Location Interaction and Trait Stability of Soybean in Germany[END_REF], stress factors patterns [START_REF] Chapman | Genotype by environment interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are related to location effects on hybrid yields[END_REF] or effects on performance traits such as yield levels or maturity dates [START_REF] Chauhan | Characterization of north-eastern Australian environments using APSIM for increasing rainfed maize production[END_REF][START_REF] Kurasch | Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean: Soybean Adaptation to Europe[END_REF]. While useful to describe environmental variables affecting crop productivity, these classification criteria do not attest to the performance stability of the genotypes. Consequently, the best approach for breeding purposes is grouping or clustering environments based on environment variables that are key drivers of GEI [START_REF] Annicchiarico | Breeding gain from exploitation of regional adaptation: An alfalfa case study[END_REF]. The challenge is to identify these drivers and use them to cluster environments into environment types that define the TPE. This approach minimises GEI within environment types but maximises them between environment types [START_REF] Chenu | Environment characterization as an aid to wheat improvement: Interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia[END_REF][START_REF] Bustos-Korts | Identification of environment types and adaptation zones with selforganizing maps; applications to sunflower multi-environment data in Europe[END_REF].

Leguminous crop deployments have been accelerated to address European protein deficits [START_REF] Marraccini | An Innovative Land Suitability Method to Assess the Potential for the Introduction of a New Crop at a Regional Level[END_REF][START_REF] Ayerdi Gotor | Innovative Pulses for Western European Temperate Regions: A Review[END_REF]. Among legumes, soybean (Glycine max L. (Merrill)) seems to be a good candidate to become a major oleo-protein crop for both food and feed [START_REF] Sudarić | Soybean for Human Consumption and Animal Feed[END_REF]. European soybean production is currently low, and importations greatly exceed exportations (FAOSTAT, 2021).

Although recent studies demonstrate the potential of soybean crop in Europe, few breeding efforts have been made to adapt soybean in Northern Europe [START_REF] Elmerich | Identification of Eco-Climatic Factors Driving Yields and Genotype by Environment Interactions for Yield in Early Maturity Soybean Using Crop Simulation[END_REF][START_REF] Karges | Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe[END_REF]. Under highly divergent weather conditions in France, [START_REF] Elmerich | Identification of Eco-Climatic Factors Driving Yields and Genotype by Environment Interactions for Yield in Early Maturity Soybean Using Crop Simulation[END_REF] identified the main EFs driving GEI in semiindeterminate soybeans from two early maturity groups ('000' and '00'). Various GEI-drivers were identified depending on maturity groups and the nature of the GEI (genotypes by location or locations by year),. The GEI-drivers occurred mainly during the overlapping period of vegetative and reproductive growths. Cold stress during the vegetative growth, solar radiation intensity during the pod emission and maximum temperature before maturity were the main climatic variables that impacted GEI.

The potential early soybean cultivation area is wide in Northern Europe as it extends from France to Russia (approximately between the 45° and the 50° parallels). However, areas dedicated to soybean production remain low (3.6% of the total crops harvested in 2021) (FAOSTAT, 2021). Compared with other regions of the globe, Europe presents a substantial diversity of climatic scenarios [START_REF] Woollings | Dynamical influences on European climate: An uncertain future[END_REF]. Thus, GEI for yield are expected to be large, which will reduce the heritability of yield-related traits [START_REF] Holland | Estimating and interpreting heritability for plant breeding: An update[END_REF].

To date, the spatial and temporal characterisation of the European soybean TPE is unknown, especially when GEI-drivers are used. Attempts to show the potential of dividing the TPE for specific adaptation have not considered GEI per se nor the environmental characterisation [START_REF] Kurasch | Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean: Soybean Adaptation to Europe[END_REF][START_REF] Döttinger | Do We Need to Breed for Regional Adaptation in Soybean? Evaluation of Genotype-by-Location Interaction and Trait Stability of Soybean in Germany[END_REF]. Those advances would enable breeders to position their cultivars on the market and contribute to designing better breeding strategies. The objectives will be to (i) determine the environment types that describe the European early soybean TPE using GEI-drivers, (ii) characterise the distribution and repeatability of environment types across the TPE to propose the best-suited adaptation strategy, and (iii) demonstrate the importance of MET-TPE alignment in breeding decisions and cultivars recommendations.

