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Abstract

The development of robust and reliable kinetic models is vital to build safe,

eco-friendly, and cost-competitive chemical processes. Establishing kinetic

models for complex chemical systems such as biomass valorization is cumber-

some because the kinetic modeller must test different models and fit several

experimental observables (or concentrations). Usually, in chemical reaction

engineering, kinetic model assessment is based solely on the regression stage

outputs. The implementation of a validation stage can aid in choosing the most

reliable kinetic models, essentially in the case of complex chemical systems.

We studied the solvolysis of 5-hydroxymethylfurfural (5-HMF) to butyl levuli-

nate (BL) as a model reaction constituting several consecutive and parallel

reaction steps. From an existing kinetic model, we created 60 synthetic runs in

batch conditions. In the first part, we tested four different models with

5 degrees of noise, and we carried out the modelling on the 60 synthetic runs.

In the second part, two types of holdout methods were evaluated. In the last

part, cross-validation, namely the k-fold method, was used. We found that the

10-fold method allowed more efficient selection results even when the noise

level was high. Besides, k-fold allows for not scarifying experimental runs and

selecting the most reliable model.
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1 | INTRODUCTION

The kinetic model has a central role in the development
of chemical processes. From this model, we can optimize
the kinetics of production and, thus, the economic viabil-
ity of a chemical process.

The more robust and reliable a kinetic model is, the
better the optimization steps are.[1–3] The kinetic model-
ling stage is time-demanding because it requires experi-
mental data, analytical method development, and model

testing. To develop a reliable kinetic model, we need
reliable analytical methods to determine the evolution
qualitatively and quantitatively of different species in per-
manent or transient regimes. The kinetic modeller keeps
in mind that the complexity of his/her model depends on
the accuracy of the analytical methods. We do not neces-
sarily want a complex kinetic model describing all the
reaction steps, but rather a model with the ability to
describe the production kinetics of targeted chemicals in
a reliable way.
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In chemical reaction (or reactor) engineering,[4–6]

there is a clear tendency in the current literature to
develop complex kinetic models and microkinetic ones.
Mechanical quantum calculations such as density func-
tional theory (DFT) are increasingly used to unravel ele-
mentary reaction steps and some kinetic/thermodynamic
constants.[7–11] This combination allows for decreasing
the number of parameters to estimate. The drawback of
this approach is that the quantum mechanical estimation
could be time-demanding and uncertain. For instance,
solvent effect and non-homogeneous surface catalysts are
still challenging to include in the quantum mechanical
calculation. To the best of our knowledge, there are no
microkinetic models including a validation stage. Thus,
their industrial application could be limited.

In research on kinetic models describing surface-
catalyzed reactions, we can also notice a great effort to
assess several surface reaction models and a big one for
parameter estimation. Despite this significant effort, we
regret that the validation stage is rare in such
papers.[12–14] Usually, kinetic modellers discriminate
models based on the output from the regression stage.
For instance, the modeller could compare the residual
sum of squares, plot the parity plot, or calculate the
Akaike information criterion (AIC) to find the most reli-
able models.[15–18]

The fact that the validation stage is not commonly
used could be due to the fact that the kinetic modeller
only considers the holdout validation method, leading to
the sacrifice of some experimental runs from the regres-
sion stage. The cross-validation (CV) approach, not com-
mon in kinetic modelling articles, can be used to
overcome this issue. Some articles have shown the bene-
fits of this approach compared to the holdout method,
especially as a tool for model selection.[12–14]

To fill this gap, this article compares three assess-
ment approaches: regression, regression-validation, and
regression-CV applied to the production of butyl levulinate
(BL) from the alcoholysis of 5-hydroxymethylfurfural
(5-HMF).[14] This molecule comes from the valorization of
lignocellulosic biomass that is not in competition with the
alimentary sector. BL is considered a promising platform
molecule and promising biofuel and/or fuel additive.[19–21]

