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Abstract 

BACKGROUND. Acute chest syndrome (ACS) is a life-threatening complication of sickle-cell 

disease (SCD). Although respiratory pathogens are frequently detected in children with ACS, 

their respective role in triggering the disease is still unclear. We hypothesized that ACS 

incidence followed the unprecedented population-level changes in respiratory pathogens 

dynamics following the COVID-19-related non-pharmaceutical interventions (NPIs). 

RESEARCH QUESTION. What is the respective role of respiratory pathogens in ACS 

epidemiology? 

STUDY DESIGN AND METHODS. We performed an interrupted time-series analysis of patient 

records from a national hospital-based surveillance system. All children < 18 years of age with 

SCD hospitalized for ACS in France between January 2015 and May 2022 were included. The 

monthly incidence of ACS per 1000 children with SCD over time was analyzed using a quasi-

Poisson regression model. The circulation of 12 respiratory pathogens in the general pediatric 

population over the same period was included in the model to assess the fraction of ACS 

potentially attributable to each respiratory pathogen. 

RESULTS. Among the 55,941 hospitalizations of children with SCD, 2306 episodes of ACS were 

included (median [IQR] age, 9 [5-13] years). We observed a significant decrease in ACS 

incidence after NPI implementation in March 2020 (-29.5%; 95% CI, -46.8% to -12.2%; P = .001) 

and a significant increase after lifting of the NPIs in April 2021 (24.4%; 95% CI, 7.2% to 41.6%; 

P = .007). Using population-level incidence of several respiratory pathogens, we found that 

Streptococcus pneumoniae accounted for 30.9% (95% CI, 4.9% to 56.9%; P = .02) of ACS 

incidence over the study period and influenza 6.8% (95% CI, 2.3% to 11.3%; P = .004), whereas 

other respiratory pathogens had only a minor role. 

INTERPRETATION. NPIs were associated with significant changes in ACS incidence 

concomitantly with major changes in the circulation of several respiratory pathogens in the 

general population. This unique epidemiological situation allowed to unravel the contribution 

of these respiratory pathogens, in particular S. pneumoniae and influenza, to the burden of 

childhood ACS, highlighting the potential benefit of vaccine prevention in this vulnerable 

population. 
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Sickle-cell disease (SCD) is one of the most common hemoglobinopathies worldwide, 

with approximately 300,000 new cases each year globally.1,2 More than 5000 children with 

SCD lived in France in 2019.3 Acute chest syndrome (ACS) is a potentially life-threatening 

complication of SCD, affecting more than half of patients with SCD in the first decade of life. 

ACS requires mechanical ventilation in 10% of cases and leads to death in 3% of children. 

Preventing ACS is crucial to reducing the mortality of individuals with SCD.4,5 

Based on microbiological studies, respiratory pathogens are suspected of playing a role 

in pediatric ACS.5 Indeed, the identification of respiratory viruses has been frequently 

reported for children with ACS, with a predominance of human rhinovirus (hRV), respiratory 

syncytial virus (RSV), and human adenovirus (hAdV).6,7 However, as some of these pathogens 

are frequently found in heathy children,8 their detection in children with ACS does not imply 

their involvement in the disease. Similarly, Streptococcus pneumoniae, which is frequently 

responsible for respiratory infection in children with SCD,9 is frequently carried in healthy 

young children.10 As this pathogen is rarely isolated in blood culture,11 it is highly challenging 

to distinguish carriage from involvement in ACS based on microbiological studies.5 Thus, the 

respective role of these respiratory pathogens in triggering ACS is still unclear. 

Since March 2020, unprecedented non-pharmaceutical interventions (NPIs) have been 

implemented to contain the coronavirus disease 2019 (COVID-19) pandemic (i.e., national 

lockdown followed by various mitigation strategies as night curfew, school closures, bans on 

public events, social distancing, and wearing of face masks). These NPIs have strongly affected 

the epidemiology of respiratory pathogens. Indeed, an unprecedented decrease in respiratory 

viruses and pneumococcal infections was observed in 2020.10,12 Following the progressive 

lifting of NPIs in 2021, outbreaks of several respiratory viruses (in particular RSV, influenza, 

hRV, and hAdV)13 and pneumococcal infections14,15,16 were observed, with different timing 

Jo
urn

al 
Pre-

pro
of



 4 

and magnitude. These unique changes in respiratory pathogen dynamics offer the opportunity 

to unravel their respective role in ACS epidemiology. 

We aimed to assess the temporal association of the national ACS incidence with the 

implementation and lifting of NPIs, and use the population-level changes in several respiratory 

pathogens circulation to analyze their respective role of in pediatric ACS epidemiology.  
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Methods 

Study design 

We conducted a population-based interrupted time-series analysis of patient data 

from a hospital-based French national surveillance system over seven years (January 2015 to 

May 2022). The Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE) guidelines were followed to report this study.  

 

Study data and settings 

The data were obtained from the French Medicalization of Information Systems 

Program (PMSI), which is an exhaustive national database that contains all hospital discharge 

records from public and private hospitals in France. Diagnoses related to the hospitalizations 

were recorded according to the International Statistical Classification of Diseases, Tenth 

Revision (ICD-10). Details of the PMSI coding system have been published previously.3 

 

Incidence of Acute Chest Syndrome in Children with Sickle-Cell Disease 

We included all children aged less than 18 years with SCD hospitalized for ACS between 

January 2015 and May 2022. As previously published,3 based on the national Technical Agency 

for Hospital Information (ATIH) guidelines,17 ACS was defined as the combination of the ICD-

10 discharge diagnosis code for SCD with crisis (D570 or D572) and one of several ICD-10 codes 

for respiratory impairment (J960, J189, I269). All children aged younger than 18 years with 

SCD hospitalized for pneumonia, vaso-occlusive crisis (VOC), or acute pyelonephritis were also 

recorded. HbS/ß0-thalassemia and HbS/ß+-thalassemia were not included. The details of ICD-

10 diagnosis codes are presented in eTable 1 in the Supplement. We calculated the incidence 

per 1000 children with SCD using the monthly number of ACS episodes as the numerator and 
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 6 

the number of children with SCD under 18 years of age living in France as the denominator for 

each year of the study (eFigure 1). This information was provided by the National Health 

Insurance Scheme database.18 

 

Incidence of Respiratory Pathogen Infections in the General Population 

We correlated the incidence of ACS in children with SCD to the population-level 

circulation of selected respiratory pathogens. To assess respiratory pathogen dynamics in the 

general population, we recorded all children aged younger than 18 years hospitalized for RSV, 

influenza, human parainfluenza virus (hPIV), human metapneumovirus (hMPV), hAdV, hRV, 

human enterovirus (hEV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), S. 

pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, and Chlamydia pneumoniae 

infection based on the ICD-10 codes. The details of the ICD-10 diagnosis codes are presented 

in eTable 2. Multiplex polymerase chain reaction (PCR) was used to detect respiratory viruses, 

M. pneumonia and C. pneumoniae; and blood, cerebrospinal fluid, and pleural fluid cultures 

or PCR were used for the diagnosis of S. pneumoniae and H. influenzae infections. We used 

the age-specific French population demographics obtained from the National Institute for 

Statistics and Economic Studies19 as the denominator to calculate the monthly incidence of 

each respiratory pathogen infection per 100,000 children (eFigure 2). 