Material and Methods

Datasets

Two datasets were used in this study; they differed in data sources and use purposes. day -1 ) and daily precipitation (mm) were extracted from 1 January to 31 December. Soil parameters extracted from raster files produced by the European Soil Data Centre (https://esdac.jrc.ec.europa.eu/) were used to characterise the soil of each location (1 km/1 km grid) using QGIS3 (v. 3.14.1). Clay content (%), silt content (%), sand content (%), gravel content (%), organic carbon content (%), total nitrogen content (%) and bulk density (g cm-3) from topsoil and subsoil were extracted as well as the depth available to roots (cm).

Eco-climatic factors calculation

A previous study using Dataset A [START_REF] Elmerich | Identification of Eco-Climatic Factors Driving Yields and Genotype by Environment Interactions for Yield in Early Maturity Soybean Using Crop Simulation[END_REF], identified 20 out of 126 Eco-climatic Factors (EFs) for their primary impact on Genotype by Environment Interactions (GEI). The 126 EFs used in this study consisted of climatic variables calculated between two developmental stages (i.e. phenophases). Five major categories of environmental variables were used: period duration, temperature, water, solar radiation and stresses. Seven soybean phenophases were used: Sowing to EMergence (SEM), EMergence to Flower Initiation (EMFI), Flower Induction to First Flower (FIFF), First Flower to First Pod (FFFP), First Pod to First Seed (FPFS), First Seed to End of Pod (FSEP), End of Pod to Physiological Maturity (EPPM). These phenophases were calculated based on the simulation of stages using the DSSAT-CROPGRO-soybean model [START_REF] Boote | The CROPGRO model for grain legumes[END_REF][START_REF] Jones | The DSSAT cropping system model[END_REF][START_REF] Hoogenboom | The DSSAT crop modeling ecosystem[END_REF]. The 126 EFs were sorted using partial least square regression and the variable importance in projection scores. This enabled identification of the main GEI-drivers.

Environmental classification based on k-means clustering

Clustering consists of grouping individuals into an optimal number of clusters based on one or a set of variables. In our study, the aim was to group the 602 environments (Datasets A and B) into clusters that represented the environment types; the intra-cluster GEI were minimised and the inter-cluster GEI were maximised. The environmental classification should be defined according to crucial environmental factors that affect GEI in the Target Population of Environments (TPE) [START_REF] Annicchiarico | Breeding gain from exploitation of regional adaptation: An alfalfa case study[END_REF].

The set of 20 EFs identified by [START_REF] Elmerich | Identification of Eco-Climatic Factors Driving Yields and Genotype by Environment Interactions for Yield in Early Maturity Soybean Using Crop Simulation[END_REF] appeared to be too large for the clustering. Usually, the number of variables used for clustering ranges from 6 to 12 [START_REF] Corlouer | Envirotypes Based on Seed Yield Limiting Factors Allow to Tackle G × E Interactions[END_REF][START_REF] Schoving | Combining multi-environmental trials and crop simulation to understand soybean response to early sowings under contrasting water conditions[END_REF].

Thus, 888 896 clustering models were tested (i.e. the combination of 6 to 12 EFs among the 20). K-means clustering was performed with R software (v4.2.1) using the Euclidean distance measure and the complete linkage method. For each clustering model, the optimal number of clusters was determined using the nbclust package in the R software (v4.2.1).

Linear models

Each model was tested using R software (v4.2.1).

For each k-means model, a linear mixed-effects model -Equation 1 

Y μ G C G C C E ε , (E1)
where Y ijk is the seed yield of genotype i in cluster j in the environment k, µ is the population mean, G i stands for the effect of genotype i, C j stands for the effect of cluster j, (G x C) ij stands for the effect of the interaction between genotype i and cluster j and C j (E k ) stands for the effect of the environment k nested in the cluster j.

The residual is ε ijk .

A linear model -Equation 2 (E2) -was applied to the data of Dataset A (112 environments) to test the effects of the EFs used in the clustering on the GxC:

GC ∑ α EF ε ijk , (p ∈ [6;12]), (E2)
where, GC ijk is the genotype by cluster interaction effect of genotype i in cluster j in the environment k, and α n stands for the linear regression coefficient of the eco-climatic factor n, EF n . The residual is ε ijk .