Developing reliable and robust kinetic models for val-
orizing lignocellulosic biomass is vital for developing
these sustainable processes.[22] The transformation of lig-
nocellulosic biomass into platform molecules comprises
several unidentified reaction steps leading to the produc-
tion of several intermediates or side products. For
instance, the acid-catalyzed hydrolysis of lignocellulosic
biomass to levulinic acid (LA) produces more than
15 intermediates or final products.[23] Based on these
multiple observables (experimental concentrations),

kinetic modellers could be tempted to develop complex
kinetic models, requiring the estimation of several
parameters and increasing the risk of overfitting.[24–27]

A validation stage can determine the presence of
overfitting.

In kinetic modelling, the implementation of a vali-
dation stage is more relevant for complex kinetic sys-
tems than simple kinetic systems, that is, chemical
systems comprising less than two reaction steps. As
mentioned earlier, one can develop several possible
kinetic models for complex kinetic systems, and the val-
idation stage is a supplementary tool in model selec-
tion. It was also important for the author to show the
benefit of this approach in a real case study of biomass
valorization.

This article proposes the evaluation of the efficiency
of the k-fold method compared to the holdout method
and the no-validation method. For that, synthetic data
were generated by simulating a kinetic model for the sol-
volysis of 5-HMF over Amberlite IR-120.[14] Then, differ-
ent noise levels were added to the synthetic data, that is,
concentrations. We did not remove the outliers because
this article aimed to assess the different validation
methods even when the noise was high.

2 | NUMERICAL EXPERIMENTS

Di Meno Di Buchianico et al.[14] found that the reaction
pathway displayed in Figure 1 was the most reliable.
They assessed different models for the solvolysis of fruc-
tose to BL over Amberlite IR-120 in an autoclave. Their
study used γ-valerolactone (GVL) as a co-solvent for solu-
bility reasons. A previous study found that internal and
external mass transfer resistance can be neglected.[20]

The rate expressions are represented by Equations (1)–(8).
In this study, it was assumed that this model is the true
one, and the values of kinetic constants are displayed in
Table S1.

From Figure 1, one can notice that 5-HMF can be
degraded into humins, a hydrocarbon polymer. 5-HMF can
also be transformed into formic acid (FA) and Int1, then
Int1 can be transformed into LA. FA and LA can be esteri-
fied by butanol into butyl formiate (BF) and BL. 5-HMF
can also be etherified into 5-butoxymethylfurfural (5-BMF).
This chemical (5-BMF) can be transformed into BF
and BL.

The reaction rates are expressed as follows:

R1 ¼ k1 � HMF½ � � Prot:½ � ð1Þ

R2 ¼ k2 � INT1½ � � Prot:½ � ð2Þ
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R3 ¼ k3 � HMF½ � � BuOH½ � � Prot:½ � ð3Þ

R4 ¼ k4 � BMF½ � � BuOH½ � � Prot:½ � ð4Þ

R5 ¼ k5 � INT1½ � � BuOH½ � � Prot:½ � ð5Þ

R6 ¼ k6 � FA½ � � BuOH½ � � Prot:½ � ð6Þ

R7 ¼ k7 � LA½ � � BuOH½ � � Prot:½ � ð7Þ

R8 ¼ k8 � HMF½ � � Prot:½ � ð8Þ

The term Prot:½ � is the concentration of protons. The
proton capacity of Amberlite IR-120 is 4.4meq of proton
per dried gram of catalyst.[28–31] We have considered a
free proton model, meaning that the degree of freedom is
high. The reaction volume, VReaction, was calculated based
on butanol density at the corresponding temperature.[32]

Prot:½ � ¼
mdried catalyst �Capacity mol of Proton

mdried catalyst

� �
VReaction

One can notice that protons catalyze all reaction
steps.

