
HAL Id: hal-04138792
https://normandie-univ.hal.science/hal-04138792

Submitted on 18 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Side-Channel Attack against Classic McEliece when
loading the Goppa Polynomial.

Boly Seck, Pierre-Louis Cayrel, Vlad-Florin Dragoi, Idy Diop, Morgan
Barbier, Jean Belo Klamti, Vincent Grosso, Brice Colombier

To cite this version:
Boly Seck, Pierre-Louis Cayrel, Vlad-Florin Dragoi, Idy Diop, Morgan Barbier, et al.. Side-Channel
Attack against Classic McEliece when loading the Goppa Polynomial.. Progress in Cryptology -
AFRICACRYPT, 14064, Springer Nature Switzerland; Springer Nature Switzerland, pp.105-125, 2023,
Lecture Notes in Computer Science, �10.1007/978-3-031-37679-5_5�. �hal-04138792�

https://normandie-univ.hal.science/hal-04138792
https://hal.archives-ouvertes.fr

A Side-Channel Attack against Classic McEliece
when loading the Goppa Polynomial

Boly Seck1,2[0000−0002−2362−601X], Pierre-Louis Cayrel2[0000−0002−6708−868X],
Vlad-Florin Dragoi3[0000−0002−8673−9097], Idy Diop1[0000−0002−9143−196X],

Morgan Barbier4, Jean Belo Klamti5[0000−0001−9231−1129], Vincent
Grosso2[0000−0002−3874−7527], and Brice Colombier2[0000−0002−6028−3028]

1 ESP, Laboratoire d’imagerie médicale et de Bio-informatique,
Dakar, Sénégal

seck.boly@ugb.edu.sn

idy.diop@esp.sn
2 Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516,

F-42023, Saint-Etienne, France
{pierre.louis.cayrel,vincent.grosso,b.colombier}@univ-st-etienne.fr

3 Faculty of Exact Sciences, Aurel Vlaicu University, Arad, Romania
vlad.dragoi@uav.ro

4 ENSICAEN, Groupe de recherche en informatique et instrumentation de Caen,
CNRS, Boulevard Maréchal Juin 14 000, Caen, France

morgan.barbier@ensicaen.fr
5 Department of Electrical & Computer Engineering, University of Waterloo

jbklamti@uwaterloo.ca

Abstract. The NIST Post-Quantum Cryptography (PQC) standardiza-
tion challenge was launched in December 2016 and recently, has released
its first results. The whole process has given a considerable dynamic to
the research in post-quantum cryptography, in particular to practical as-
pects, such as the study of the vulnerabilities of post-quantum algorithms
to side-channel attacks. In this paper, we present a realistic template at-
tack against the reference implementation of Classic McEliece which is a
finalist of the 4th round of NIST PQC standardization. This profiled at-
tack allowed us to accurately find the Hamming weight of each coefficient
of the Goppa polynomial. With only one decryption, this result enables
us first, to find directly the Goppa polynomial in the case of weak keys
with the method of Loidreau and Sendrier (P. Loidreau and N. Sendrier,
”Weak keys in the McEliece public-key cryptosystem”, IEEE Trans. Inf.
Theory, 2001). Then, in the case of “slightly less weak keys”, we also find
this polynomial with an exhaustive search with low complexity. Finally,
we propose the best complexity reduction for exhaustive Goppa poly-
nomial search on F2m . We attack the constant-time implementation of
Classic McEliece proposed by Chen et al.. This implementation, which
follows the NIST specification, is realized on a stm32f4-Discovery mi-
crocontroller with a 32-bit ARM Cortex-M4.

Keywords: NIST PQC standardization· Classic McEliece· Side-Channel
Attack· Template Attack· Goppa Polynomial

2 Boly et al.

1 Introduction

In recent years, research on quantum computers has accelerated considerably
[TF19; GI19; Lar+21]. These computers can theoretically solve difficult number
theory problems (the integer factorization problem and the discrete logarithm
problem) in polynomial time [Fey18; DJ92; Gro96; Sho94]. Thus, if large-scale
quantum computers are built, they will be able to break most current asymmetric
systems such as RSA, ECDSA and ECDH. This would severely compromise the
confidentiality and integrity of all digital communications. As a result, the cryp-
tographic community has turned its attention to credible alternatives for dealing
with quantum computing. Thus, in 2016, the National Institute of Standards and
Technology (NIST) announced a call for proposals to standardize post-quantum
cryptography (PQC) primitives [CML17]. This standardization process consists
of several rounds, and only those applicants that best meet NIST’s requirements
in each round are selected to proceed to the next round.

On the fifth of July, 2022, NIST released the first four winning algorithms
(a key establishment algorithm named CRYSTALS-Kyber, and three digital sig-
nature algorithms named CRYSTALS-Dilithium, FALCON, and SPHINCS+).
The first three of these algorithms are based on structured lattices and the last
one, SPHINCS+ is a hash-based signature scheme. These future standards are
expected to be used by default for selecting post-quantum algorithms in many
security products. Provided that these post-quantum algorithms are also com-
bined with proven classical algorithms through hybrid mechanisms. The main
goal of the process started by NIST is to replace three standards that are con-
sidered the most vulnerable to quantum attacks, i.e., FIPS 186-46 (for digital
signatures), NIST SP 800-56A7, and NIST SP 800-56B8(both for keys establish-
ment in public-key cryptography).

Beside the four winners, an extension of the NIST PQC standardization
campaign (4th round) is planned for key establishment algorithms: BIKE, HQC,
Classic McEliece [Cho+20] (all three based on error-correcting codes). Classic
McEliece was the first selected finalist for code-based cryptography as a Key
Encapsulation Mechanism (KEM), while BIKE and HQC were two alternatives.

In addition to defining secure schemes and choosing secure parameters, an
important issue, in the standardization process, is the impact of a scheme’s im-
plementation on its security. A general requirement on the implementation of a
scheme is that the execution time of operations does not vary with the secret in-
formation (e.g., the secret key or plaintext). This is called a constant-time imple-
mentation. However, there are other side-channel attacks beside timing attacks
that can allow an attacker to access secret information. Other side-channels in-
clude power consumption and electromagnetic, photonic, and acoustic emissions.

6 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.PDF
7 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-56Ar2.PDF
8 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-56Br1.PDF

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.PDF

A Side-Channel Attack against Classic McEliece 3

For many PQC systems, it is still unclear which side-channel attacks are feasible
in practice and how to be protected against them. That is why the side-channel
topic has become recurent in the NIST PQC seminar9 [Saa22; Rav+22]. In the
past, code-based cryptosystems were subject to side-channel attacks even before
NIST started the standardisation process [CD10; HMP10; Mol+11; Ava+11;
Che+16]. However, the end of the first round of this challenging process defined
the beggining of a side-channel race for physical security assesment. Indeed,
Classic McEliece KEM oriented attacks appeared in a series of articles, where
either the security of session key or of the private key was investigated [Lah+20;
Cay+21; GJJ22; Col+22a; Sec+22; Gro+23; Col+23]. Here we make another
step in this direction.