The evaluation of each model was based first on the significance of the GxC effect. A significant GxC effect indicated that there was some variation among genotypes in their rank orders between clusters. To ensure that the significance of the GxC effect was not driven by a single or a few genotypes and clusters, the percentage of significant interactions between specific genotypes and clusters was calculated. Finally, the capacity to explain the GxC effect using the EFs drawn on in the clustering model was evaluated.

Genotype plus genotype by block of environments biplot

Complementary principal component analyses were conducted on environment-centred genotype by environment, grouped by environment type, matrix [START_REF] Cooper | Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments[END_REF][START_REF] Yan | GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists[END_REF][START_REF] Laffont | Genotype Plus Genotype × Block of Environments Biplots[END_REF]. The Genotype plus Genotype by Block of environments biplot (GGB biplot) displays the genotype and genotype by block effects of a multi-environment trial dataset. The blocks of environments in our study were the environment types.

The GGB biplots can be interpreted such that genotypes located near the origin might either have all their values close to the environment means (low performance variation), given that the data were environment centred, or their variability is located in another dimension. Similarly, environments close to the origin may have little variability across genotypes or may not fit well in two dimensions. Genotypes that are close together have similar performance across environment types [START_REF] Chapman | Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two mode pattern analysis of yield[END_REF]. The R package gge was used for the analyses [START_REF] Laffont | Genotype Plus Genotype × Block of Environments Biplots[END_REF].

The GGB biplots allowed us to assess genotypic performance across environment types. Their construction required a balanced multi-environmental trial dataset. Thus, two multi-environmental trials including varied years and locations were used in our study. The first multi-environmental trial (MET1) included seven cultivars from maturity group '00' and 28 environments grouped in three environment types.

The second multi-environment trial (MET2) included five cultivars from maturity group '000' and 44 environments grouped in three environment types.

Weighted and unweighted multi-environment trial data

A MET dataset from 2018 was used that included ten '00' cultivars that were tested in twelve locations.

For the unweighted selection strategy, the mean performance by genotypes was calculated as the arithmetic mean of the performance in the twelve locations. The means of the ten genotypes were ranked from 1 to 10.

For the weighted selection strategy, the mean performance was calculated -Equation 3 (E3) - [START_REF] Podlich | Computer simulation of a selection strategy to accommodate genotype environment interactions in a wheat recurrent selection programme[END_REF].

∑ ∑ (E3)
where w k is the weighted mean performance of the genotype k, e i is the frequency of occurrence of the environment type i in the TPE, y jk is the phenotypic performance of the genotype k in environment j, and E i is the number of environments of type i in the MET.

Results

Eco-climatic factors set used for environmental clustering

A total of 888 896 clustering models were tested. Each model used a unique combination of Eco-climatic Factors (EFs) that were identified as major Genotype by Environment Interactions (GEI) drivers in a previous study conducted by [START_REF] Elmerich | Identification of Eco-Climatic Factors Driving Yields and Genotype by Environment Interactions for Yield in Early Maturity Soybean Using Crop Simulation[END_REF]. from Flower Induction to First Flower (FIFF) and from the First Flower to First Pod (FFFP), the duration of the FFFP period, the photothermal quotient during FFFP, the minimal temperature from First Pod to First Seed (FPFS), the solar radiation quantity during FPFS, the evapotranspiration potential during FPFS, the photoperiod from First Seed to End of Pod (FSEP), the number of days above 30 and 34°C during FSEP, the photoperiod from End of Pod to Physiological Maturity (EPPM) and the number of days above 30°C during EPPM.