Material balances by assuming an ideal batch reactor
lead to the following ordinary differential equa-
tions (ODEs):

d HMF½ �
dt

¼�R1�R3�R8 ð9Þ

d BMF½ �
dt

¼R3�R4 ð10Þ

d INT1½ �
dt

¼R1�R2þR4�R5 ð11Þ

d LA½ �
dt

¼R2�R7 ð12Þ

d BL½ �
dt

¼R5þR7 ð13Þ

d BuOH½ �
dt

¼�R3�R4�R5�R6�R7 ð14Þ

d FA½ �
dt

¼R1�R6 ð15Þ

d BF½ �
dt

¼R4þR6 ð16Þ

d Humins½ �
dt

¼R8 ð17Þ

Table S1 shows the estimated kinetic constant
obtained from Di Meno Di Buchianico et al.[14]

ODEs (9)–(17) were solved by the DDAPLUS solver,
based on a modified Newton algorithm,[33] and imple-
mented in Athena Visual studio.[34] We can generate syn-
thetic data over operating conditions using these true
kinetic constants (Table S1) and solve these ODEs
(Table S2).

Table S2 shows the initial operating conditions for the
60 runs. This experimental matrix was designed by vary-
ing different initial operating conditions as a kinetic
experimenter would have done. We varied initial concen-
trations of different species, catalyst loadings, and reac-
tion temperatures. Some experiments were carried out

FIGURE 1 Reaction pathway for the solvolysis of 5-hydroxymethylfurfural (5-HMF) over Amberlite IR-120. BF, butyl formiate;

BL, butyl levulinate; BMF, butoxymethylfurfural; FA, formic acid; LA, levulinic acid.
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(numerically) with an initial amount of FA or LA to
correctly estimate the kinetic constants of esterification
(Figure 1).

3 | ERRORS

The noise was added to the synthetic data via white
Gaussian noise. The Matlab function awgn was used to
add this noise.

The previous article mentioned that the following
species concentrations were used as observables: 5-HMF,
BMF, LA, BL, and BF.[14] Thus, different levels of noise
were added to these species concentrations.

Table 1 shows the SSE_i at different levels of noise.
For LA concentration, the added noise was lower because
in the work of Di Menno Di Bucchianico et al.,[14] the
analytical error was lower than the other species. SSE
was defined as follows:

SSE_i¼
X

Ctrue value of i�Cnoised value of ið Þ2 ð18Þ

where Ctrue value of i is the true concentration of species
i and Cnoised value of i is the noised concentration of
species i.

The noise decreases in the following order: Error
1 < Error 4 < Error 3 < Error 2 < Error 5.

Figures S1–S5 show the true concentration of i versus
the noise-corrupted concentration of i at different noise
levels. True concentrations with error 5 are the most
scattered data.

4 | MODELLING

As shown in a previous article of our research group,[14]

the elementary reaction steps for this system are still
under debate and are unclear. We have proposed four
probable reaction models, which are briefly explained
below. Figure 2 shows a simplified pathway for 5-HMF
alcoholysis, where there is no intermediate. Table 2

shows the rate expressions for the different reactions in
Model 1, and Table 3 for Model 2.

Material balances for Models 1 and 2 lead to the fol-
lowing ODEs:

d HMF½ �
dt

¼�R1�R2�R6 ð19Þ

d BMF½ �
dt

¼R2�R3 ð20Þ

d LA½ �
dt

¼R1�R4 ð21Þ

d BL½ �
dt

¼R3þR4 ð22Þ

d BuOH½ �
dt

¼�R2�2 �R3�R4�R5 ð23Þ

d FA½ �
dt

¼R1�R5 ð24Þ

d BF½ �
dt

¼R3þR5 ð25Þ

d Humins½ �
dt

¼R6 ð26Þ

Figure 1 shows the mechanism for Models 3 and 4.
Table 4 shows the rate expression for the different reac-
tions in Model 3, and Table 5 for Model 4. Model 3 was
the true one used to produce the synthetic data using
the estimated kinetic constants from Di Menno Di
Bucchianico et al.[14] (Table S1).

