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Normandie Univ, UNICAEN, ENSICAEN, LIS

14050 Caen Cedex, France
ali.mestrah@unicaen.fr

Abstract— The present study deals with a new identification
algorithm from binary output measurements. The study focuses
on the class of Finite Impulse Response (FIR) systems. The
proposed algorithm is based on the estimation of correlation
functions. A geometric interpretation is proposed and leads
to a formulation of the algorithm using a Singular Value
Decomposition (SVD). A convergence analysis is proposed
showing the mean-square convergence with a rate of OpN´1q,
Monte Carlo simulations are proposed to confirm performance.

Index Terms— System Identifiation, Binary Measurements,
FIR system.

I. INTRODUCTION

The system parameters identification is a process that
requires usually some information on input, output and noise.
The input is often known by the user, but the output not
always as one might want. In this study, our interest is the
identification with binary output, in which the real output
of the system is unknown, we only have access to binary
measurements. This type of identification is widely used in
the domain of micro-electronics and telecommunications for
instance. The choice of binary measurements is due to the
facility of measuring, e.g knowing the sign of the output
in binary measurements is much easier than knowing the
real output, binary measurements are also easy to store and
occupy less memory. An other important aspect is the fact
that binary sensors have lower cost and are more robust
against noise than ordinary sensors.

Several researches focused on the identification of systems
from binary measurements, we cite for instance [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] and [15].
What differ these studies are the process of implementation
(online or offline), the impulse response of the system (finite
or infinite), the representation of the system (as a state repre-
sentation or a transfer function representation), the condition
on the input and noise (statistical characteristics, periodicity,
distribution function, etc..). In this study, our contribution
focuses on Finite Impulse Response (FIR) systems. In most
of studies developed for this type of systems, the input and
the noise are subject to strict conditions: in [1], [16] and [17]
the input must be periodic, in [18] the input must be binary,
in [3] a known dithering signal is added on the input of the
binary sensor, in [6] the algorithm is developed in a noise
free framework, in [7] the noise distribution function must

be known, in [12] the input must be an Independent and
Identically Distributed (IID) random variable sequence, in
[17] the noise distribution function must be estimated before
the identification process or it must be known. Sometimes
some user defined parameters are difficult to adjust as in [10]
where there are two parameters that must be well adjusted to
have consistent estimates, sometimes the threshold must be
variable as in [19] and sometimes there is no theoretically
convergence proof as in [2] and [14].

Our first contribution in this paper is to propose a simplest
identification algorithm with respect to other algorithms,
simplest in the sense that the practical framework is less
restrictive: simplest in terms of condition on the input signal,
simplest in terms of required knowledge on the noise, sim-
plest in terms of user-defined parameter. Roughly speaking,
our algorithm is based on the estimation of correlation
functions. These correlation functions can be estimated from
knowledge of the input and the binary output data, and this
leads to the estimation of the system parameters. Our second
contribution is to propose an algebraic formulation, allowing
an implementation more computationally robust.

The article is organized as follows: the identification
problem is described and some notations are introduced in
section II. The proposed identification algorithm is intro-
duced, interpreted and analyzed in section III. Numerical
simulations are proposed in section IV. Section V concludes
the paper.

II. PROBLEM STATEMENT

The discrete time system considered in this paper is
depicted in Fig.1. The system is described by Hpz´1q defined
by:

Hpz´1q “

n
ÿ

i“0

hiz´i (1)

where n is the order and thiuiPr0;ns is the impulse response.
yt and ut are respectively the system output and input at the
time instant tT , T is the sampling period.

From (1) and Fig.1 the output is expressed as follows:

yt “

n
ÿ

i“0

hiut´i ` vt (2)

where vt is the noise on the output.



Fig. 1. Block diagram of the system model.

As shown in Fig.1 the output of the system is unknown but
is measured by a 1-bit ADC (Analog to Digital Converter).
We thus define the known binary output st as follows:

"

st “ 1, if yt ě C
st “ ´1, if yt ă C . (3)

Remark 1: It was possible to choose the values 1 and 0
for the binary output, but we choose the values 1 and ´1, in
order to simplify the algebraic interpretation in section III-B.
In the following, let us denote the parameter vector θ as

θ
T “

`

h0 h1 ¨ ¨ ¨ hn
˘

(4)

The objective of the paper is to estimate the parameter vector
θ from N available data tut ,stu

N
t“1.