Characterisation of the five environment types

The selected clustering model allowed the identification of five clusters that were referred to as environment types. The twelve EFs used for the clustering strongly discriminated the environment types (pvalue < 0.001 for each EF) (Fig. 1). As each environment was initially characterised by a set of 126 EFs, the latter were used to precisely describe the environment types if a significant difference was observed (p-value < 0.05) (Table 1). The first environment type (ET-1) differed greatly in the high quantity of solar radiation (ca. 1088 MJ m -2 ), precipitation (ca. 153 mm) and potential evapotranspiration (ca. 231 mm) as well as important cold stress (ca. 26 days below 10°C) during the vegetative growth. The ET-1 reproductive growth conditions showed low precipitation (ca. 82 mm) and ETP (ca. 187 mm) as well as high thermal amplitude (ca. 13°C) and heat stress (ca. 12.7 days above 30°C). The second environment type (ET-2) was characterised by non-stressful conditions during the vegetative growth followed, during the reproductive growth, by high water stress (ca. 0.47), solar radiations (ca. 1131 MJ m -2 ) and thermal amplitude (ca. 12.8 °C), with both chilling (ca. 17 days below 15°C) and heat stress (ca. 7.3 days above 30°C) at the beginning and the end of the period respectively.

The third environment type (ET-3) was distinguishable by the absence of stressful or extreme conditions throughout the crop cycle. [START_REF] Couëdel | Assessing environment types for maize, soybean, and wheat in the United States as determined by spatiotemporal variation in drought and heat stress[END_REF]. The temporal distribution (2012-2021) of the five environment types was highly dependent on the environment types considered (Fig. 3). In contrast to the other years, the years 2013,2014,2014,2017,2018 and 2020 were largely dominated by only one environment type. The ET-3 and ET-4 were present each year (at least in 6 or 4 locations, respectively), while ET-1, ET-2 and ET-5 were not represented in 2, 2 and 1 year, respectively. 

Genotypic performance linked with envirotyping

Stratifying environments by environment types using Genotype plus Genotype by Block of environments biplots (GGB biplot) enabled the interpretation of cultivar responses in the TPE. With the GGB biplot representation cultivars can be compared by projecting a perpendicular from the genotype to the environment type vector for any particular environment type. Cultivars that are further along in the positive direction of the environment type vector have higher yields than other cultivars in said environment type, and vice versa.

In the multi-environmental trial 1 (MET1), which included seven cultivars and 28 environments grouped in three environment types, the cultivar GEN2 was strongly positively correlated with ET-4 and positively correlated with ET-1 and ET-5, and GEN4 was also positively correlated with ET-4 but negatively correlated with ET-1 and ET-5 (Fig. 4a). In the multi-environmental trial 2 (MET2), which included five cultivars and 44 environments grouped in three environment types, the cultivars GEN8 and GEN11 were both negatively correlated with all environment types whereas GEN9, GEN10 and GEN11 were positively correlated with ET-1 but negatively correlated with ET-5 (Fig. 4b). 

MET-TPE alignment for MET data evaluation

In the 2018 Multi-Environment Trials (MET) dataset presented in Table 2, one environment belonged to ET-1 (8.3%), seven belonged to ET-2 (58.3%), three belonged to ET-3 (25%), one belonged to and zero belonged to ET-5 (0%). This MET did not satisfactorily represent the frequencies of environment types within the TPE (14, 18, 27, 15 and 26%, respectively for ET-1 to ET-5). Changes in cultivar ranks between unweighted and weighted data were observed and ranged from no change (Genotype 3, 6 and 8) to a six-rank position change (Genotype 9). If a breeder was allowed to keep only 10% of the tested cultivars for future testing and/or deployment, his choices would differed depending on the strategy. For instance, Genotype 4 would surely be advanced if data were weighted by the environment types frequencies observed in the TPE but would most likely have been eliminated if data were unweighted. The environmental clustering using twelve Eco-climatic Factors (EFs) that contrasted in terms of climatic 305 variables and phenophases explained 88% of the cultivar yield variation attributed to Genotype by Cluster 306 interaction (GxC). Thanks to the clustering, breeders will be able to minimise the GxC variance in their 307 prediction models and focus more on the genetic variation per se [START_REF] Messina | Leveraging biological insight and environmental variation to improve phenotypic prediction: Integrating crop growth models (CGM) with whole genome prediction (WGP)[END_REF]. The highly significant 308 and large GxC variance component compared to the genotype and cluster effects demonstrated the interest 309 in defining environment types within the European early maturity soybean production area. It would be 310 interesting to confront this model performance with a richer database. 311