 

Non-Pharmaceutical COVID-19-related Interventions 

From early March 2020, population-level NPIs to reduce SARS-CoV-2 transmission 

were introduced in many countries affected by COVID-19. In France, a national lockdown was 

officially started on March 17th, 2020, and gradually followed by various mitigation strategies. 

Given the progress against the COVID-19 pandemic, the implementation of immunization 
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programs, and the introduction of mandatory COVID-19 certification,20 French authorities 

partially lifted the restrictive measures since April, 2021. Details on the measures and their 

timing were provided by the European Centre for Disease Prevention and Control (eTable 3).21 

 

Study periods  

We organized the study into three periods: (1) the “pre COVID-19” period, from 

January 2015 to March 2020, (2) the “NPI” period, from April 2020 to March 2021, during 

which stringent measures were implemented, and (3) the “NPI lifting” period, from April 2021 

to May 2022, during which control measures were partially lifted, as reflected by the decrease 

in the national COVID-19 stringency index.22,23 

 

Outcome Measures 

The main outcomes were the monthly incidence of ACS per 1000 children with SCD in 

France and the estimated fraction of ACS attributable to a range of respiratory pathogens. 

Secondary outcomes were the monthly incidence of ACS among different age groups (0 to 5 

years, 6 to 10 years, 11 to 14 years, 15 to 17 years) and the monthly incidence of pneumonia 

and VOC per 1000 children with SCD. 

As a control outcome, we analyzed the monthly incidence of acute pyelonephritis per 

1000 children with SCD over the same period to assess the risk of bias due to potential hidden 

cointerventions, mainly a potential change in hospital admission capacities during the COVID-

19 pandemic.24 To assess potential changes in nationwide respiratory virus testing practices 

during the study period, hospitalizations for “undocumented pneumonia” (pneumonia 

without detection of respiratory pathogen, eTable 2) in the general population were also 
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 8 

recorded to calculate the proportion of undocumented pneumonia among all pneumonia 

cases over time. 

 

Statistical analysis 

First, we built a quasi-Poisson regression model to estimate the changes in ACS 

incidence following NPI implementation in March 2020 and the lifting of NPIs in April 2021. 

This model accounted for temporal trends before and after these interventions and for 

seasonality by using harmonic terms (sines and cosines with 6-month and 12-month periods). 

We hypothesized that the introduction and discontinuation of NPIs would have an immediate 

impact on ACS incidence.25 We, therefore, included dummy variables in the model to estimate 

the immediate change after the interventions.26. The time unit was one month.27 

Then, we estimated the fraction of ACS incidence potentially attributable to a range of 

respiratory pathogens. Thus, we modelled the ACS incidence using a seasonally adjusted 

quasi-Poisson regression model that included all respiratory pathogens as explanatory 

variables (RSV, influenza, hPIV, hMPV, hAdV, hRV, hEV, SARS-CoV-2, S. pneumoniae, H. 

influenzae, M. pneumoniae, and C. pneumoniae). We estimated the expected incidence of ACS 

if each respiratory pathogen was not present during the study period by using the same 

equation and set each respiratory pathogen term equal to zero. The estimated fraction of ACS 

potentially attributable to each pathogen was calculated as the percentage change between 

the ACS incidence fitted by the model and the predicted ACS incidence with each pathogen 

set to zero for each time point of the study period.10,28 

We performed seven sensitivity analyses: (1) a quasi-Poisson regression model 

involving a dummy variable estimating a progressive lifting of NPIs starting in April 2021 (2) a 

quasi-Poisson regression model with ACS defined as the combination of both ACS and 
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 9 

pneumonia episodes, (3) a quasi-Poisson regression model with the ICD-10 code for 

pneumonia (J189) excluded from the ACS definition to explore the potential overlap between 

ACS and pneumonia,3,29,30 (4) a quasi-Poisson regression model with the ICD-10 code for 

pulmonary embolism (I269) excluded from the ACS definition, (5) a quasi-Poisson regression 

adjusted for the monthly incidence of VOC over the same period to assess the potential 

fraction of the change in ACS incidence associated with VOC, (6) a quasi-Poisson regression 

model including harmonic terms with 3-, 6-, and 12-month periods to explore potential non-

yearly seasonal patterns, and (7) a quasi-Poisson regression model excluding highly correlated 

covariates that could adversely affect multiple regression results. We identified such 

multicollinearity using a correlation matrix and the generalized variance inflation factor 

(VIF).31,32 

All statistical tests were two-sided, with P < .05 considered to be statistically significant. 

The validity of the models was assessed by visual inspection of correlograms and analysis of 

the residuals.24 The data were extracted from the PMSI database using SAS version 9.4 (SAS 

Institute, Cary, North Carolina) and statistical analyses performed using R software version 

4.2.1 (R Foundation for Statistical Computing). 

 

Ethics  

Access to the database was requested from and approved by the National Commission 

on Information and Liberty. As it is part of an ongoing continuous mission of public health and 

used anonymous aggregated data for public health purposes, this study did not require ethics 

committee approval or written informed consent based on the 2021 National Data Protection 

Act.33  
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Results 

Characteristics of Hospitalized Children with Sickle-Cell Disease 

Between January 2015 and May 2022, 55,941 hospitalizations of children with SCD 

were included (median [IQR] age, 9 [4-13] years; 28,191 [50.4%] boys). ACS accounted for 

2306 (4.1%) cases (1690 in pre COVID-19 period, 237 during NPIs, and 379 during NPI lifting 

period), pneumonia 730 (1.3%), acute pyelonephritis 651 (1.2%), and VOC 52,254 (93.4%) 

(Table 1). 

 

Changes in ACS Incidence Following the Implementation and Lifting of NPIs 

We observed a significant decrease in ACS incidence after NPI implementation in 

March 2020 (immediate change, -29.5%; 95% CI, -46.8% to -12.2%; P = .001), followed by a 

significant increase after lifting of the NPIs in April 2021 (immediate change, 24.4%; 95% CI, 

7.2% to 41.6%; P = .007; Figure 1). These changes were similar for all age groups. In addition, 

implementation and lifting of NPIs were associated with significant changes in the incidence 

of VOC (Figure 2 and Table 2). The sensitivity analysis hypothesizing a progressive lifting of 

NPIs showed similar results (eTable 4). Correlograms and residuals analysis indicated 

satisfactory quality of the final model (eFigure 3). 