Some assumptions are taken throughout the document in
order to solve the identification problem:

‚ A.1 The input is a stationary zero mean sequence with
gaussian distribution.

‚ A.2 The noise is zero mean sequence of stationary
random variables uncorrelated with the input.

‚ A.3 The order n of the system is known.
‚ A.4 The L2 norm of the parameter vector θ is known

and different from 0.
Note that assumption A.4 is a normalization assumption.

Such an assumption is commonly used in system identifica-
tion from binary measurements ([6] and [10] for instance).
An other similar assumption can be an assumption on the
static gain of the process which is the sum of the values of
θ .

III. IDENTIFICATION ALGORITHM

The identification algorithm is presented in this section.
First, the principle is described in subsection III-A, then an
algebraic formulation is proposed in subsection III-B, finally
a convergence analysis is provided in subsection III-C.

A. Principle

Let us define Er.s as the expected value. From (2) it can
easily be shown that

Ruypiq “

n
ÿ

j“0

h jRuupi ´ jq ` Ruvpiq (5)

where Ruypiq “ E rutyt`is and Ruvpiq “ E rutvt`is are respec-
tively the cross-correlations between the variables ut , yt and
ut , vt with lag equal to i and Ruupiq “ E rutut`is is the

auto-correlation of the variable ut with lag equal to i. From
Assumptions A.1 and A.2 the noise is uncorrelated with the
input and zero mean, it follows that Ruvpiq “ 0. Using (5) for
i from 0 to n we get

¨

˚

˚

˚

˝

Ruyp0q

Ruyp1q

...
Ruypnq

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

Ruup0q Ruup1q . . . Ruupnq

Ruup1q Ruup0q . . . Ruupn ´ 1q

...
...

. . .
...

Ruupnq Ruupn ´ 1q . . . Ruup0q

˛

‹

‹

‹

‚

θ .

(6)

In order to use (6) to estimate θ note that @i P r1;ns

E
„ˆ

ut ´
Ruypiq
Ryyp0q

yt`i

˙

yt`i

ȷ

“ 0 (7)

for each t. This implies that ut ´
Ruypiq
Ryyp0q

yt`i and yt`i are
uncorrelated and it follows that

E
„ˆ

ut ´
Ruypiq
Ryyp0q

yt`i

˙

ˇ

ˇ

ˇ
yt`i

ȷ

“ E
„ˆ

ut ´
Ruypiq
Ryyp0q

yt`i

˙ȷ

.

(8)
From Assumption A.1 the input is a stationary zero mean
sequence with gaussian distribution, it follows that the output
too and consequently E

”´

ut ´
Ruypiq
Ryyp0q

yt`i

¯ı

“ 0. Then from
(8) we have

E
”

ut

ˇ

ˇ

ˇ
yt`i

ı

“
Ruypiq
Ryyp0q

E
”

yt`i

ˇ

ˇ

ˇ
yt`i

ı

“
Ruypiq
Ryyp0q

yt`i

. (9)

The cross-correlation between ut and st is defined by Ruspiq “

E rutst`is, it can then be expressed by

Ruspiq “ E rutst`is

“ E
”

E
”

utst`i

ˇ

ˇ

ˇ
yt`i

ıı

“ E
”

st`iE
”

ut

ˇ

ˇ

ˇ
yt`i

ıı

“
Ruypiq
Ryyp0q

E rst`iyt`is

“ αRuypiq

(10)

where α “
Rsyp0q

Ryyp0q
is a constant. It follows from (5) and (10)

that θ satisfies
¨

˚

˚

˚

˝

Rusp0q

Rusp1q

...
Ruspnq

˛

‹

‹

‹

‚

“ α

¨

˚

˚

˚

˝

Ruup0q Ruup1q . . . Ruupnq

Ruup1q Ruup0q . . . Ruupn ´ 1q

...
...

. . .
...

Ruupnq Ruupn ´ 1q . . . Ruup0q

˛

‹

‹

‹

‚

θ .