Contribution: In this work, we focus on the constant-time implementation of
Classic McEliece which is one of the finalists of the NIST PQC extended cam-
paign. This is a KEM, which is conservatively built from a Public Key Encryption
(PKE) designed for One-way under Chosen-Plaintext Attack (OW-CPA) secu-
rity, namely Niederreiter’s dual version of McEliece’s PKE using Goppa binary
codes, as described in Section 2.2. First, we perform a template attack during
decryption in Classic McEliece to find the Hamming weights of the Goppa poly-
nomial coefficients. Since the Goppa polynomial is loaded from memory during
this step, we were able to track the execution step of the algorithm and mea-
sure the corresponding power consumption. With this information at hand, we
have built a profile for each possible weight and deployed, using a single trace,
our attack. At the end of this step, each weight was detected with an almost
perfect accuracy. Finally, we have used this information to find the Goppa poly-
nomial. In the case of weak keys with binary coefficients, the polynomial was
retrieved directly from the Hamming weight. In the case of “slightly less weak
keys”, we show that in polynomial time one can compute the Goppa polynomial.
Moreover, we have significantly improved the complexity of the best attack to
find the Goppa polynomial on F2m from 21615 to 21174 for m = 13, n = 8192
and t = 128. Finally, we show that our attack is realistic compared to other
side-channel attacks on Classic McEliece.

Organization: The paper is organized as follows: Section 2 provides some back-
ground information on code-based cryptography and briefly describes Classic
McEliece scheme. Section 3 presents a detailed description of our template attack
on the constant-time implementation of Classic McEliece on ARM Cortex-M4
[CC21] to recover the Hamming weights of the Goppa polynomial coefficients.
In Section 4, we use this result to find the Goppa polynomial directly in the case
of weak keys and reduce the complexity of the exhaustive search for the Goppa
polynomial on F2m . Section 5 compares our attack with a recent side-channel
attack of Guo et al. [GJJ22] on Classic McEliece and finally, we conclude this
paper in Section 6.

9 https://csrc.nist.gov/Projects/post-quantum-cryptography/

workshops-and-timeline/pqc-seminars

https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars

4 Boly et al.

2 Theoretical background

2.1 Preliminaries

Let us first recall basic definitions and notations used in coding theory. A linear
code C over Fq is a vector subspace of Fn

q of dimension k and the elements of C
are called codewords. A generator matrix of C is a matrix G ∈ Fk×n

q such that

its lines form a basis of the vector space C such that C = {xG|x ∈ Fk
q}. A parity-

Check matrix is a matrix H ∈ F(n−k)×n
q such that C = {y ∈ Fn

q |HyT = 0}.
To perform error detection and correction, a code C uses a norm, the most

common one being the Hamming weight wt(y) = #{i,yi ̸= 0}. Any linear code
possesses a minimum distance, i.e.,

d(C) = min{wt(c) | c ∈ C, c ̸= 0}. (1)

The majority of structured codes with Hamming distance d can correct any error
e of Hamming weight wt(e) ≤ ⌊(d− 1)/2⌋. This quantity, which we will refer to
as t in the following, refers to the correction capacity of C.

Several families of codes were proposed in the literature as possible solutions
in a cryptographic context such as the McEliece cryptosystem [Sid94; Nie86;
SK14; Mis+13]. However, many of these were completely broken [CB14; Cou+14;
Bar+16; OK15]. The original proposal by McEliece that uses binary Goppa codes
remains unbroken. Thus, we will remind here some properties of Goppa codes
used in Classic McEliece.

Goppa codes

Definition 1 (Goppa code). Let g(x) = gtx
t+ · · ·+g2x

2+g1x+g0 ∈ Fqm [x],
and let L = {α1, α2, ..., αn} ⊆ Fqm such that, g(αi) ̸= 0, for all αi ∈ L. Then
the code defined by

C =

{
(c1, c2, . . . , cn) ∈ Fn

q :

n∑
i=1

ci
x− αi

≡ 0 mod g(x)

}
(2)

is called Goppa code with parameters L and g(x), denoted by Γ (L, g).

For each i, gcd(x − αi, g(x)) = 1 since g(αi) ̸= 0, the value of (x − αi)
−1 is

computed into
Fqm [x]
⟨g(x)⟩ .

Theorem 1. [MS77] The multiplicative of (x−αi) inverse exists in the quotient

ring
Fqm [x]
⟨g(x)⟩ ; the value of (x − αi)

−1 in
Fqm [x]
⟨g(x)⟩ is

(
g(αi)−g(x)

x−αi

)
g(αi)

−1. A vector

c ∈ Γ (L, g) if and only if
∑

i ci

(
g(αi)−g(x)

x−αi

)
g(αi)

−1 ≡ 0 mod g(x).

Using this result, we can derive the following important corollary:

A Side-Channel Attack against Classic McEliece 5

Corollary 1. [MS77] For a Goppa code Γ (L, g), the parity check matrix over
Fqm is

H =

g(α1)

−1 g(α2)
−1 . . . g(αn)

−1

α1g(α1)
−1 α2g(α2)

−1 . . . αng(αn)
−1

...
...

...
...

αt−1
1 g(α1)

−1 αt−1
2 g(α2)

−1 . . . αt−1
n g(αn)

−1

t×n

. (3)

If we consider the elements of Fqm as vectors of length m over Fq by vector
space isomorphism, we have a parity check matrix H for Γ (L, g) over Fq to be a
mt× n matrix, with at least t linearly independent columns over Fq. Therefore,
the Hamming distance of the Goppa code, d(Γ (L, g)) ≥ t+ 1. Since at most mt
rows are linearly independent, Rank(H) ≤ mt therefore, the dimension of the
Goppa code is k ≥ n−mt.

Definition 2 (Primitive polynomial). An irreducible polynomial p(z) of de-
gree m over Fq is called a primitive polynomial if its roots form primitive ele-
ments of Fqm .

Remark 1. The number of irreducible polynomials of degree t with coefficients

in Fqm is approximately qmt

t .

2.2 Code-base cryptography

We briefly present the McEliece cryptosystem [McE78] and its variant, Nieder-
reiter [Nie86], and the KEM Classic McEliece whose implementation on ARM
Cortex-M4 is the target of our attack.

McEliece cryptosystem The McEliece cryptosystem was introduced by Robert
J. McEliece in 1978. The basic idea of this cryptosystem is to use binary Goppa
code (q = 2) with an efficient decoding algorithm that can correct up to t er-
rors. The public key is a matrix G = SG′P where G′ is a generator matrix
of the Goppa code, S (resp. P) is a random k × k non-singular (resp. n × n
permutation) matrix. The code length n, the code dimension k, and the Ham-
ming weight of the error wt(e) = t are public parameters, but the Goppa code
Γ (L, g), matrices S and P are secrets. The encryption works by computing a
code word for the plaintext x using the generator matrix G and by adding an
error e. The ciphertext c̃ is therefore computed as c̃ = xG ⊕ e. The receiver
corrects the error by applying the decoding algorithm with G′ and recovers x.
The security of the system is based on the hardness of decoding a general linear
code, a problem known to be NP−complete [BMVT78].