 

Estimated Fraction of ACS Attributable to Respiratory Pathogens 

The evolution of the incidence of respiratory pathogen infections in the general 

population between January 2015 and May 2022, and the demographic characteristics of 

patients are presented in eFigure 4 and eTable 5. After a large decrease following NPIs 

implementation, there was a large rebound of these pathogens following the lifting of NPIs, 

with different timing and a different pattern of increase. The multivariate quasi-Poisson 
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regression model including the 12 respiratory pathogens as explanatory variables showed the 

fraction of ACS potentially attributable to S. pneumoniae to be 30.9% (95% CI, 4.9% to 56.9%; 

P = .02) and that to influenza 6.8% (95% CI, 2.3% to 11.3%; P = .004), whereas that to the other 

respiratory pathogens, including M. pneumoniae, was not significant (Table 3). The sensitivity 

analyses, in particular the model without hRV and H. influenzae to minimalize 

multicollinearity, and the model with combined ACS and pneumonia to explore the potential 

overlap between ACS and pneumonia, showed similar results. Of note, S. pneumoniae was 

correlated with RSV and influenza, without affecting the reliability of the regression model 

(eTables 6-8, eFigure 5). The quality assessment of the models was satisfactory (eFigures 6-7). 

 

Control outcome 

The incidence of acute pyelonephritis per 1000 children with SCD did not significantly 

change after NPI implementation or after the lifting of NPIs (Table 2, eFigure 8), reinforcing 

the link between these interventions and ACS incidence. In addition, the proportion of 

undocumented pneumonia among all hospitalized pneumonia cases in the general population 

remained stable during the study period, limiting the risk of bias due to changes in testing 

practices since the COVID-19 pandemic (eFigure 9).  
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Discussion 

This study is the first to show a sharp decrease in ACS incidence after NPI 

implementation in March 2020 and a subsequent significant rebound after the lifting of NPIs 

in April 2021. These large changes were temporally associated with unprecedented changes 

in respiratory pathogen dynamics, with a potentially attributable fraction of 30% and 7% of 

pediatric ACS for S. pneumoniae and influenza, respectively. 

Before the COVID-19 pandemic, epidemiological studies were unable to identify the 

differential role of respiratory pathogens in ACS because of the considerable temporal overlap 

between them. Therefore, the microorganisms found in individuals hospitalized for ACS were 

solely assessed in microbiological studies. In a prospective case-control analysis of children 

with SCD, Ploton et al. frequently detected respiratory viruses in children with ACS, with a 

predominance of hRV, followed by RSV and hAdV.6 In addition, Vichinsky et al. suggested that 

atypical bacteria prevail in cases of ACS due to infection in a cohort study using microbiological 

samples of children presenting with ACS, whereas S. pneumoniae was found in only 4.5% of 

cases.5 However, the main limitation of microbiological methods is their relative inability to 

accurately differentiate respiratory carriage from infection.34,35,36 After their quasi-

disappearance following the implementation of the COVID-19-related NPIs, respiratory 

pathogens reemerged with different timing and at a different magnitude following 

discontinuation of the NPIs in April 2021, thus making it possible to quantify their involvement 

in ACS. For example, we observed an RSV outbreak that was delayed by three months in 2020-

2021, with a peak that was reduced by half, whereas an unusual surge occurred in December 

2021. Concerning influenza, no outbreak was reported in 2021, whereas a large peak 

appeared in February 2022. Finally, pneumococcal infections have gradually increased since 

April 2021, without reaching the pre COVID-19 incidence. Thus, taking advantage of this 

Jo
urn

al 
Pre-

pro
of



 13 

unique epidemiological scenario of the sequential re-emergence of pathogens after the lifting 

of NPIs and using the strength of a population-based methodology, we estimated that 30% of 

ACS incidence was independently associated with S. pneumoniae and almost 7% with 

influenza. 

This study reinforces the important role of S. pneumoniae and influenza, namely a 

pneumococcal disease-associated virus,37 in driving ACS epidemiology. Indeed, our results are 

in line with a recent time-series analysis that showed a 42% decrease in ACS incidence 

following implementation of the 13-valent pneumococcal conjugate vaccine (PCV13) in 

France, thus suggesting important pneumococcal involvement in childhood ACS.3 Our results 

are also consistent with  those of population-based studies, which suggested that certain 

viruses capable of increasing the virulence of S. pneumoniae, such as RSV and influenza, are 

epidemiologically associated with pneumococcal disease in young children.10,28,38 This 

provides guidance for the prevention and management of ACS, suggesting that optimizing PCV 

and influenza vaccine coverage in children with SCD may be beneficial in this highly vulnerable 

population. Of note, ACS was not temporally associated with M. pneumoniae or C. 

pneumoniae. However, this methodological approach may be less sensitive to explore their 

role in ACS, as these pathogens do not have a strong seasonal pattern. Thus, further studies 

are needed to assess the role of atypical organisms in pediatric ACS to guide recommendations 

for antimicrobial therapy, in particular the systematic use of macrolides.39,40 

The observed high pneumococcal involvement in ACS contrasts with the low 

proportion of pneumococcal-related ACS suggested by microbiological studies.5 Several points 

merit discussion. First, various limitations in terms of the microbiological methods could 

explain their low capacity to accurately estimate the role of S. pneumoniae in ACS. Indeed, as 

in community-acquired pneumonia, blood cultures, pleural puncture, and pneumococcal 
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antigen detection tests in urine are often unsuccessful and microbiological documentation is 

rarely obtained.11,34 Therefore, the population-based approach appears to represent a reliable 

alternative method to estimate the potentially attributable fraction of S. pneumoniae in ACS. 

Second, PCV13 implementation in France was associated with a 42% decrease in the incidence 

of pediatric ACS incidence between 2010 and 2019.3 The role of S. pneumoniae in ACS in the 

remaining 30% of cases from 2015 onwards, despite high PCV13 coverage in children,41 can 

be explained by serotype replacement reported in the nasopharyngeal carriage and in invasive 

pneumococcal disease in the general population42,43 and among children with SCD.44 Third, 

the efficacy of the 23-valent-pneumococcal polysaccharide vaccine (PPSV23) has been 

demonstrated for invasive pneumococcal disease (IPD), but no effect on non-IPD, such as 

pulmonary involvement, has been found.45 This could explain the remaining pneumococcal 

involvement in ACS, despite high PPSV23 coverage in children with SCD, and highlights the 

importance of conjugate-vaccines in preventing ACS. Thus, the preferential use of the next-

generation PCVs46,47 currently being evaluated for approval in children with SCD may 

contribute to further reducing the burden of ACS in children.  