The results highlighted five environment types that represent the European early soybean TPE. The first 312 environment type (ET-1) was characterised by wet, cold and shaded conditions during the vegetative growth and warmth and high radiation but no drought conditions during the reproductive growth. The second environment type (ET-2) showed no stressful conditions during the vegetative growth but showed drought stress, high radiation and variable temperatures during the reproductive growth. The third environment type (ET-3) was distinguishable by the absence of stressful or extreme conditions throughout the crop cycle. The fourth environment type (ET-4) was marked by the short, dry and warm conditions during the vegetative growth as well as by the dry, hot and high radiation conditions during the reproductive growth. The fifth environment type (ET-5) was characterised by long, wet and cold conditions during the vegetative growth as well as wet, cool and shaded conditions during the reproductive growth. The environment types could be referred to as follows: 'Temperate Humid', 'Temperate dry', 'Temperate with no stress', 'Warm dry ' and 'Cool humid', respectively (IPCC, 1997). The different environment types were primarily contrasted by the intensity and timing of stresses relative to temperatures (cold stress during the vegetative growth and heat stress during the reproductive growth) and water availability (precipitation amount, evapotranspiration and drought). Despite disconnected/juxtaposed geographical areas, our classification is consistent with the classification established by [START_REF] Schoving | Combining multi-environmental trials and crop simulation to understand soybean response to early sowings under contrasting water conditions[END_REF] that identified environment classes on the basis of levels of temperatures and drought stresses. Our non-a priori approach allowed us to identify the combinations of stresses and conditions to which soybean cultivars are expected to similarly respond. This envirotyping approach allowed to define the first European typology of environments for soybean and can be used to design new trial networks or improve existing ones.

Varied occurrences of environment types in the target population of environments

The results demonstrated that the environment types distribution in the TPE over ten years (from 2012 to 2021) was heterogenous and lack generalities. Contrary to the six mega-environments defined by [START_REF] Kurasch | Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean: Soybean Adaptation to Europe[END_REF], in the early soybean TPE, environment types' occurrences neither followed annual (one year corresponding to one environment type) nor geographical (longitudinal or latitudinal) distributions. This difference could be attributed to our wider study area and to the environmental descriptors that were based on maturity dates in their study as opposed to EFs. The ET-1 showed low repeatability, ET-2 and ET-5

showed intermediate repeatability, the ET-4 showed high repeatability and the ET-3 equally showed intermediate and high repeatability. The identification of highly repeatable environment types (mainly located in Eastern Europe) is key to designing breeding strategy for specific adaptation. In environments where specific adaptation appears best suited, the interactions between genotypes and other environmental characteristics, such as soil properties, cultural practices or biotic stress incidences could be investigated. On the other hand, the highlight of low environment types repeatability in Western Europe will help breeders aim for broad adaptation, as future growth conditions are highly unpredictable (de la Vega & [START_REF] De La Vega | Defining Sunflower Selection Strategies for a Highly Heterogeneous Target Population of Environments[END_REF]. The broad adaptation of cultivars could be reached by designing more plastic cultivars, i.e. cultivars having traits with a large reaction norm, leading to a stable performance under a large set of growing conditions [START_REF] Sambatti | When is breeding for drought tolerance optimal if drought is random?[END_REF]. Future work should evaluate soybean above and below ground traits plasticity in response to the main EFs driving GEI to identify relevant traits to focus on for broad adaptation.

Among these, cold stress during the early vegetative growth has never been investigated and seems of great importance [START_REF] Elmerich | Identification of Eco-Climatic Factors Driving Yields and Genotype by Environment Interactions for Yield in Early Maturity Soybean Using Crop Simulation[END_REF].

Variations in the spatial and temporal distribution of the environment types across the TPE revealed the complexity to design efficient breeding programs that will control possible genotype by environment interactions and select for climate adaptation as much as. In the context of climate change, these five environment types could be conserved but their spatial and temporal distributions could be affected. Thus, monitoring the environment types distribution will be essential. The perspectives will be to simulate virtual environments using different forecasting climate scenarios, e.g. SSP5-8.5 and SSP2-4.5 (IPCC, 2022) and confront our results to a projected environment types distribution [START_REF] Bustos-Korts | Chapitre 3-Modelling of Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, Genetics and Statistics[END_REF].