Niederreiter cryptosystem This cryptosystem is a dual version of the McEliece
cryptosystem. It was published by Harald Niederreiter in 1986. The main differ-
ence between the McEliece and the Niederreiter scheme is that the public key in
Niederreiter’s scheme is a parity check matrix instead of a generator matrix. In

6 Boly et al.

the Niederreiter scheme, the ciphertext is a syndrome c̃ = HeT where the error
vector e is the image of the plaintext x by an encoding function ϕ. Therefore, an
efficient syndrome decoding algorithm is used for decryption. In what follows,
we will focus on the instantiation of Niederreiter using binary Goppa codes as
in Classic McEliece [Cho+20] (see also [BCS13] and [Cho17] for more details).

Classic McEliece Classic McEliece is a code-based a KEM introduced by
Bernstein et al. [Ber+17]. It is composed of three algorithms (key generation,
encapsulation and decapsulation) described below.

Key generation The key pair generation in Classic McEliece is described as
follows:

1. Construct a parity check matrix H ′ for a Goppa code Γ (L, g);
2. Transform H ′ into a mt× n binary matrix H by replacing each F2m-entry

by a m-bit column;
3. Compute the systematic form [Imt|T] ofH and return {g(x), α1, α2, . . . , αn}

as the secret key and T as the public key.

Encapsulation The session key K and its encapsulation are generated as follows:

1. Generate a random e ∈ Fn
2 with wt(e) = t;

2. Compute the matrix H = [Imt|T] by appending T to the identity matrix
Imt and then a vector c̃0 = HeT ;

3. Compute c̃1 = H(2|e) and generate ciphertext c̃ = (c̃0|c̃1), H represents the
hash function SHAKE256;

4. Compute a 256-bit session key K = H(1|e|c̃).

Decapsulation Recovering the session key K ′ from a ciphertext c̃ can be done
as follows:

1. Split c̃ as (c̃0|c̃1), with c̃0 ∈ Fmt
2 and c̃1 ∈ F256

2 ;
2. Use the underlying decoding algorithm for Niederreiter scheme to recover e

such that wt(e) = t and c̃0 = HeT ;
3. Compute c̃′1 = H(2|e), and checks if c̃′1 = c̃1;
4. Compute the session key K ′ = H(1|e|c̃).

If there is no failure at any stage during the decapsulation process and c̃′1 = c̃1,
then surely the session key K ′ will be identical to K. In this scenario, the same
session key is established. Table 1 shows the parameters of Classic McEliece
proposed in[Cho+20] .

The main component of decapsulation in Classic McEliece is inspired by
Chou et al. [Cho17]. This paper presents a fast constant-time implementation
of the “McBits” proposed by Bernstein et al. [BCS13]. They use the FFT (Fast
Fourier Transform) algorithms for root finding and syndrome computation, the
Beneš network algorithm for secret permutation, and bitslicing for low-level op-
erations.

A Side-Channel Attack against Classic McEliece 7

Variant of KEM m n t Sec. level Public key Secret key Ciphertext

mceliece348864 12 3488 64 1 261120 6492 128
mceliece460896 13 4608 96 3 524160 13608 188
mceliece6688128 13 6688 128 5 1044992 13932 240
mceliece6960119 13 6960 119 5 1047319 13948 226
mceliece8192128 13 8192 128 5 1357824 14120 240

Table 1: Parameter sets: sizes of public keys, secret keys and ciphertexts in bytes

3 Template Attack on Classic McEliece

Side-channel attacks are powerful tools for accessing secret information (pass-
words, secret keys, etc.) and pose a threat to cryptographic algorithm implemen-
tations. One of the most powerful techniques for evaluating side-channel infor-
mation, template attack, was presented by Chari, Rao, and Rohatgi in [CRR02].
The general idea of template attacks is to rely on a multivariate model of side-
channel traces to break secure implementations. In this section, we will first give
a theoretical overview of template attacks, then we will show the information
leakage related to the loading function of the coefficients of the Goppa polyno-
mial during the decryption step of Classic McEliece and finally, we will present
our template attack principle and results.

3.1 Template attacks

Multivariate-Gaussian model We consider the case where the electronic
noise at each point of a power trace follows a normal distribution. This power
consumption model does not take into account the correlation between neighbor-
ing points. To take into account this correlation between points, it is necessary
to model a power trace tr as a multivariate normal distribution. The multivari-
ate normal distribution is a generalization of the normal distribution to higher
dimensions. It can be described by a covariance matrix C and a mean vector µ.
The Probability Density Function (PDF) of the multivariate normal distribu-
tion is given below.

PDF (tr; (µ,C)) =
1√

(2π)ℓ × det(C)
exp

(
−1

2
(tr − µ)TC−1(tr − µ)

)
(4)

where ℓ is the number of samples in the power trace tr.
The covariance matrix C essentially characterizes the fluctuations in the

power traces such as electronic noise. However, the multivariate normal distri-
bution can also be used to characterize other components of power consumption.
One of the problems with using the multivariate normal distribution is the cost of
computing the covariance matrix C which grows quadratically with ℓ. Therefore,
in practice, only small parts of the power traces are characterized.

8 Boly et al.

General description Template attacks exploit that the power consumption
also depends on the data that is being processed. In contrast to other types of
power analysis attacks like Simple Power Analysis (SPA)[KJJ99] or Differential
Power Analysis (DPA) [KJJ99]), template attacks consist of two phases. A build-
ing phase, in which the characterization of power consumption takes place, and
a matching phase, in which the characterization is used to determine the secret
information.

In template attack, the power traces can be characterized by a multivariate
normal distribution, which is fully defined by a mean vector µ and covariance
matrix C. This couple (µ,C) is called a template. We can characterize the at-
tacked device to determine the templates of some instruction sequences. In the
building phase, we use another device of the same type as the one being attacked
that we can fully control. On this device, we execute these instruction sequences
with different data di and key kj to record the resulting power consumption.
Then, we aggregate the traces that correspond to a pair of (di, kj), and estimate
µ and C. Thus, we obtain a template h for every pair (di, kj).

hdi,kj
= (µ,C)di,kj

.

As mentioned above the size of the covariance matrix grows quadratically with
the number of points in the trace. The inverse of C, which is needed to compute
the PDF , can be numerically problematic for large ℓ as shown by the authors
in [EPW10]. We need to find a strategy to determine the points that contain
the most information about the characterized instruction. This is called Points
of Interest (POI) and we denote the number of POI by NPOI . There are several
methods to find the POIs, such as the Sum of Differences [RO04] that we will
use in this paper, the Sum Of Squared Differences (SOSD) [GLRP06], the Sig-
nal to Noise Ratio (SNR) [MOP08], the Principal Component Analysis (PCA)
[Arc+06] etc.