 

Limitations  

Our study had several limitations. First, in this study, we correlated the incidence of 

ACS in children with SCD to the population-level circulation of several respiratory pathogens. 

Thus, as in any observational study, a definitive causal relationship between respiratory 

pathogen epidemiology and ACS incidence could not be established. However, the strong 

decline, followed by a rapid increase, in respiratory pathogen circulation was concomitant 

with the decline and rebound in ACS incidence, strengthening this temporal association. 
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Second, our analysis may have been affected by simultaneous cointerventions 

targeting the same outcome. Thus, we cannot exclude changes in testing practices since the 

COVID-19 pandemic.48 However, the proportion of undocumented pneumonia cases among 

all hospitalized children with pneumonia in the general population remained stable over the 

study period, limiting this risk of bias. Similarly, we cannot exclude a decreased healthcare 

utilization in patients with SCD during the NPI period, which could explain the decrease in 

hospitalized ACS and VOC. However, the incidence of a control outcome, acute pyelonephritis 

in children with SCD, did not significantly change over the study period. Finally, the indication 

of hydroxyurea and the PCV13 vaccine uptake were unchanged during the study period, 

limiting the risk of bias related to these potential cofounders. 

Third, we used a hospital-based surveillance system to assess the circulation of 

respiratory pathogens in children over time, which may not be exhaustive. However, it has  

previously been shown that hospital admission rates for respiratory viral infections in children 

were correlated with data from ambulatory observatories and laboratory-based surveillance 

networks in France before and during the COVID-19 pandemic.10,49 

Fourth, clinical overlap between ACS and pneumonia in children with SCD can occur.3 

To account for this potential misclassification, we conducted sensitivity analyses combining 

ACS and pneumonia and excluding the ICD-10 code for pneumonia (J189) from the ACS 

definition, leading to similar results. 

Fifth, a substantial proportion of ACS cases remains unexplained in this analysis. Other 

factors not included in our model as explanatory variables, such as environmental parameters, 

may have also played a role in ACS epidemiology, especially other factors that could affect the 

incidence of VOC (i.e., less exposure to cold, stopping physical activity, increasing rest). 

Further studies are therefore needed to assess other potential causes of ACS. Moreover, the 
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respective share of vaso-occlusion and infection in the onset of ACS is difficult to determine, 

in particular, as these phenomena are closely interrelated.5 We cannot exclude that the 

decrease in ACS incidence could be partially related to the decrease in VOC frequency, which 

was also affected by the changes in respiratory pathogen dynamics. However, the sensitivity 

analysis adjusted for VOC gave similar results. 

Finally, pneumococcal infections can be induced by respiratory viruses, namely RSV 

infection.28 This interaction could have biased the association between RSV and ACS incidence 

in our study, thus masking RSV involvement in ACS. Further studies are needed to explore the 

specific role of RSV in triggering ACS.  
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Interpretation 

During the COVID-19 pandemic, the incidence of ACS significantly decreased after NPI 

implementation in March 2020 and rebounded after the lifting of NPIs in April 2021, 

concomitantly with unprecedented changes in respiratory pathogen dynamics. We took 

advantage of this unique epidemiological scenario to untangle the contribution of numerous 

respiratory pathogens, highlighting the key role of S. pneumoniae and influenza in childhood 

ACS. These results could guide further public health interventions targeting these pathogens, 

such as next generation PCVs and influenza vaccines, to further reduce the burden of ACS in 

children with SCD.  
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Take Home Points 

STUDY QUESTION. What are the respective contributions of the main respiratory pathogens 

in pediatric acute chest syndrome (ACS) epidemiology? 

RESULTS. This time-series analysis of a prospective national surveillance from 2015 to 2022 

shows that Streptococcus pneumoniae accounted for 30.9% of ACS incidence, and influenza 

6.8%, while other respiratory pathogens had a minor role.  

INTERPRETATION. We showed the high contribution of S. pneumoniae and influenza to the 
burden of childhood ACS, highlighting the potential benefit of vaccine prevention in this 
vulnerable population.  
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Table 1. Baseline Characteristics of Hospitalizations of Children with Sickle-Cell Disease by 
Discharge Diagnosis, January 2015 to May 2022. 

The median age and duration of stay are presented as medians (IQR), and categorical data (number 
of cases, sex, recurrence, hospital death) as numbers (%). 
a defined by >1 hospitalization in a child. Recurrent ACS episodes occurred in 29 (1.7%), 2 (0.8%), and 
16 (4.2%) children during the pre COVID-19, the NPI, and the NPI lifting periods, respectively. 
Abbreviations: ACS, acute chest syndrome; VOC, vaso-occlusive crisis.  

Characteristics 

Children, No. (%) 

ACS Pneumonia 
Acute 
pyelonephritis VOC Total cases 

No. of cases 2306 (4.1) 730 (1.3) 651 (1.2) 52 254 (93.4) 55 941 
Age, median (IQR), years 9 (5-13) 4 (2-7) 1 (0.9-7) 9 (4-13) 9 (4-13) 
Sex 
    Boys 1289 (55.9) 387 (53.0) 305 (46.9) 26 210 (50.2) 28 191 (50.4) 
    Girls 1017 (44.1) 343 (47.0) 346 (53.1) 26 044 (49.8) 27 750 (49.6) 
Duration of stay, median (IQR), days 7 (4-10) 4 (3-7) 4 (3-6) 3 (1-5) 3 (1-5) 
Recurrencea 47 (2.0) 14 (1.9) 21 (3.2) 1930 (3.7) 2012 (3.6) 
Hospital death 10 (0.4) 1 (0.1) 0 43 (0.1) 54 (0.1) 
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Figure 1. Association of NPI Implementation and Lifting with the Monthly Incidence of ACS 
per 1000 Children with SCD 

  
The black line shows the observed data. The blue line shows the model estimates based on observed 
data using the quasi-Poisson regression model. The red and orange dotted lines show the expected 
values without NPI implementation and NPI lifting, respectively, using the same quasi-Poisson model. 
The dotted vertical lines indicate the NPI implementation in March 2020 and the lifting of NPIs in April 
2021.  
Abbreviations: NPIs, non-pharmaceutical interventions; ACS, acute chest syndrome; SCD, sickle-cell 
disease.  
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Figure 2. Association of NPI Implementation and Lifting with the Monthly Incidence of 
a) pneumonia per 1000 Children with SCD 
b) VOC per 1000 Children with SCD 

 

The black line shows the observed data. The blue line shows the model estimates based on observed 
data using the quasi-Poisson regression model. The red and orange dotted lines show the expected 
values without NPI implementation and NPI lifting, respectively, using the same quasi-Poisson model. 
The dotted vertical lines indicate the NPI implementation in March 2020 and the NPI lifting in April 
2021.  
Abbreviations: NPIs, non-pharmaceutical interventions; VOC, vaso-occlusive crisis; SCD, sickle-cell 
disease.  
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Table 2. Association of the Implementation and Lifting of NPIs with the Monthly Incidence 
of ACS per 1000 Children with Sickle-Cell Disease 

a NPI implementation was in March 2020 
b Lifting of NPIs was in April 2021  
c Monthly incidence expressed as the number of cases per 1000 children with SCD. 
d Analysis by quasi-Poisson regression. 
Abbreviations: ACS, acute chest syndrome; NPIs, non-pharmaceutical interventions; VOC, vaso-
occlusive crisis.  