Environmental characterisation, an informative tool for breeding decisions

The environmental characterisation aimed to increase the understanding of GEI effects. This is a crucial step when attempting to expand a new crop northward, and to assist breeders dealing with GEI [START_REF] Chenu | Chapter 13-Characterizing the crop environment -nature, significance and applications[END_REF]. In our study, the GEI effect, was larger for yield, compared with the genotype effect. The same ranking was previously reported in the literature [START_REF] Dreccer | CIMMYT-selected derived synthetic bread wheats for rainfed environments: Yield evaluation in Mexico and Australia[END_REF][START_REF] Chenu | Environment characterization as an aid to wheat improvement: Interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia[END_REF].

Using METs conducted in France, differences in genotypes performances were observed across environment types. Thanks to the environmental characterisation of the European early soybean TPE, predictions can be made on genotypes performances in non-tested locations that belong to the same environment type. Better precision in these predictions could be achieved especially in Eastern Europe where specific adaptation appears to be best suited. For instance, GEN 2 showed its best performance in ET-4; therefore, it could be advised for use in Eastern Europe or used as a parent to develop bi-parental populations.

Envirotyping could increase performances predictions for new targeted areas in locations where trials have not been conducted. The environment types frequencies within the TPE constitute an interesting result to position current elite soybean cultivars on the market, according to their performance in each environment type. It could also be used to design new cultivars specifically adapted to an environment type. This approach allows the crop yield potential to be maximised for a targeted region and to match farmers' needs for improved and locally designed germplasm [START_REF] Annicchiarico | Breeding gain from exploitation of regional adaptation: An alfalfa case study[END_REF].

A huge challenge when analysing METs for breeding purposes is evaluating how METs data match the TPE in order to improve breeding decisions and enhance the genetic gain over generations. Comparisons between weighted and unweighted MET phenotypic data support the importance of MET-TPE alignment evaluation [START_REF] Podlich | Computer simulation of a selection strategy to accommodate genotype environment interactions in a wheat recurrent selection programme[END_REF][START_REF] Cooper | Extending the breeder's equation to take aim at the target population of environments[END_REF]. Our results confirmed the efficiency of this approach when climatic scenarios at the MET scale derived from the TPE (Table 2). When dealing with large and complex GEI effects, as observed in the Western European soybean production area, breeders should weight their phenotypic data and consider the MET-TPE alignment, particularly if they are selecting for broad adaptation.

Conclusion

This study is the first to European described early soybean Target Population of Environments (TPE) to control Genotype by Environment Interactions (GEI) for breeding purposes. Environmental characterisation based on GEI-drivers is a powerful tool to tackle GEI and accelerate soybean genetic gain. Our method explained a large part (88%) of the yield variation that is due to the GEI effects. The five environment types observed across Europe and their repeatability varied in terms of geographical and temporal distributions.

The results underlined the necessity to combine specific (maximising cultivars performances in a given environment type) and broad adaptations (maximising cultivars yield stabilities over different environment types) depending on locations. Envirotyping represents a necessary progression within the era of data-driven plant improvement [START_REF] Xu | Envirotyping for deciphering environmental impacts on crop plants[END_REF][START_REF] Crossa | The Modern Plant Breeding Triangle: Optimizing the Use of Genomics, Phenomics, and Enviromics Data[END_REF]. These approaches allowed us to better predict genotypic performances within specific environment types and improve the positioning of cultivars in the marketplace.

Moreover, as demonstrated in this study, a better MET data interpretation and utilisation can be reached through MET-TPE alignment evaluation. To enhance the deployment of soybean northward, perspectives should be to design ideotypes that outperform the existing germplasm for specific or multiple environment types across the TPE.

  (E1) -was applied on the data of Dataset A (112 environments). Only cultivars tested at least three times in each cluster were kept. The model tested the fixed effects of Genotype (G), Cluster (C) and Genotype by Cluster Interactions (G x C), and the random effect of the Environments nested in the Clusters C(E) across the network:

Fig. 1 .