Next, we use the characterization and a power trace of the attacked device to
determine the key. In this matching phase, we evaluate the probability density
function of the multivariate normal distribution with (µ,Cdi,kj

) and the power
trace of the attacked device. In other words, given a power trace tr of the attacked
device, and a template hdi,kj , we compute the PDF :

PDF (tr; (µ,Cdi,kj
)) =

1√
(2π)NPOI × det(C)

exp

(
−1

2
(tr − µ)TC−1(tr − µ)

)
.

(5)
We do this for every template. As a result, we get the PDFs

PDF (tr; (µ,C)d1,k1
), . . . , PDF (tr; (µ,C)dD,kK

).

The probabilities measure how well the templates match a given trace tr and the
highest value indicates the correct template. Since each template is associated
with a key, we get an indication of the correct key. If all keys are equiprobable,
the decision rule that minimizes the probability of a wrong decision is to decide
for hdi,kj

if
PDF (tr;hdi,kj

) > PDF (tr;hdi,kv
)∀v ̸= j.

A Side-Channel Attack against Classic McEliece 9

This is the Maximum Likelihood (ML) decision rule.

Templates with power models In addition to building templates for data
and key pairs, there are other strategies. For example, if a device leaks the
Hamming weight of the data, then moving the value 1 will result in the same
power consumption as moving the value 2. Therefore, the template associated
with value 1 will correspond to a trace in which value 1 is moved as well as
the template associated with value 2. Thus, it is possible to build templates for
values with different Hamming weights. Suppose we want to build templates for
the output of a single-byte instruction sequence. We can simply build templates
from 0 to 8 per byte. This is the approach we will take to build our templates
for a decryption sequence in Classic McEliece implementation.

3.2 Measurement setup and leakage analysis

For our experiments, we used Classic McEliece variant mceliece8192128 (m =
13, n = 8192, t = 128) where the coefficients of the Goppa polynomial are rep-
resented on m bits. But for the purpose of the implementation in [CC21], each
coefficient will be represented on 2 bytes instead of 1 byte and 5 bits. We at-
tack a software implementation of the decapsulation algorithm (loading func-
tion of the coefficients of the Goppa polynomial, irr load 32x) running on an
STM32F415RGT6 microcontroller [CC21]. The microcontroller features a 32-bit
ARM Cortex-M4 core with 1MB Flash memory and 192 kB SRAM.

The traces are acquired using the ChipWhisperer-Pro (CW1200) [OC14]
which is an open-source embedded security analysis platform for recording and
analyzing power consumption. All traces are acquired at a sample rate 105×106

samples per second (105 MS/s). Data acquisition is controlled by scripts running
on PC. The ChipWhisperer measures power consumption during loading of the
coefficients of the Goppa polynomial g(x) of degree t. Once the acquisition is
finished, the PC stores the measured trace on the hard disk. The measurement
process is repeated depending on the desired number of traces. In traces, we
can distinguish four patterns Fig. 1. These patterns are caused by the bitsliced
representation used in the loading function irr load 32x. Bitslicing is a sim-
ulation of hardware implementations in software. It is an implementation trick
to speed up software implementations. It was introduced by Biham[Bih97] in
1997 for DES. The basic idea of bitslicing is to represent n-bit data as a bit in n
distinct registers. On 32-bit registers, there are 31 unused bits in each register,
which can be filled in the same fashion by taking 31 other independent n-bit
data and putting each of their n bits in one of the registers. Bitwise operators on
32-bit (e.g. AND, OR, XOR) then act as 32 parallel operators. The bitslicing in
this loading function irr load 32x consists of transposing 32 16-bit coefficients
into 16 different 32-bit registers for each round of the main loop. This loading
function (Fig. 2) consists of the main loop to load the 128 coefficients in steps of
32 (hence the four patterns in Fig. 1) nested in two consecutive loops. These two
loops each load 16 16-bit coefficients. Then, each of these 16 coefficients is trans-
posed into 16 different 32-bit registers. Finally, a kind of assembly operation of

10 Boly et al.

128 coefficients

32 coefficients

Fig. 1: Power consumption of the loading function of the Goppa polynomial.

these two groups is performed to have the 32 16-bit coefficients in 16 different
32-bit registers. The Fig. 3 shows the power consumption of this implementation
strategy.

1 static inline void irr_load_32x(uint32_t out [][GFBITS], const

2 unsigned char * in, int len)

3 {

4 int i, j;

5 uint32_t mat [16];

6 uint16_t *mat16 = (uint16_t *)&mat [0];

7 for(i=0;i<len;i+=32) {

8 for(j=0;j<16;j++) mat16[j] = load_gf(in + (i+j)*2);

9 for(j=0;j<16;j++) mat16 [16+j] = load_gf(in + (i+j+16) *2);

10 transpose_16x16(mat16 , mat16);

11 transpose_16x16((mat16 +16), (mat16 +16));

12 bs16_to_bs32(out[i>>5] , mat16 , mat16 +16 , GFBITS);

13 }

14 }

Fig. 2: Loading function of the coefficients of the Goppa polynomial g(x) in
[CC21]

We will now perform a power consumption analysis on the loading function
irr load 32x. The hypothesis is that small variations in power level may be
observed in a trace based on the output of this function.
We analyze how the power consumption of the load function depends on the
least significant bit (LSB) of 16-bit data with its transpose operation. If the
LSB output produced by irr load 32x is 1 then, in theory, the device under test
should consume more power in comparison with a 0 value. If the hypothesis holds,
we may exploit this fact to deduce the Hamming weights of the coefficients during

A Side-Channel Attack against Classic McEliece 11

32 coefficients

16 16-bit data 16 16-bit data transpose-1 transpose-2 bs16 to bs32

Fig. 3: Zoom on a pattern in power consumption of loading function of the coef-
ficients of g(x).

loading operations. It should be noted that this variation in power consumption
is very small. The technique of differential power analysis used to determine the
effect of the LSB on power consumption is the Difference Of Means (DOM).
We measured the power consumption of the microcontroller when loading 10
000 random coefficients. We obtain 10 000 power traces, then sort them into
two subsets (5 000 power traces for LSB=1 and 5 000 power traces for LSB=0)
and calculate the average of each subset. The DOM between each subset will
infer whether the proposed hypothesis is significant. In the case of a significant
hypothesis, the DOM between the two subsets will highlight the change in power
consumption when LSB of 0 is compared to LSB of 1. The average of each subset
is calculated point by point. Thus, the difference of means can then be calculated
by simply subtracting the points in the first subset from the points in the second
subset. The result of this DOM is shown in Fig. 4.