Outcome 

NPI implementationa NPI liftingb 
 

Immediate change, % 
(95% CI) 

P value for 
immediate 
change 

Immediate change, 
% (95% CI) 

P value for 
immediate 
change 

Monthly incidence of ACS per 1000 children with SCDc,d -29.5 (-46.8 to -12.2) .001 24.4 (7.2 to 41.6) .007 
Monthly incidence of ACS by age group, yearsc,d     
    0-5 -21.3 (-58.7 to 16.0) .27 32.9 (-8.2 to 73.9) .12 
    6-10 -33.9 (-61.4 to -6.5) .02 25.7 (-1.7 to 53.1) .07 
    11-14 -40.9 (-71.9 to -9.8) .01 18.5 (-8.6 to 45.7) .18 
    15-17 -26.1 (-56.1 to 12.8) .22 15.0 (-18.4 to 48.5) .38 
Secondary outcomesc,d      
    Monthly incidence of pneumonia per 1000 children with SCD -55.7 (-84.2 to -27.3) < .001 18.2 (-22.9 to 59.3) .39 
    Monthly incidence of VOC per 1000 children with SCD -33.7 (-40.3 to -27.0) < .001 11.0 (3.0 to 19.0) .01 
Control outcomec,d     
    Monthly incidence of acute pyelonephritis per 1000 children with SCD -14.1 (-62.9 to 34.8) .57 1.6 (-4.7 to 8.0) .62 
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Table 3. Estimated Fraction of ACS in Children with Sickle-Cell Disease Attributable to 
Respiratory Pathogens 
 

 Estimated fraction of ACSa 

Respiratory pathogen % (95% CI) P value 

    RSV 6.0 (-1.7 to 13.5) .13 
    Influenza 6.8 (2.3 to 11.3) .004 
    hPIV 10.9 (-0.15 to 22.0) .06 
    hMPV -5.9 (-14.1 to 2.3) .16 
    hAdV -9.9 (-34.9 to 15.1) .44 
    hRV 5.0 (-11.9 to 21.9) .57 
    hEV 6.3 (-7.7 to 20.4) .38 
    SARS-CoV-2b 2.9 (-7.1 to 13.0) .57 
    Streptococcus pneumoniae 30.9 (4.9 to 56.9) .02 
    Haemophilus influenzae  3.5 (-22.1 to 29.2) .79 
    Mycoplasma pneumoniae -6.5 (-20.7 to 7.8) .38 
    Chlamydia pneumoniae -3.3 (-11.6 to 5.0) .44 

 
a Analysis by seasonally-adjusted quasi-Poisson regression model  
b Analysis including the COVID-19 period only (April 2020 to May 2022) 

Abbreviations: ACS, acute chest syndrome; RSV, respiratory syncytial virus; hPIV, human parainfluenza 

virus; hMPV, human metapneumovirus; hAdV, human adenovirus; hRV, human rhinovirus; hEV, 

human enterovirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. 

Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Declaration of interests 
  

☐ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  

☒ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

Naim Ouldali reports a relationship with GSK, Pfizer, and Sanofi that includes: travel reimbursement. 
Alexis Rybak reports a relationship with Pfizer and AstraZeneca that includes: travel reimbursement, 
and a relationship with MSD that includes: speaking and lecture fees. Astrid Vabret reports a 
relationship with Sanofi, Moderna, and GSK that includes: speaking and lecture fees, and a relationship 
with MSD that includes: travel reimbursement. Robert Cohen reports a relationship with Sanofi, GSK, 
and MSD that includes: speaking and lecture fees, and with Pfizer that includes: consulting or advisory, 
funding grants, speaking and lecture fees, and travel reimbursement. Francois Angoulvant reports a 
relationship with Pfizer, Sanofi, GSK and MSD that includes: consulting or advisory. Emmanuelle Varon 
reports a relationship with Santé Publique France, Pfizer, and MSD that includes: funding grants. 

 

Jo
urn

al 
Pre-

pro
of



 1 

Supplementary Materials 

 

 
eTable 1. Clinical Diagnoses for Acute Diseases in Children with SCD, Defined by ICD-10 Code 

Combinations 

Hb, hemoglobin, ICD, International Classification of Diseases, SCD, sickle-cell disease. 

 

 
 

 

 

eFigure 1. Number of Children < 18 Years of Age with SCD Living in France Over Time 

 

 
Data provided by the National Health Insurance Scheme database (https://assurance-maladie.ameli.fr/etudes-et-

donnees/prevalence-beneficiaires-ald-2019). 

SCD, sickle-cell disease   
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Diagnosis 

 

ICD-10 code combinations 

 

Acute chest syndrome 

 

D570 (Hb-SS disease with crisis)  

or D572 (Sickle-cell/Hb-C disease) 
and 

J960 (acute respiratory failure)  

or J189 (pneumonia, unspecified organism)  

or I269 (pulmonary embolism without acute pulmonary heart disease) 

Pneumonia with SCD D571 or D578 and 

J13 (pneumonia due to Streptococcus pneumoniae)  

or J159 (unspecified bacterial pneumonia)  

or J18 (pneumonia, unspecified organism)  

or J180 (bronchopneumonia, unspecified organism)  

or J181(lobar pneumonia, unspecified organism)  

or J189 (pneumonia, unspecified organism)  

or J851 (abscess of lung with pneumonia)  

or J90 (pleural effusion, not elsewhere classified)  

Acute pyelonephritis with SCD D570 or D571 or D572 or D578  and 
N10 (acute pyelonephritis)  

or N136 (pyonephrosis) 

Vaso-occlusive crisis D570 or D572 and  

 

no diagnosis for other acute SCD 
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eTable 2. ICD-10 Codes for Respiratory Pathogens in the General Population 

RSV, respiratory syncytial virus; hPIV, human parainfluenza virus; hMPV, human metapneumovirus; hAdV, 

human adenovirus; hRV, human rhinovirus; hEV, human enterovirus; SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; S. pneumoniae, Streptococcus pneumoniae; H. influenzae, Haemophilus influenzae; M. 

pneumoniae, Mycoplasma pneumoniae; C. pneumoniae, Chlamydia pneumoniae.  