(11)
Define θ by

θ “

¨

˚

˚

˚

˝

Ruup0q Ruup1q . . . Ruupnq

Ruup1q Ruup0q . . . Ruupn ´ 1q

...
...

. . .
...

Ruupnq Ruupn ´ 1q . . . Ruup0q

˛

‹

‹

‹

‚

´1 ¨

˚

˚

˚

˝

Rusp0q

Rusp1q

...
Ruspnq

˛

‹

‹

‹

‚

,

(12)



then θ is such that

θ “
1
α

θ (13)

where α is given above. 1
α

corresponds to a normalization
term, if Rsyp0q and Ryyp0q are not known (which is probably
the case in practice), then it is possible to expressed α using
Assumption A.4 as follows α “

}θ}2
}θ}2

.

The algorithm proposed in this paper is then based on
(13): we propose the estimation of θ as follows

θ̂ “
1
α̂

θ̂ (14)

with

θ̂ “

¨

˚

˚

˚

˝

R̂uup0q R̂uup1q . . . R̂uupnq

R̂uup1q R̂uup0q . . . R̂uupn ´ 1q

...
...

. . .
...

R̂uupnq R̂uupn ´ 1q . . . R̂uup0q

˛

‹

‹

‹

‚

´1 ¨

˚

˚

˚

˝

R̂usp0q

R̂usp1q

...
R̂uspnq

˛

‹

‹

‹

‚

(15)
where R̂uspiq and R̂uupiq are computed as follows

R̂uspiq “
1
N

N
ÿ

t“1

utst`i , R̂uupiq “
1
N

N
ÿ

t“1

utut`i (16)

and

α̂ “
}θ̂}2

}θ}2
. (17)

Note that the implementation of (14) and (15) requires two
conditions. First the Toeplitz matrix of the estimated auto-
correlation R̂uupiq must be full rank in order to compute θ̂ .
From Assumption A.1 this should be the case. However, for
a finite number of available data this condition can be not
satisfied. In the following we consider the implementation
of the above algorithm under the following complementary
assumption:

‚ A.5 The smallest eigen-value of the Toeplitz matrix of
the estimated auto-correlation R̂uupiq is greater than or
equal to a strictly positive user-defined value (10´9 for
instance).

Second, }θ̂}2 must be different from 0 in order to realize
the normalization. This condition leads to the question of
the value of the threshold C. Indeed, for a finite number of
available data, if C is too low (respectively too high) with
respect to yt , then st “ 1 (respectively st “ ´1) for all t and
then θ̂ “ 0 from the fact that the input is zero mean. In the
following, in order to avoid such a pathological case, we
consider the implementation of the above algorithm only if
}θ̂}2 is greater than or equal to an user-defined value (10´9

for instance). In practice, it is sometimes suggested (as in [1]
and [3]) to add a dithering signal on the input of the binary
sensor. Such a ”complementary” noise allows to avoid the
pathological case described above.

Fig. 2. 2D Geometric interpretation: scatter plot of
ˆ

ut
ut´1

˙

in different

basis and estimation of a vector orthogonal to h0ut ` h1ut´1 “ 0.

B. Geometric interpretation and algebraic formulation

In this subsection we exhibit a geometric interpretation of
the proposed method which leads to an algebraic formulation
of (15). This geometric interpretation is divided into several
steps as detailed below. Some illustrations are depicted in
Fig. 2 where, for simplicity, we assume that the number of
parameters to be estimated is n ` 1 “ 2 and C “ 0.

‚ Fig. 2. a) shows the scatter plot of the dataset xt “
ˆ

ut
ut´1

˙

for t from 1 to N, the yellow and blue points

represent respectively the dataset for st equal 1 and ´1.
The red line in Fig. 2. a) corresponds to the equation
h0ut ` h1ut´1 “ 0. Visual inspection shows that the
scatter plot has two main directions: i⃗ is the primary
vector and j⃗ is the secondary vector.