3.3 Principle and results

We have two significant peaks easily discernible. These two peaks reveal the
moments when the power consumption of the microcontroller depends on the
LSB. Thus this loading function irr load 32x leaks information. The transpose
function also processes the same data as the loaded data and therefore the bit-
sliced representation according to this result also leads to information leakage.
We now exploit this property in a power analysis attack to determine the Ham-
ming weights of the Goppa polynomial coefficients g(x). Recall that in Classic
McEliece, the secret key consists of the Goppa polynomial and the support.
Therefore, recovering the secret key corresponds to recovering g(x) and L. It
should also be noted that this experiment was done for the other 15 bits of the
coefficient and the result is the same.

12 Boly et al.

Fig. 4: Difference of means of power traces for LSB=1 and LSB=0.

In what follows, we will only use the loading of the first coefficient of g(x)
without the transposition for the template attack. In this section, we present the
template attack on loading the first 16-bit coefficient of g(x). We describe how
to generate the templates from the random coefficient traces. Our template will
attempt to recognize the Hamming weight of each coefficient at the output of the
loading function irr load 32x. The goal of our attack is to find the Hamming
weights of all 128 coefficients of g(x). This information will significantly reduce
the complexity of the exhaustive search for the Goppa polynomial on F2m . For
our experiment, we used the same device for building and matching phases.
As we said at the end of Section 3.1, we will build templates in Hamming weights.
Since each coefficient of g(x) is represented on 16 bits in [CC21], we will build
17 templates for each coefficient. A key point with template attacks is that
they require a large amount of data to make good templates. We recall that
each output of this load function is unique, so there is only one output with a
Hamming weight of 0 and one with a weight of 16. This means that using random
inputs, there is only a 1/(256)2 probability of having a trace with a Hamming
weight of 0 or 16.
In our experiment, we have efficiently used 350 000 traces, which allowed us
to have a good distribution to build our templates. We then examine a trace
and decide what its Hamming weight is. To set up the templates, we need to
sort our template traces into 17 groups. The first group will consist of all traces
that have a Hamming weight of 0. The next group has a Hamming weight of 1,
etc., and the last group has a Hamming weight of 16. After sorting the traces
by their Hamming weights, we look for the “average trace” for each weight. We
create an array that contains 17 of these averages. We can always plot these
averages to make sure that the average traces are correct. We will now use these
average traces to find the POIs using the Sum of Differences method in Fig. 5.
This method shows where these average traces have a lot of variances and the

A Side-Channel Attack against Classic McEliece 13

Fig. 5: Sum of Differences for 350 000 traces.

POIs are the highest peaks. In our case, we have one POI (sample 13). In the
case where we had more peaks in the Sum of Differences, we cannot simply
sort an array and choose the highest points. We have to make sure that the
points are separated by some space. We can now construct our multivariate
normal distribution for each Hamming weight. We need to write the 1 ×NPOI

mean vector µ and the NPOI ×NPOI covariance matrix C at this POI for each
Hamming weight. In our case NPOI = 1, the mean is a scalar and the covariance
matrix is reduced to the variance.
Our templates are ready, so we can use them to perform the matching phase
now. For a decryption, using a random ciphertext, we recorded 17 power traces
on the attacked device during the loading of the first coefficient of g(x). These
17 power traces correspond to the loading of the coefficients with Hamming
weights set from 0 to 16. We load our 17 template traces for each coefficient
with a fixed Hamming weight and apply the PDF for each target trace to check
which template fits best. We were able to find the Hamming weight of the first
coefficient of the Goppa polynomial on the device attacked during decryption
with a success rate of 99.86% after 1000 simulations. This matching phase with
one target trace takes about 4 seconds on an 8-core processor running at 3.6
GHz. Thus we manage with our templates to find the Hamming weight of the
first coefficient of g(x) when it is loaded from memory. To find the Hamming
weights of the remaining t−1 coefficients, it is necessary to construct t−1 groups
of m+1 templates in Hamming weights. We proceed in the same way as for the
first coefficient, except that the position of the POI(s) will change because it
depends on the position of the coefficient during loading. The knowledge of the
Hamming weights of the coefficients of g(x) allowed us to improve the complexity
of the exhaustive search for the Goppa polynomial on F2m .

14 Boly et al.

4 Complexity of the Goppa polynomial search

In this section, we have given the complexity of finding the secret Goppa poly-
nomial in the original McEliece with the knowledge of Hamming weights of its
coefficients. Indeed, the key recovery attack against McEliece using irreducible
Goppa code consists of recovering the Goppa polynomial g and the support
L = {α1, α2, ..., αn} ∈ Fn

2m . However, the best way to proceed is described as
follows [LS01]:

1. Step 1: Find an monic irreducible polynomial g of degree t such that the
Goppa code Γ (L, g) is equivalent to the public code C.

2. Step 2: Find the permutation by using the Support Splitting Attack (SSA)
algorithm.

The cost of a such enumerative attack is given by Cost = λn3Cirr where n is
the code length and λ is a small constant depending on the implementation of
the attack [LS01]. Cirr is the number of irreducible polynomials over F2m i.e the
cardinal of search space. In the case of an extended code of Goppa, the value of
Cirr is given by [LS01]

Cirr ≈ 2m(t−3)

mt
. (6)

With the knowledge of Hamming weights δj” gj , and by assuming that irre-
ducible monic polynomials over F2m have a uniform distribution, the cardinal of
the search space is given by

#Search Space =

t−1∏
j=0

(
m
δj

)
t

. (7)

In fact, to the best of our knowledge, there is no specific algorithm to construct
an irreducible polynomial by knowing the Hamming weights of its coefficients.
Therefore, finding such polynomials corresponds in practice to search in the
set of all monic polynomials with corresponding coefficients Hamming weights
set. Note that, in the case that the Goppa polynomial is an irreducible binary
polynomial that corresponds to a weak key in [LS01], with the knowledge of the
Hamming weight of coefficients, the cardinal of the search space is equal to 1.
Indeed, all coefficients with non-zero Hamming weight have their value equal
to 1 thus, we can directly reconstruct the Goppa polynomial without searching
(Table 2). While it was shown in [LS01] that the computation time to find this
irreducible binary polynomial for an instance where m = 10, n = 1024, and
t = 50 with their implementation should be 500 years. We can also imagine a
scenario in which the user generates non-binary polynomials with fixed weights
for all coefficients (to speed up the generation of the public key).