Diagnosis 

 

ICD-10 code 

 

Label 

 

RSV 

J121 Respiratory syncytial virus pneumonia 

J205 Acute bronchitis due to respiratory syncytial virus 

J210 Acute bronchiolitis due to respiratory syncytial virus 

Influenza 

J10 Influenza due to other identified influenza virus 

J100 Influenza due to other identified influenza virus with pneumonia 

J101 
Influenza due to other identified influenza virus with other respiratory 

manifestations 

J108 Influenza due to other identified influenza virus with other manifestations 

hPIV 
J122 Parainfluenza virus pneumonia 

J204 Acute bronchitis due to parainfluenza virus 

hMPV J123 Human metapneumovirus pneumonia 

hAdV 

J120 Adenoviral pneumonia 

A082 Adenoviral enteritis 

A851 Adenoviral encephalitis 

B340 Adenovirus infection, unspecified 

hRV J206 Acute bronchitis due to rhinovirus 

hEV 

A850 Enteroviral encephalitis 

A870 Enteroviral meningitis 

A880 Enteroviral exanthematous fever 

B085 Enteroviral vesicular pharyngitis 

B341 Enterovirus infection, unspecified 

B971 Unspecified enterovirus as the cause of diseases classified elsewhere 

SARS-CoV-2 
U0714 COVID-19, other clinical forms, virus identified 

U0710 COVID-19, respiratory form, virus identified 

S. pneumoniae 

A403 Sepsis due to Streptococcus pneumoniae 

G001 Pneumococcal meningitis 

J13 Pneumonia due to Streptococcus pneumoniae 

H. influenzae J14 Pneumonia due to Hemophilus influenzae 

M. pneumoniae 
J157 Pneumonia due to Mycoplasma pneumoniae 

A493 Mycoplasma infection, unspecified site 

C. pneumoniae J160 Chlamydial pneumonia 

Undocumented pneumonia 

J18 Pneumonia, unspecified organism 

J180 Bronchopneumonia, unspecified organism 

J181 Lobar pneumonia, unspecified organism 

J188 Other pneumonia, unspecified organism 

J189 Pneumonia, unspecified organism 

J159 Unspecified bacterial pneumonia 
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 3 

eFigure 2. Number of Children < 18 years Living in France Over Time 

 

 
Data provided by National Institute for Statistics and Economic Studies 

(https://www.insee.fr/fr/statistiques/series/103088458).  

 

 

 

 

eTable 3: Main Non-Pharmaceutical Interventions Implemented in France Against the Spread of SARS-

CoV-2 During the Study Period 

Non-Pharmaceutical Interventions Start and end dates 

Stay at home orders 

General order (lockdown) 03/17/2020 to 05/11/2020 

10/29/2020 to 12/14/2020 

Partial order (curfew)  05/12/2020 to 06/02/2020 

10/17/2020 to 10/28/2020 

12/15/2020 to 06/20/2021 

Physical distancing   

Public gathering restrictions 03/17/2020 to 06/15/2020 

10/19/2020 to 05/18/2021 

Closure of public spaces 03/16/2020 to 06/01/2020 

10/28/2020 to 05/18/2021 

Closure of educational institutions 

Total closure of higher education 10/27/2020 to 01/24/2021 

Partial closure of higher education 03/16/2020 to 06/22/2020 

01/25/2021 to 09/03/2021 

Total closure of secondary schools 03/16/2020 to 05/10/2020 

04/06/2021 to 05/02/2021 

Partial closure of secondary schools 05/11/2020 to 06/22/2020 

Total closure of primary schools 04/06/2021 to 04/26/2021 

Partial closure of primary schools 06/16/2020 to 06/22/2020 

Total closure of daycare or nursery 03/16/2020 to 06/01/2020 

04/06/2021 to 04/26/2021 

Partial closure of daycare or nursery 06/02/2020 to 06/22/2020 

Workplace measures  03/17/2020 to 05/11/2020 

10/28/2020 to 06/08/2021 

Mandatory wear of protective mask 

In all spaces 10/28/2020 to 06/16/2021 

In closed spaces 07/20/2020 to 10/28/2020 

06/17/2021 to 03/14/2022 

Indoor transports  05/11/2020 to 07/19/2020 

03/15/2022 to 05/15/2022 

In health care facilities  05/16/2022 ongoing 

Data provided by the European Centre for Disease Prevention and Control. Data on country response measures 

to COVID-19 (https://www.ecdc.europa.eu/en/publications-data/download-data-response-measures-covid-19).  
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eTable 4. Sensitivity Analysis for the Association of the Implementation and Progressive Lifting of NPIs 

with the Monthly Incidence of ACS per 1000 Children with Sickle-Cell Disease 

 

a NPI implementation was in March 2020 
b Lifting of NPIs was starting progressively from April 2021  
c Monthly incidence expressed as the number of cases per 1000 children with SCD. 
d Analysis by quasi-Poisson regression. 

Abbreviations: NPIs, non-pharmaceutical interventions 

 

 

 

 

 

eFigure 3. Correlograms and Residuals Analysis of the Final Quasi-Poisson Regression Model for the 

Monthly Incidence of ACS per 1,000 Children with SCD 

 

To assess the quality of the Quasi-Poisson model, we used correlograms (autocorrelation and partial 

autocorrelation functions which measure the linear relationship between lagged values of a time series) and 

residuals analysis. Inspection of the correlograms relies on identifying remaining autocorrelation or seasonal 

pattern of the residuals. The significance of any remaining autocorrelation or seasonality is defined by a correlation 

higher than +1.96 standard error or lower than -1.96 standard error for each lag of the time series. We checked 

whether the residuals of the models were normally distributed and had a constant variance over time. The 

correlograms were satisfactory (no remaining autocorrelation nor seasonal pattern of the residuals)” 

ACF, autocorrelation function.  