 1 Fig. 1. Characterisation of the five environment types by the 12 eco-climatic factors used for the clustering. The phenophases are indicated in parenthesis with the following stages: Flower Induction (FI), First Flower (FF), First Seed (FS), First Pod (FP), End Pod (EP) and Physiological Maturity (PM). The smaller inner circle represents the minimum value and the outer cycle represents the maximal value for each eco-climatic factor. The colours of the lines indicate the environment type: blue for the first environment type (ET-1), green for the second environment type (ET-2), orange for the third environment type (ET-3), yellow for the fourth environment type (ET-4) and red for the fifth environment type (ET-5).

Fig. 2 .

 2 Fig.2. Environment types frequency of occurrence from France to Russia (European early soybean production area) over ten years. For the 49 locations of Dataset B, the environment types' frequency of occurrence was calculated and represented on the map using pie charts. The colours of each pie section indicate the environment type: blue for the first environment type (ET-1), green for the second environment type (ET-2), orange for the third environment type (ET-3), yellow for the fourth environment type (ET-4) and red for the fifth environment type (ET-5).

Fig. 3 .

 3 Fig. 3. Temporal distribution of the five environment types from 2012 to 2021 using the 49 locations in Dataset B. The colours indicate the environment type: blue for the first environment type (ET-1), green for the second environment type (ET-2), orange for the third environment type (ET-3), yellow for the fourth environment type (ET-4) and red for the fifth environment type (ET-5).

Fig. 4 .

 4 Fig. 4. Environment-standardised Genotype plus Genotype by Block of environments biplots illustrating contrasted cultivars' performances depending on environment types in two multi-environmental trials from the Dataset A. (a) The first multi-environmental trial included seven cultivars from maturity group '00' (GEN 1 to GEN 7) and 28 environments (e1 to e28) grouped in three environment types (ET-1, ET-4 and ET-5). (b) The second multi-environment trial included five cultivars from maturity group '000' (GEN 8 to GEN 12) and 44 environments (e29 to e72) grouped in three environment types (ET-1, ET-3 and ET-5). The percentages of the total genotype plus genotype by environment variation explained by the main two principal components are shown in parentheses. The colours indicate the environment type: blue for the first (ET-1), orange for the third (ET-3), yellow for the fourth (ET-4) and red for the fifth (ET-5).

Table 1 . Description of the five environment types identified by clustering.

 1 reproductive growth conditions were differentiated by high solar radiation intensity (ca. 23 MJ m -2 d -1 ), high water (ca. 0.37) and severe heat stress (ca. 6 days above 34°C). The fifth environment type (ET-5) showed high precipitation (ca. 154 mm), solar radiation quantity (ca. 1084 MJ m -2 ), cold stress (ca. 27 days below 10°C) and period duration (ca. 56 days) during the vegetative growth. The ET-5 reproductive growth was differentiated by the high precipitation (ca. 164 mm) and the low water stress index (ca. 0.11), the solar For each Eco-climatic Factor (EF), the environment type effect was tested by Kruskal-Wallis non-parametric tests. When this effect was significant, a Dunn's multiple comparison test was performed in order to determine environment types (using Bonferroni adjusted p-values). In the table, yellow and blue shadings correspond to the highest and lowest EF means, respectively, that significantly differed from the others. The EFs written in bold correspond to those used for the k-means clustering. Abbreviations used in the table: evapotranspiration (ET), potential evapotranspiration (ETP), photothermal quotient (PTQ). The duration ranged from 5 to 52 days. The photoperiod ranged from 12.83 to 16.31 hours.The solar radiation intensity ranged from 5.3 to 29.7 MJ m² d -1 . The solar radiation quantity ranged from 86 to 758 MJ m². The PTQ ranged from 0.59 to 3.72. The precipitation amount ranged from 0 to 246 mm. The ET ranged from 2 to 141 mm. The ETP ranged from 8 to 154 mm. The water stress index ranged from 0 to 0.99. The minimum, average and maximum temperatures ranged from 0 to 22.9°C, 1.8 to 29.5°C and 3 to 37.1°C, respectively. The number of days with a minimal temperature below 10 or 15°C ranged from 0 to 50 days in both cases. The number of days with a minimal temperature above 30 or 34°C ranged from 0 to 18 days and 0 to 10 days, respectively. The thermal amplitude ranged from 2.5 to 18.7°C. Environment types occurrences in the European early soybean target population of environments Fig. 2 displays the frequencies of environment types for the Dataset B (49 locations over 10 years). The first environment type (ET-1) (10.6% in Dataset B) occurred principally in France and Germany. The second