A Side-Channel Attack against Classic McEliece 15

key level #Search Space

Weak keys in [LS01] 2m(t−3)

mt

Weak keys with knowledge of coefficients Hamming weight 1

Slightly less weak keys with coefficients Hamming weight equal to 1
(m1)

t

t

Slightly less weak keys with coefficients Hamming weight equal to 2
(m2)

t

t

Table 2: Size of the search space in the case of Weak keys

This technique only speeds up the generation of the public key offline but not
the decryption process. We call this second case “slightly less weak keys”. In the
Table 2, we show the expression of the size of search space for two particular
cases of “slightly less weak keys”. It is sufficient to perform an exhaustive low-
complexity search to recover the Goppa polynomial. Thus with the information
on the Hamming weights of the coefficients of the Goppa polynomial, we have
increased the set of weak keys proposed in [LS01].
For non-binary irreducible polynomials where the extension degree is larger than
8, each finite field element is implemented at least on 2 bytes. Thus, for suitable
values 0 ≤ ij ≤ δj , one can look for polynomials whose coefficients have Ham-
ming weight ij on the first byte and δj − ij on the remaining m− 8 bits. With
this technique, the cardinality of the search space (7) becomes

#Search Space =

t−1∏
j=0

(
8
ij

)(
m−8
δj−ij

)
t

≤

(
8
4

)t(m−8
⌊m−8

2 ⌋
)t

t
. (8)

When extended code is implemented in the attack, this number should be divided
by 2m(2m − 1)m. Indeed there are 2m(2m − 1)m polynomial g′ such that the
extended codes of the Goppa codes Γ (L, g′) are equivalent to that of Γ (L, g).
Therefore, we can upper bound the number C̃irr of irreducible polynomials with
the knowledge of the Hamming weights of the polynomial coefficients by

C̃irr ≤

(
8
4

)t(m−8
⌊m−8

2 ⌋
)t

2m(2m − 1)mt
. (9)

With our template attack on the implementation of Classic McEliece, we sig-
nificantly reduced the cost of the exhaustive search of the Goppa polynomial
in F2m . As shown in Table 3, the knowledge of the Hamming weights of the
Goppa polynomial coefficients allowed us for example to divide the size of the
search space by 2441 for the variant of Classic McEliece with m = 13, n = 8192
and t = 128 from 21615 to 21174. To date, we propose here the best complexity
reduction for an exhaustive Goppa polynomial search.

5 Comparison with other key recovery attacks

We recall that the decryption in Classic McEliece is equivalent to the syndrome
decoding of Goppa binary codes, including the steps of computing the syndrome

16 Boly et al.

m t n log2(Cirr) log2(C̃irr) log2(Cirr/C̃irr)
δj = 1 δj = 2 δj = 3 δj = m/2

12 64 3488 725 158 274 338 534 191

13 96 4608 1199 251 425 521 871 328

13 128 6688 1615 347 578 706 1174 441

13 119 6960 1498 320 535 654 1089 409

13 128 8192 1615 347 578 706 1174 441

Table 3: Complexity to find Goppa polynomial with the knowledge of the Ham-
ming weights of its coefficients from template attack against parameters of Clas-
sic McEliece [Cho+20]

polynomial and the error locator polynomial and that of its evaluation at points
in F2m . This polynomial evaluation over F2m is realized thanks to the imple-
mentation of the additive FFT after having calculated the error locator polyno-
mial with the Berlekamp-Massey (BM) algorithm. Recently, Guo et al. [GJJ22]
proposed a key-recovery side-channel attack on reference implementations (on
FPGA and ARM Cortex-M4) [CC21; WSN18] of Classic McEliece. They design
an attack algorithm in which they submit special ciphertexts to the decryption
oracle that correspond to single error cases in the plaintexts. They exploited a
leak in the additive FFT with a fixed input error before using a machine learning-
based classification algorithm to determine the error locator polynomial. They
choose a plaintext or error e of Hamming weight equal to 1 before encrypting it.
Then, the profiled attack allows them to find the secret polynomial of the error
locator among the 2m possibilities and thus obtain an element of the supportL.
Finally, they designed new algorithms to recover the Goppa irreducible polyno-
mial and then the full secret key.

Attack Hamming weight Target

Guo et al. [GJJ22] 1 The FFT additive
and BM algorithm

Our attack no constraints Loading function
of Goppa polynomial coefficients

Table 4: Profiled side-channel attacks on Classic McEliece

Countermeasures for the GJJ attack The main drawback of the key-recovery
side-channel attack on Classic McEliece by Guo et al. [GJJ22] is the constraint
on the Hamming weight of the plaintexts. This attack requires decrypting ci-
phertexts with Hamming weights of 1 to recover the secret in Classic McEliece.
However, one can easily notice that with the systematic form of H, we can de-
tect the problem of bad ciphertexts with Hamming weights less than or equal to
t. This is not the only step where this attack could be compromised. Recall that
the error locator polynomial is obtained with the Berlekamp-Massey algorithm.

A Side-Channel Attack against Classic McEliece 17

At this point, the error locator polynomial, via its degree, directly reflects any
intentional error or misformated chipertext. Indeed, when this polynomial is of
degree lower than t the decryption must stop and thus one can avoid the GJJ
attack. All of these point out towards the fact that the GJJ attack to find the
secret key in Classic McEliece is not realistic.

Positive points in our attack Our template attack to find the Hamming weights
of the Goppa polynomial coefficients on Classic McEliece is realistic com-
pared to the key-recovery side-channel attack of Guo et al. for the variant
mceliece8192128 as shown in the Table 4. First, we have no constraints on the
Hamming weight of the ciphertexts and use fewer traces to recover the Hamming
weight of Goppa polynomial coefficients. Secondly, we just follow the steps of the
decryption execution in the implementation of Classic McEliece and we measure
the trace of power consumption corresponding to the loading of the coefficients
of the Goppa polynomial. Finally, our method has the particularity to be ex-
tended on other steps of decryption in Classic McEliece or other cryptosystems.
Indeed, the loading of a vector of evaluation points is also performed just before
the additive FFT for the evaluation of the error locator polynomial. If the setup
is such that our attack can be reproduced we could gain the same information
(Hamming weight) about the evaluation points. Also, notice that any decoding
algorithm for binary Goppa codes has to use this/similar function for loading
the Goppa polynomial and the points of evaluation. This information on the
Hamming weights of the evaluation points, combined with our current results
on the coefficients of the Goppa polynomial, will greatly improve our knowledge
of the secret in Classic McEliece. We can also use this information on the evalu-
ation points to apply the decoding method with a hint from [KM22] to directly
recover the Goppa polynomial.

Common countermeasure fail against our attack We recall that our attack on
the loading function of the Goppa polynomial coefficients is performed on the
optimized reference implementation of Classic McEliece on ARM-Cortex M4
[CC21]. This reference implementation represents the side-channel attack tar-
get of several recent papers [Cay+21; Col+22b; GJJ22]. Shuffling is nowadays
one of the most common and effective countermeasure techniques against most
side-channel attacks [CMJ22]. However, in our attack, shuffling does not work
because loading the coefficients in a random order will not affect their Hamming
weights. In general, we have shown in this work that this loading function is not
appropriate for secret variables in Classic McEliece. Moreover, our proposal is a
first step towards much more powerful and potentially generic possible attacks.
Indeed, the loading of a list of secret coefficients is performed at several places in
the decryption of a code-based cryptographic scheme, and if we can isolate the
exact moment when such functions are loaded then we could imagine applying
our attack.