Outcome 

NPI implementationa NPI liftingb 

 

Immediate change, 

% (95% CI) 

P value for 

immediate 

change 

Progressive change, 

% (95% CI) 

P value for 

progressive 

change 

Monthly incidence of ACS per 1000 children with SCDc,d 

 

-29.6 (-47.1 to -12.2) .001 27.9 (1.1 to 54.7) .04 
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eFigure 4. Monthly Incidence of Hospitalizations for Respiratory Infections in the General French 

Pediatric Population (< 18 years) Over Time, by Pathogen, January 2015 to May 2022 
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 6 

  

  

  
The black line shows the observed data. The dotted vertical lines indicate the NPIs implementation in March 2020 

and the NPIs lifting in March 2021. RSV, respiratory syncytial virus; hPIV, human parainfluenza virus; hMPV, 

human metapneumovirus; hAdV, human adenovirus; hRV, human rhinovirus; hEV, human enterovirus; SARS-

CoV-2, severe acute respiratory syndrome coronavirus 2; S. pneumoniae, Streptococcus pneumoniae; H. 

influenzae, Haemophilus influenzae; M. pneumoniae, Mycoplasma pneumoniae; C. pneumoniae, Chlamydia 

pneumoniae.  
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eTable 5. Baseline Characteristics of Hospitalizations for Respiratory Infections in the General French 

Pediatric Population (age < 18 years), January 2015 to May 2022 

Respiratory pathogens  No. of cases Age, median (IQR), y 
Duration of stay, 

median (IQR), d 
Hospital death (%) 

RSV 158,660 0.24 (0.12-0.54) 4 (2-6) 122 (0.001) 

Influenza 50,901 2 (0.85-5) 2 (1-3) 154 (0.003) 

hPIV 1695 1 (0.42-3) 4 (2-9) 24 (0.01) 

hMPV 1841 2 (0.88-3) 5 (3-8) 20 (0.01) 

hAdV 17,983 1 (0.44-2) 2 (2-4) 85 (0.005) 

hRV 8194 0.98 (0.22-3) 4 (2-8) 73 (0.009) 

hEV 31,357 1 (0.13-4) 3 (2-4) 67 (0.002) 

SARS-CoV-2 28,975 1 (0.18-7) 2 (1-3) 78 (0.003) 

S. pneumoniae 7946 2 (0.88-5) 4 (2-9) 130 (0.02) 

H. influenzae 3807 2 (0.62-8) 7 (3-14) 87 (0.02) 

C. pneumoniae 251 4 (1-10) 4 (2-7) 2 (0.008) 

M. pneumoniae 7788 5 (3-9) 3 (2-5) 10 (0.001) 

Undocumented pneumonia 124,195 2 (1-5) 3 (2-5) 572 (0.46) 

RSV, respiratory syncytial virus; hPIV, human parainfluenza virus; hMPV, human metapneumovirus; hAdV, 

human adenovirus; hRV, human rhinovirus; hEV, human enterovirus; SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; S. pneumoniae, Streptococcus pneumoniae; H. influenzae, Haemophilus influenzae; M. 

pneumoniae, Mycoplasma pneumoniae; C. pneumoniae, Chlamydia pneumoniae.   
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eTable 6. Sensitivity Analyses for the Estimated Fraction of ACS Potentially Attributable to Respiratory Pathogens 
 

 Estimated fraction of ACS 

Model with combined ACS 

and pneumoniaa 

Model with J189 excluded 

from ACS definitiona 

Model with I269 excluded 

from ACS definitiona 

Model adjusted for the 

monthly incidence of VOCa 

Model without highly 

correlated covariatesa,b 

Model with 3- 6- and 12-

month periods seasonalitya 

Respiratory 

pathogen 

% (95% CI) P value % (95% CI) P value % (95% CI) P value % (95% CI) P value % (95% CI) P value % (95% CI) P value 

    RSV 5.7 (-1.7 to 13.2) .13 4.4 (-5.8 to 14.7) .40 5.8 (-1.9 to 13.6) .15 7.2 (-0.66 to 15.0)  .08 6.2 (-1.2 to 13.6) .11 6.0 (-2.0 to 14.0) .15 

    Influenza 4.5 (0.2 to 8.9) .04† 8.0 (1.8 to 14.1) .01† 6.5 (2.1 to 11.0) .007† 6.5 (2.0 to 11.1) .006† 6.8 (2.4 to 11.2) .004† 6.5 (1.9 to 11.1) .007† 

    hPIV 12.3 (1.8 to 22.8) .02† 18.8 (3.5 to 34.1) .02† 10.4 (-0.78 to 21.5) .07 10.8 (-0.24 to 21.9) .06 11.1 (0.18 to 21.9) .05 10.9 (-0.37 to 22.3) .06 

    hMPV -7.9 (-15.7 to -0.10) .05† -12.3 (-23.4 to -1.1) .03† -5.9 (-14.2 to 2.3) .16 -5.7 (-13.9 to 2.5) .18 -5.5 (-13.3 to 2.4) .18 -6.2 (-14.5 to 2.1) .15 

    hAdV -5.3 (-29.6 to 18.9) .67 -7.5 (-41.6 to 26.5) .67 -9.5 (-34.8 to 15.8) .47 -10.8 (-35.7 to 14.1) .40 -8.3 (-31.4 to 14.9) .49 -11.7 (-37.0 to 13.6) .37 

    hRV 0.67 (-15.2 to 16.5) .93 13.1 (-10.2 to 36.4) .27 5.3 (-11.8 to 22.3) .55 5.6 (-11.4 to 22.6) .52 .  5.2 (-12.1 to 22.4) .56 

    hEV 8.6 (-4.9 to 22.1) .22 -0.40 (-19.1 to 18.3) .97 6.2 (-7.9 to 20.4) .39 4.0 (-10.4 to 18.4) .58 8.4 (-3.9 to 20.7) .19 7.8 (-6.8 to 22.5) .30 

    SARS-CoV-2c 0.10 (-9.4 to 9.6) .98 4.4 (-9.1 to 18.0) .52 1.1 (-8.9 to 11.1) .83 3.6 (-6.4 to 13.7) .48 2.6 (-7.3 to 12.4) .57 4.2 (-6.3 to 14.6) .44 

    S. pneumoniae 43.7 (18.0 to 69.5) .001† 41.6 (5.1 to 78.1) .03† 31.2 (4.9 to 57.5) .02† 22.3 (-5.6 to 50.1) .12 34.4 (11.3 to 57.5) .005† 34.1 (6.8 to 61.4) .02† 

    H. influenzae  3.3 (-21.1 to 27.7) .79 7.1 (-27.8 to 42.1) .69 5.2 (-20.9 to 31.4) .69 3.1 (-22.5 to 28.6) .81 .  4.3 (-22.0 to 30.5) .75 

    M. pneumoniae 1.3 (-12.7 to 15.2) .89 -0.98 (-20.2 to 18.2) .92 -8.4 (-22.7 to 6.0) .26 -6.1 (-20.4 to 8.2) .41 -7.4 (-20.8 to 6.1) .29 -6.2 (-20.6 to 8.3) .41 

    C. pneumoniae -2.0 (-9.9 to 5.9) .62 -12.6 (-23.2 to -2.1) .02† -3.0 (-11.4 to 5.5) .49 -2.7 (-11.0 to 5.6) .53 -3.1 (-11.3 to 5.1) .46 -3.1 (-11.5 to 5.4) .48 
 

a Analysis by seasonally-adjusted quasi-Poisson regression model 
b Model excluding the following highly correlated covariates: rhinovirus and Haemophilus influenzae 
c Analysis including the COVID-19 period only (April 2020 to May 2022) 
† Statistically significant  