‚ Let X be the regression matrix defined by

X “
`

x1 x2 . . . xN
˘

. (18)

Applying the Singular Values Decomposition (SVD) on
X we get

X “ U1
`

Σ1 0
˘

ˆ

V T
1

V T
2

˙

“ U1Σ1V T
1 (19)

where Σ1 P R2ˆ2 is a diagonal square matrix, U1 P R2ˆ2

and V T
1 P R2ˆN such that UT

1 U1 “ I2 and V T
1 V1 “ I2.



Multiplying the data by Σ
´1
1 UT

1 we get the scatter plot
of Fig. 2. b) (U1 provides the rotation and Σ

´1
1 realizes

the decompression of data).

‚ Multiplying each vector in Fig. 2. b) by its correspond-
ing binary output, we get Fig.2.c).

‚ Computing the mean of the scatter plot of Fig.2.c), we
get the black star in Fig.2.d). The vector corresponding
to this black star is given by 1

N
řN

t“1pΣ
´1
1 UT

1 xtqst “

Σ
´1
1 UT

1
1
N

řN
t“1 xtst . Note that this vector is orthogonal

to the separating line in Fig.2.b).

‚ Multiplying the previous vector Σ
´1
1 UT

1
1
N

řN
t“1 xtst by

U1Σ
´1
1 , we obtain the vector U1Σ

´2
1 UT

1
1
N

řN
t“1 xtst . This

vector is the vector with the black star depicted on
Fig.2.e) and it is orthogonal to the red line h0ut `

h1ut´1 “ 0. This vector is consequently proportional to
ˆ

h0
h1

˙

.

Note that 1
N U1Σ2

1UT
1 “ 1

N XXT corresponds to the matrix
of the estimated auto-correlation R̂uupiq used in (15). It
follows that θ̂ in (15) corresponds to

θ̂ “
` 1

N U1Σ2
1UT

1
˘´1 1

N
řN

t“1 xtst

“ NU1Σ
´2
1 UT

1
1
N

řN
t“1 xtst

. (20)

This shows that θ̂ is proportional to the vector with the
black star depicted on Fig.2.e).

From the above steps we obtain the following formulation
on θ̂ :

θ̂ “ NU1Σ
´2
1 UT

1 meanpU1Σ1V T
1 d Sq (21)

where meanpU1Σ1V T
1 d Sq denotes the vector built with the

mean of each line of U1Σ1V T
1 d S, d denotes the Hadamard

product and S the matrix defined by

S “

ˆ

s1 s2 . . . sN
s1 s2 . . . sN

˙

. (22)

Finally (21) provides the following formulation for the
computation of θ̂ :

θ̂ “ NU1Σ
´1
1 meanpV T

1 d Sq. (23)

This algebraic formulation is equivalent to (15), its interest
is the use of a robust linear algebra tool (i.e. the SVD) for
the estimation of θ̂ ([20]).

C. Analysis
An analysis of the algorithm is provided in this subsection.

It requires a complementary assumption. Let us first define
Fk

t the σ -algebra of events generated by the random variables
tul , t ď l ď ku and let L2pFb

aq denotes the collection of all
second-order random variables which are Fb

a-measurable.
Define ρpkq the maximal correlation coefficient as

ρpkq “ supAPL2pF0
´8q,BPL2pF8

k q

|covtA,Bu|

σAσB
(24)

where σA denotes the standard deviation and covtA,Bu the
covariance. The stationary process tutu is called ρ-mixing
([21]) if it satisfies

lim
kÑ8

ρpkq “ 0 (25)

Our complementary assumption is thus the following:
‚ A.6 tutu is a ρ-mixing process.
Roughly speaking, Assumption A.6 means that samples

of tutu sufficiently well separated in time are approximately
independent. By now we can establish the following conver-
gence theorem.

Theorem 1: Assume A.1, A.2, A.3, A.4, A.5 and A.6
hold, then θ̂ defined by (14) is asymptotically unbiased,
mean-square convergent and there exists Σ such that

lim
NÑ8

NE
”

}θ̂ ´ θ}2
2

ı

ď Σ. (26)

■

Proof 1: The proof is divided in two parts: first we focus
on ̂̄

θ ´ θ̄ , then we focus on θ̂ ´ θ .
‚ To begin let us consider ̂̄

θ ´ θ̄ . ̂̄
θ is defined by (15).