18 Boly et al.

6 Conclusion

In this paper, we have presented a side-channel attack against the reference im-
plementation of Classic McEliece on ARM Cortex-M4. The side channel here
corresponds to loading the coefficients of the Goppa polynomial from memory
during decryption. The phase of matching of our profiled attack is very fast
(about 4 seconds) and allows us to find the Hamming weights of the coeffi-
cients of the Goppa polynomial that is an important part of the secret key of
Classic McEliece. First, this result allowed us to directly find the Goppa poly-
nomial in the case of weak keys with the method of Loidreau and Sendrier. In
the case of “slightly less weak keys”, we manage to find this polynomial with a
low-complexity exhaustive search. Thus, we increase the set of weak keys com-
pared to the method of Loiderau and Sendrier. Then, this information about the
Hamming weights of the coefficients also allowed us to give the best complexity
reduction for Goppa polynomial search on F2m . Finally, we have shown that
our attack is realistic (we only need a decryption of a random ciphertext) com-
pared to other side-channel attacks on Classic McEliece. We also hope to apply
it during in-memory loading of evaluation points to improve recent side-channel
attack results on post-quantum cryptosystem implementations.

Acknowledgments

The author Jean Belo Klamti was supported by a grant of the Ripple Impact
Fund/Silicon Valley Community Foundation (Grant 2018-188473).

References

[Arc+06] C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater.
“Template attacks in principal subspaces”. In: International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer.
2006, pp. 1–14.

[Ava+11] R. Avanzi, S. Hoerder, D. Page, and M. Tunstall. “Side-channel at-
tacks on the McEliece and Niederreiter public-key cryptosystems”.
In: Journal of Cryptograhic Engineering 1.4 (2011), pp. 271–281.

[Bar+16] M. Bardet, J. Chaulet, V. Dragoi, A. Otmani, and J.-P. Tillich.
“Cryptanalysis of the McEliece public key cryptosystem based on
polar codes”. In: Post-Quantum Cryptography: 7th International
Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016,
Proceedings 7. Springer. 2016, pp. 118–143.

[BCS13] D. J. Bernstein, T. Chou, and P. Schwabe. “McBits: fast constant-
time code-based cryptography”. In: International Conference on
Cryptographic Hardware and Embedded Systems. Springer. 2013,
pp. 250–272.

A Side-Channel Attack against Classic McEliece 19

[Ber+17] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki,
R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier,
et al. “Classic McEliece: conservative code-based cryptography”.
In: NIST submissions (2017).

[Bih97] E. Biham. “A fast new DES implementation in software”. In: In-
ternational Workshop on Fast Software Encryption. Springer. 1997,
pp. 260–272.

[BMVT78] E. Berlekamp, R. McEliece, and H. Van Tilborg. “On the inher-
ent intractability of certain coding problems (corresp.)” In: IEEE
Transactions on Information Theory 24.3 (1978), pp. 384–386.

[Cay+21] P.-L. Cayrel, B. Colombier, V.-F. Drăgoi, A. Menu, and L.
Bossuet. “Message-recovery laser fault injection attack on the
classic McEliece cryptosystem”. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques.
Springer. 2021, pp. 438–467.

[CB14] I. V. Chizhov and M. A. Borodin. “Effective attack on the McEliece
cryptosystem based on Reed-Muller codes”. In: Discrete applied
Math. 24.5 (2014), pp. 273–280.

[CC21] M.-S. Chen and T. Chou. “Classic McEliece on the ARM Cortex-
M4.” In: IACR Cryptol. ePrint Arch. 2021 (2021), p. 492.

[CD10] P.-L. Cayrel and P. Dusart. “McEliece/Niederreiter PKC: Sensi-
tivity to Fault Injection”. In: International Conference on Future
Information Technology. Busan, South Korea, May 2010.

[Che+16] C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt. “Hor-
izontal and Vertical Side Channel Analysis of a McEliece Cryp-
tosystem”. In: IEEE Transactions on Information Forensics and
Secuity. 11.6 (2016), pp. 1093–1105.

[Cho17] T. Chou. “McBits revisited”. In: International Conference on
Cryptographic Hardware and Embedded Systems. Springer. 2017,
pp. 213–231.

[Cho+20] T. Chou, C. Cid, S. UiB, J. Gilcher, T. Lange, V. Maram, R. Mis-
oczki, R. Niederhagen, K. G. Paterson, E. Persichetti, et al. “Classic
McEliece: conservative code-based cryptography 10 October 2020”.
In: (2020).

[CMJ22] Z. Chen, Y. Ma, and J. Jing. “Low-Cost Shuffling Countermea-
sures Against Side-Channel Attacks for NTT-Based Post-Quantum
Cryptography”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 42.1 (2022), pp. 322–326.

[CML17] L Chen, D Moody, and Y. Liu. NIST post-quantum cryptography
standardization. 2017.

[Col+22a] B. Colombier, V.-F. Dragoi, P.-L. Cayrel, and V. Grosso. “Physical
Security of Code-based Cryptosystems based on the Syndrome De-
coding Problem”. In: Cryptarchi Workshop. Porquerolles, France,
2022.

20 Boly et al.

[Col+22b] B. Colombier, V.-F. Drăgoi, P.-L. Cayrel, and V. Grosso. “Profiled
Side-channel Attack on Cryptosystems based on the Binary Syn-
drome Decoding Problem”. In: IEEE Transactions on Information
Forensics and Security (2022).

[Col+23] B. Colombier, V. Grosso, P.-L. Cayrel, and V.-F. Drăgoi. Horizontal
Correlation Attack on Classic McEliece. Cryptology ePrint Archive,
Paper 2023/546. 2023.

[Cou+14] A. Couvreur, P. Gaborit, V. Gauthier-Umaña, A. Otmani, and J.-P.
Tillich. “Distinguisher-based attacks on public-key cryptosystems
using Reed-Solomon codes”. In: Designs, Codes and Cryptography
73.2 (2014), pp. 641–666.

[CRR02] S. Chari, J. R. Rao, and P. Rohatgi. “Template attacks”. In: In-
ternational Workshop on Cryptographic Hardware and Embedded
Systems. Springer. 2002, pp. 13–28.

[DJ92] D. Deutsch and R. Jozsa. “Rapid solution of problems by quan-
tum computation”. In: Proceedings of the Royal Society of London.
Series A: Mathematical and Physical Sciences 439.1907 (1992),
pp. 553–558.

[EPW10] T. Eisenbarth, C. Paar, and B. Weghenkel. “Building a side channel
based disassembler”. In: Transactions on computational science X.
Springer, 2010, pp. 78–99.

[Fey18] R. P. Feynman. “Simulating physics with computers”. In: Feynman
and computation. CRC Press, 2018, pp. 133–153.