Abbreviations: ACS, acute chest syndrome; SCD, sickle-cell disease; VOC, vaso-occlusive crisis; RSV, respiratory syncytial virus; hPIV, human parainfluenza virus; hMPV, 

human metapneumovirus; hAdV, human adenovirus; hRV, human rhinovirus; hEV, human enterovirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; S. 

pneumoniae, Streptococcus pneumoniae; H. influenzae, Haemophilus influenzae; M. pneumoniae, Mycoplasma pneumoniae; C. pneumoniae, Chlamydia pneumoniae. 
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eTable 7. Variance Inflation Factors (VIF) of the Final Quasi-Poisson Regression Model 
 

Respiratory pathogen GVIF Df GVIF^(1/(2*Df)) 

RSV 5.361531 1 2.315498 

Influenza 2.952271 1 1.718217 

hPIV 3.113611 1 1.764543 

hMPV 4.820405 1 2.195542 

hAdV 5.012884 1 2.238947 

hRV 5.290792 1 2.300172 

hEV 3.868910 1 1.966954 

SARS-CoV-2 3.072347 1 1.752811 

S. pneumoniae  5.114230 1 2.261466 

H. influenzae 6.956956 1 2.637604 

C. pneumoniae 1.915031 1 1.383846 

M. pneumoniae 3.361602 1 1.833467 
 

GVIF, generalized variance inflation factor; Df, degree of freedom; RSV, respiratory syncytial virus; hPIV, human 

parainfluenza virus; hMPV, human metapneumovirus; hAdV, human adenovirus; hRV, human rhinovirus; hEV, 

human enterovirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; S. pneumoniae, Streptococcus 

pneumoniae; H. influenzae, Haemophilus influenzae; M. pneumoniae, Mycoplasma pneumoniae; C. pneumoniae, 

Chlamydia pneumoniae.  

 

 

 

eTable 8. Variance Inflation Factors of the Quasi-Poisson Regression Model Without Highly Correlated 

Covariates (H. influenzae and hRV) 
 

Respiratory pathogen GVIF Df GVIF^(1/(2*Df)) 

RSV 5.206312 1 2.281735 

Influenza 2.917739 1 1.708139 

hPIV 3.064941 1 1.750697 

hMPV 4.540092 1 2.130749 

hAdV 4.338515 1 2.082910 

hEV 2.993342 1 1.730128 

SARS-CoV-2 3.010997 1 1.735223 

S. pneumoniae  4.025046 1 2.006252 

C. pneumoniae 1.898446 1 1.377841 

M. pneumoniae 3.044670 1 1.744898 
 

GVIF, generalized variance inflation factor; Df, degree of freedom; RSV, respiratory syncytial virus; hPIV, human 

parainfluenza virus; hMPV, human metapneumovirus; hAdV, human adenovirus; hRV, human rhinovirus; hEV, 

human enterovirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; S. pneumoniae, Streptococcus 

pneumoniae; H. influenzae, Haemophilus influenzae; M. pneumoniae, Mycoplasma pneumoniae; C. pneumoniae, 

Chlamydia pneumoniae.  
 

 

 

eFigure 5. Correlation Matrix  

  
RSV, respiratory syncytial virus; hPIV, human parainfluenza virus; hMPV, human metapneumovirus; hAdV, 

human adenovirus; hRV, human rhinovirus; hEV, human enterovirus; SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; S. pneumoniae, Streptococcus pneumoniae; H. influenzae, Haemophilus influenzae; M. 

pneumoniae, Mycoplasma pneumoniae; C. pneumoniae, Chlamydia pneumoniae.   
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eFigure 6. Correlograms and Residuals Analysis of the Quasi-Poisson Model for the Estimated Fraction of 

ACS Attributable to Respiratory Pathogens.  

 
To assess the quality of the Quasi-Poisson model, we used correlograms (autocorrelation and partial 

autocorrelation functions which measure the linear relationship between lagged values of a time series) and 

residuals analysis. Inspection of the correlograms relies on identifying remaining autocorrelation or seasonal 

pattern of the residuals. The significance of any remaining autocorrelation or seasonality is defined by a correlation 

higher than +1.96 standard error or lower than -1.96 standard error for each lag of the time series. We checked 

whether the residuals of the models were normally distributed and had a constant variance over time. The 

correlograms were satisfactory (no remaining autocorrelation nor seasonal pattern of the residuals)” 

ACF, autocorrelation function. 

 

 

eFigure 7. Correlograms and Residuals Analysis of the Sensitivity Analyses 
 

a) Quasi-Poisson regression model with combined ACS and pneumonia 

 
ACF, autocorrelation function.  
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b) Quasi-Poisson model with the ICD-10 code J189 (i.e. “pneumonia, unspecified organism”) excluded from 

ACS definition 

 
ACF, autocorrelation function. 

 

 
 

 

 

c) Quasi-Poisson regression model adjusted for the monthly incidence of VOC 

 
VOC, vaso-occlusive crisis; ACF, autocorrelation function.  
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d) Model without highly correlated covariates (H. influenzae and hRV) 

 
H. influenzae, Haemophilus influenzae; hRV, human rhinovirus; ACF, autocorrelation function. 

 

 

 

 
 

e) Quasi-Poisson regression model with 3- 6- and 12-month periods seasonality 

 
To assess the quality of the Quasi-Poisson model, we used correlograms (autocorrelation and partial 

autocorrelation functions which measure the linear relationship between lagged values of a time series) and 

residuals analysis. Inspection of the correlograms relies on identifying remaining autocorrelation or seasonal 

pattern of the residuals. The significance of any remaining autocorrelation or seasonality is defined by a correlation 

higher than +1.96 standard error or lower than -1.96 standard error for each lag of the time series. We checked 

whether the residuals of the models were normally distributed and had a constant variance over time. The 

correlograms were satisfactory (no remaining autocorrelation nor seasonal pattern of the residuals)” 

ACF, autocorrelation function.  
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eFigure 8. Association of NPIs Implementation and Lifting with the Monthly Incidence of acute 

pyelonephritis per 1000 Children with SCD, January 2015 to May 2022 

 
The black line shows the observed data. The blue line shows the model estimates based on observed data using 

the quasi-Poisson regression model. The red and orange dotted lines show the expected values without NPIs 

implementation and NPIs lifting, respectively, using the same quasi-Poisson model. The dotted vertical lines 

indicate the NPIs implementation in March 2020 and the NPIs lifting in April 2021.  

Abbreviations: NPIs, non-pharmaceutical interventions; SCD, sickle-cell disease. 

 

 

 

eFigure 9. Proportion of Undocumented Pneumonia Among All Pneumonia in the General Population 

Over Time, January 2015 to May 2022 

 

The black line shows the observed data. The dotted vertical lines indicate the NPIs implementation in March 

2020 and the NPIs lifting in April 2021. 
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