Denote

M “

¨

˚

˚

˚

˝

Ruup0q Ruup1q . . . Ruupnq

Ruup1q Ruup0q . . . Ruupn ´ 1q

...
...

. . .
...

Ruupnq Ruupn ´ 1q . . . Ruup0q

˛

‹

‹

‹

‚

(27)

and

N “

¨

˚

˚

˚

˝

Rusp0q

Rusp1q

...
Ruspnq

˛

‹

‹

‹

‚

, (28)

we have ̂̄
θ “ M̂´1N̂ and then̂̄

θ ´ θ̄ “ M̂´1N̂ ´ M´1N (29)

This giveŝ̄
θ ´ θ̄ “ M̂´1pN̂ ´ Nq ` pM̂´1 ´ M´1qN

“ M̂´1pN̂ ´ Nq ` M̂´1pM ´ M̂qM´1N
“ M̂´1pN̂ ´ Nq ` M̂´1pM ´ M̂qθ̄

. (30)

Using the triangular inequality and the Frobenius norm this
gives

}̂̄θ ´ θ̄}2 ď }M̂´1}F

´

}N̂ ´ N}2 ` }M̂ ´ M}F }θ̄}2

¯

. (31)

It is considered in Assumption A.5 that the smallest eigen-
value of M̂ is greater than or equal to a strictly positive user
defined value. Denote a this user defined value, this gives

}M̂´1}F ď

?
n ` 1
a

(32)

and then

}̂̄θ ´ θ̄}2 ď

?
n ` 1
a

´

}N̂ ´ N}2 ` }M̂ ´ M}F }θ̄}2

¯

(33)



‚ By now let us consider θ̂ ´θ . θ̂ is defined by (14), then
we have

θ̂ ´ θ “ 1
α̂

θ̂ ´ 1
α

θ

“ 1
α̂

pθ̂ ´ θq `
` 1

α̂
´ 1

α

˘

θ

“
}θ}2

}θ̂}2
pθ̂ ´ θq `

}θ}2

}θ}2}θ̂}2
p}θ}2 ´ }θ̂}2qθ

“
}θ}2

}θ̂}2
pθ̂ ´ θq ` 1

}θ̂}2
p}θ}2 ´ }θ̂}2qθ

. (34)

Using the triangular inequality and the fact that |}θ}2 ´

}θ̂}2| ď }θ ´ θ̂}2 we get

}θ̂ ´ θ}2 ď 2
}θ}2

}θ̂}2

}θ̂ ´ θ}2. (35)

It has been considered that }θ̂}2 is greater than or equal to
an a priori user defined value. Denote b this user defined
value, this gives

}θ̂ ´ θ}2 ď 2
}θ}2

b
}θ̂ ´ θ}2. (36)

Together with (33) we obtain

}θ̂ ´ θ}2 ď 2
}θ}2

b

?
n ` 1
a

´

}N̂ ´ N}2 ` }M̂ ´ M}F }θ̄}2

¯

(37)
which gives

}̂̄θ ´ θ̄}2
2 ď 8

}θ}2
2

b2
n ` 1

a2

´

}N̂ ´ N}2
2 ` }M̂ ´ M}2

F }θ̄}2
2

¯

(38)

and then

NE
”

}̂̄θ ´ θ̄}2
2

ı

ď 8
}θ}2

2
b2

n ` 1
a2

´

NE
”

}N̂ ´ N}2
2

ı

` NE
”

}M̂ ´ M}2
F

ı

}θ̄}2
2

¯

.

(39)
Note that from Assumption A.6 tutu is ρ-mixing process,

it follows from ([22]) that for all j, R̂uup jq is mean-square
convergent and there exists Σuu

j such that

lim
NÑ8

NE
”

pR̂uup jq ´ Ruup jqq2
ı

“ Σ
uu
j . (40)

It follows that there exists ΣM such that

lim
NÑ8

NE
”

}M̂ ´ M}2
F

ı

“ Σ
M. (41)

Note also that tytu is the output of a FIR filter with tutu

as input, then tut ;ytu is also a ρ-mixing process. tstu being
the output of a 1-bit ADC with tytu as input, then it can
be shown that tut ;stu is a ρ-mixing process too. It follows
from ([22]) that for all j R̂usp jq is mean-square convergent
and there exists Σus

j such that

lim
NÑ8

NE
”

pR̂usp jq ´ Rusp jqq2
ı

“ Σ
us
j . (42)