[GI19] L. Gyongyosi and S. Imre. “A survey on quantum computing tech-
nology”. In: Computer Science Review 31 (2019), pp. 51–71.

[GJJ22] Q. Guo, A. Johansson, and T. Johansson. “A Key-Recovery Side-
Channel Attack on Classic McEliece Implementations”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems
(2022), pp. 800–827.

[GLRP06] B. Gierlichs, K. Lemke-Rust, and C. Paar. “Templates vs. stochas-
tic methods”. In: International Workshop on Cryptographic Hard-
ware and Embedded Systems. Springer. 2006, pp. 15–29.

[Gro+23] V. Grosso, P. Cayrel, B. Colombier, and V. Dragoi. “Punctured
Syndrome Decoding Problem - Efficient Side-Channel Attacks
Against Classic McEliece”. In: International Workshop on Con-
structive Side-Channel Analysis and Secure Design. Ed. by E. B.
Kavun and M. Pehl. Vol. 13979. Lecture Notes in Computer Sci-
ence. Munich, Germany: Springer, Apr. 2023, pp. 170–192.

[Gro96] L. K. Grover. “A fast quantum mechanical algorithm for database
search”. In: Proceedings of the twenty-eighth annual ACM sympo-
sium on Theory of computing. 1996, pp. 212–219.

[HMP10] S. Heyse, A. Moradi, and C. Paar. “Practical Power Analysis At-
tacks on Software Implementations of McEliece”. In: Third In-
ternational Workshop on Post-Quantum Cryptography. Ed. by N.

A Side-Channel Attack against Classic McEliece 21

Sendrier. Vol. 6061. Lecture Notes in Computer Science. Darm-
stadt, Germany: Springer, May 2010, pp. 108–125.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. “Differential power analysis”.
In: Annual international cryptology conference. Springer. 1999,
pp. 388–397.

[KM22] E. Kirshanova and A. May. “Decoding McEliece with a Hint – Se-
cret Goppa Key Parts Reveal Everything”. In: Security and Cryp-
tography for Networks. Ed. by C. Galdi and S. Jarecki. Cham:
Springer International Publishing, 2022, pp. 3–20.

[Lah+20] N. Lahr, R. Niederhagen, R. Petri, and S. Samardjiska. “Side Chan-
nel Information Set Decoding Using Iterative Chunking - Plaintext
Recovery from the ”Classic McEliece” Hardware Reference Imple-
mentation”. In:Annual International Conference on the Theory and
Application of Cryptology and Information Security. Ed. by S. Mo-
riai and H. Wang. Vol. 12491. Lecture Notes in Computer Science.
Daejeon, South Korea: Springer, Dec. 2020, pp. 881–910.

[Lar+21] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and
U. L. Andersen. “Deterministic multi-mode gates on a scalable
photonic quantum computing platform”. In: Nature Physics 17.9
(2021), pp. 1018–1023.

[LS01] P. Loidreau and N. Sendrier. “Weak keys in the McEliece public-
key cryptosystem”. In: IEEE Transactions on Information Theory
47.3 (2001), pp. 1207–1211.

[McE78] R. J. McEliece. “A public-key cryptosystem based on algebraic”.
In: Coding Thv 4244 (1978), pp. 114–116.

[Mis+13] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto.
“MDPC-McEliece: New McEliece variants from Moderate Density
Parity-Check codes”. In: Proc. IEEE Int. Symposium Inf. Theory -
ISIT. 2013, pp. 2069–2073.

[Mol+11] H. G. Molter, M. Stöttinger, A. Shoufan, and F. Strenzke. “A simple
power analysis attack on a McEliece cryptoprocessor”. In: Journal
of Cryptographic Engineering 1.1 (2011), pp. 29–36.

[MOP08] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Re-
vealing the secrets of smart cards. Vol. 31. Springer Science & Busi-
ness Media, 2008.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The theory of error cor-
recting codes. Vol. 16. Elsevier, 1977.

[Nie86] H. Niederreiter. “Knapsack-type cryptosystems and algebraic cod-
ing theory”. In: Prob. Contr. Inform. Theory 15.2 (1986), pp. 157–
166.

[OC14] C. O’Flynn and Z. D. Chen. “Chipwhisperer: An open-source plat-
form for hardware embedded security research”. In: International
Workshop on Constructive Side-Channel Analysis and Secure De-
sign. Springer. 2014, pp. 243–260.

22 Boly et al.

[OK15] A. Otmani and H. T. Kalachi. “Square Code Attack on a Modified
Sidelnikov Cryptosystem”. In: Codes, Cryptology, and Information
Security. Springer, 2015, pp. 173–183.

[Rav+22] P. Ravi, A. Chattopadhyay, J. P. D’Anvers, and A. Baksi.
Side-channel and Fault-injection attacks over Lattice-based Post-
quantum Schemes (Kyber, Dilithium): Survey and New Results.
Cryptology ePrint Archive, Paper 2022/737. 2022.

[RO04] C. Rechberger and E. Oswald. “Practical template attacks”.
In: International Workshop on Information Security Applications.
Springer. 2004, pp. 440–456.

[Saa22] M.-J. O. Saarinen. “WiP: Applicability of ISO Standard Side-
Channel Leakage Tests to NIST Post-Quantum Cryptography”. In:
2022 IEEE International Symposium on Hardware Oriented Secu-
rity and Trust (HOST). 2022, pp. 69–72.

[Sec+22] B. Seck, P.-L. Cayrel, I. Diop, V.-F. Dragoi, K. Couzon, B. Colom-
bier, and V. Grosso. “Key-Recovery by Side-Channel Information
on the Matrix-Vector Product in Code-Based Cryptosystems”. In:
International Conference on Information Security and Cryptology.
Seoul, South Korea, Nov. 2022.

[Sho94] P. W. Shor. “Algorithms for quantum computation: discrete loga-
rithms and factoring”. In: Proceedings 35th annual symposium on
foundations of computer science. Ieee. 1994, pp. 124–134.

[Sid94] V. M. Sidelnikov. “A public-key cryptosytem based on Reed-Muller
codes”. In: Discrete applied Math. 4.3 (1994), pp. 191–207.

[SK14] S. R. Shrestha and Y.-S. Kim. “New McEliece cryptosystem based
on polar codes as a candidate for post-quantum cryptography”.
In: 2014 14th International Symposium on Communications and
Information Technologies (ISCIT). IEEE. 2014, pp. 368–372.

[TF19] S Takeda and A Furusawa. “Toward large-scale fault-tolerant
universal photonic quantum computing”. In: APL Photonics 4.6
(2019), p. 060902.

[WSN18] W. Wang, J. Szefer, and R. Niederhagen. “FPGA-based Nieder-
reiter cryptosystem using binary Goppa codes”. In: Interna-
tional Conference on Post-Quantum Cryptography. Springer. 2018,
pp. 77–98.

	A Side-Channel Attack against Classic McEliece when loading the Goppa Polynomial