	radiation intensity (ca. 18.1 MJ m -2 d -1 ), the thermal amplitude (ca. 10.3 °C) and the heat stress (ca. 4 days
	above 30°C). Among the 602 environments used for the clustering, 83 (13.8%) belonged to ET-1, 106
	(17.6%) belonged to ET-2, 161 (26.7%) belonged to ET-3, 93 (15.4%) belonged to ET-4 and 159 (26.4%)
	belonged to ET-5.

The fourth environment type (ET-4) was denoted by the low precipitation (ca. 70 mm), warm temperature (ca. 18 °C) and short duration (ca. 39 days) of the vegetative growth. The ET-4 Moreover, around 12% of the TPE locations presented low environment types repeatability (i.e. most frequent environment type frequency < 33%), 53% presented intermediate environment types repeatability (i.e. 33% < most frequent environment type frequency ≤ 66%) and 35% presented high environment types repeatability (i.e. most frequent environment type frequency > 66%)

Table 2 .

 2 Example of the use of unweighted vs. weighted data analyses on the final breeding decisions. The 291 Target Population of Environments (TPE) consists of five types of environments with a frequency of 292 occurrence of 0.14, 0.18, 0.27, 0.15 and 0.26, respectively. Ten genotypes were evaluated across 12 293 environments within a Multi-Environment Trial (MET) included in the Dataset A. In this MET, the first

	294													
	295	environment type (ET-1) has been sampled in the MET environment 1, the second environment type (ET-2)
	296	has been sampled in MET environments 2 to 8, the third environment type (ET-3) has been sampled in MET
	297	environments 9 to 11, the fourth environment type (ET-4) has been sampled in MET environment 12 and the
	298	fifth environment type (ET-5) has not been sampled in the MET. The grain yield performance of the
	299	genotypes is expressed in quintals by hectare. The estimated mean yield performance and rank are given for
	300	each genotype.											
							Environment Types in MET					Data analyses
			ET-1 ( = 0.14) 1			ET-2 ( = 0.18) 1			ET-3 ( = 0.27) 1	ET-4 ( = 0.15) 1 Unweighted Weighted
	Env. in MET	1	2	3	4	5	6	7	8	9	10	11	12	Mean Rank Mean Rank
	Genotype 1	51.1	28.4 46.4 25.4 30.2 34.1 43.7 33.6 41.7 34.9 38.6	37.7	37.2 9 29.2
	Genotype 2	50.3	40.0 44.1 24.0 27.5 36.2 48.8 30.6 44.5 38.8 42.2	34.6	38.5 4 29.8
	Genotype 3	41.1	28.7 43.2 20.9 30.4 36.6 43.1 31.5 45.3 37.4 32.1	37.1	35.6 10 27.5 10
	Genotype 4	52.5	30.5 47.0 24.6 34.5 30.4 45.3 33.1 43.1 42.0 31.7	40.8	38.0 6 30.1
	Genotype 5	49.1	30.5 48.0 23.0 32.2 39.7 46.8 32.4 42.2 35.7 40.4	36.1	38.0 5 29.2
	Genotype 6	54.5	27.4 45.2 25.4 36.2 42.2 47.9 33.2 42.9 38.0 43.1	39.0	39.6 1 31.0
	Genotype 7	52.4	33.7 52.8 24.5 34.5 35.8 46.8 32.9 35.7 36.3 42.2	37.1	38.7 3 29.7
	Genotype 8	48.0	33.3 51.5 24.3 29.7 31.2 45.1 33.6 46.5 37.3 36.4	36.1	37.8 7 29.1
	Genotype 9	42.0	35.2 54.8 25.6 31.2 41.4 48.4 33.9 43.9 39.6 38.9	35.0	39.2 2 28.9
	Genotype 10	41.0	31.4 48.9 25.2 31.5 38.3 44.9 33.2 38.3 39.0 40.5	38.4	37.6 8 28.4
	301	1 Frequency of each environment type in the TPE						
	302													
	303	4.	Discussion											
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