It follows that there exists ΣN such that

lim
NÑ8

NE
”

}N̂ ´ N}2
2

ı

“ Σ
N. (43)

Using (41) and (43) in (39) gives

lim
NÑ8

NE
”

}θ̂ ´ θ}2

ı

ď 8
}θ}2

2
b2

n ` 1
a2

`

Σ
N ` Σ

M}θ̄}2
2
˘

. (44)

Taking Σ “ 8 }θ}2
2

b2
n`1
a2

`

ΣN ` ΣM}θ̄}2
2
˘

we get conclusions of
the theorem.

■
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Fig. 3. First experiment: Plots of estimated components of θ as a function
of N for SNR “ 0dB and 20db.

IV. NUMERICAL EXAMPLE

In this section some numerical simulations are depicted
so as to show the efficiency of the proposed algorithm and
confirm the analysis presented in subsection III-C. We choose
the same example as in [23]. The system is then described
by h0 “ 1, h1 “ ´0.7, h2 “ 4, h3 “ ´2.8 and n “ 3. In this
example, we assume }θ}2 to be known (Assumption A.4).

The input tutu is a zero mean colored gaussian noise. It
follows that tutu satisfies Assumption A.1 and tutu is a ρ-
mixing process satisfying Assumption A.5. The noise tvtu

is a zero mean white gaussian noise uncorrelated with tutu

(Assumption A.2). The threshold is C “ 1.

A. First experiment: influence of N

In a first experiment, we investigate the behavior of the
algorithm as a function of N. In this experiment the variance
of the noise is adjusted so as to have a Signal to Noise
Ratio (SNR) equal to 0dB pr 20db. Estimates of all hi are
depicted in Fig. 3 as function of N. These results show
that the estimates of system parameters are asymptotically
unbiased and are well estimated even if N is not very large.

B. second experiment: influence of the noise level

In a second experiment, we investigate the noise effect on
the estimates. A Monte Carlo simulation is carried out with
100 runs for several SNR (from 0dB to 20dB with a step of
5dB) and with N “ 5000 available data.

The Mean Square Error E
”

}θ̂ ´ θ}2
2

ı

is depicted in Fig.
4 as function of SNR. We notice that the higher the SNR
is, the more accurate the estimate is. We conclude from this
experiment that the algorithm performs well even if the noise
range is wide.

C. Third experiment: confirmation of the analysis

In a third experiment we confirm the analysis of subsection
III-C. A Monte Carlo simulation is carried out with 100 runs
for several N (from 103 to 105 with a step of 5.103) and with
SNR“ 0dB and SNR“ 20dB.

Fig.5 depicts the variation of E
”

}θ̂ ´ θ}2
2

ı

in logarithmic
scale as function of N. We notice that these results con-
firm the previous conclusion with respect the noise impact.
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Fig. 4. Second experiment: The Mean Square Error as function of SNR
for N “ 5000.
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Fig. 5. Third experiment: The Mean Square Error as a function of N for
SNR“ 0dB and SNR“ 20dB.

Moreover it appears that E
”

}θ̂ ´ θ}2
2

ı

decreases as N´1

which confirms (26) in our theorem and the mean-square
convergence rate of OpN´1q.

V. CONCLUSION

An identification algorithm from binary output measure-
ments is proposed in this paper. The algorithm is adapted
to the identification of FIR systems. It is based on the
estimation of correlation functions. From an implementation
point of view, with respect to other algorithms, the algorithm
requires few conditions on the input signal and on the
noise, a main interest of the proposed algorithm is then
the fact that the practical framework is less restrictive. An
algebraic formulation using a SVD is also proposed in order
to facilitate the implementation through a robust algebra tool
(robust from a numerical implementation point of view).
A convergence analysis is provided, it is demonstrated that
the algorithm is asymptotically unbiased and mean-square
convergent. Numerical simulations confirm the analysis. The
extension of the approach to Infinite Impulse Response
systems or to an online formulation are subjects for future
works.
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