Regression and validation stages were carried out by
the commercial software Athena Visual Studio.[34,35]

HMF, LA, BMF, BF, and BL concentrations were
used as observables. These concentrations, named experi-
mental concentrations, are obtained from the synthetic
data plus the noise. For such a multi-response system,
the Bayesian framework, implemented in Athena Visual

TABLE 1 SSE_i at different levels of noise.

SSE_HMF (mol2/L2) SSE_BMF (mol2/L2) SSE_LA (mol2/L2) SSE_BL (mol2/L2) SSE_BF (mol2/L2)

Error 1 3.05E � 03 3.01E � 03 3.00E � 05 3.02E � 03 3.05E � 03

Error 4 8.16E � 03 8.79E � 03 8.34E � 05 8.54E � 03 8.49E � 03

Error 3 2.64E � 02 2.64E � 02 2.40E � 04 2.50E � 02 2.51E � 02

Error 2 2.41E � 01 2.33E � 01 2.13E � 03 2.52E � 01 2.48E � 01

Error 5 2.40E + 00 2.32E + 00 2.13E � 03 2.52E � 01 9.92E + 00

Abbreviations: BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural; HMF, hydroxymethylfurfural; LA, levulinic acid; SSE, sum of squares for
error.
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TABLE 2 Model 1 and kinetic

constants to estimate.
Reaction Rate expression Constants to estimate

5�HMFþ2H2O !Prot LAþFA R1 ¼ k1 � HMF½ � � Prot:½ � ln k1 Trefð Þð Þ and Ea1
R�Tref

5�HMFþBuOH !Prot BMF R2 ¼ k2 � HMF½ � � BuOH½ � � Prot:½ � ln k2 Trefð Þð Þ and Ea2
R�Tref

BMFþ2BuOH !Prot BLþBF R3 ¼ k3 � BMF½ � � BuOH½ � � Prot:½ � ln k3 Trefð Þð Þ and Ea3
R�Tref

LAþBuOH !Prot BLþH2O
R4 ¼ k4 � LA½ � � BuOH½ � � Prot:½ � ln k4 Trefð Þð Þ and Ea4

R�Tref

FAþBuOH !Prot BFþH2O
R5 ¼ k5 � FA½ � � BuOH½ � � Prot:½ � ln k5 Trefð Þð Þ and Ea5

R�Tref

5�HMF !Prot Humins R6 ¼ k6 � HMF½ � � Prot:½ � ln k6 Trefð Þð Þ and Ea6
R�Tref

Abbreviations: BF, butyl formiate; BMF, butoxymethylfurfural; FA, formic acid;
HMF, hydroxymethylfurfural; LA, levulinic acid.

TABLE 3 Model 2 and kinetic

constants to estimate.
Rate expression Constants to estimate

5�HMFþ2H2O !Prot LAþFA R1 ¼ k1 � HMF½ � � Prot:½ � ln k1 Trefð Þð Þ and Ea1
R�Tref

5�HMFþBuOH !Prot BMF R2 ¼ k2 � HMF½ � � BuOH½ � � Prot:½ � ln k2 Trefð Þð Þ and Ea2
R�Tref

BMFþ2BuOH !Prot BLþBF R3 ¼ k3 � BMF½ � � BuOH½ � � Prot:½ � ln k3 Trefð Þð Þ and Ea3
R�Tref

LAþBuOH !Prot BLþ2H2O
R4 ¼ k4 � LA½ � � BuOH½ � � Prot:½ � ln k4 Trefð Þð Þ and Ea4

R�Tref

FAþBuOH !Prot BFþH2O
R5 ¼ k5 � FA½ � � BuOH½ � � Prot:½ � ln k5 Trefð Þð Þ and Ea5

R�Tref

5�HMF !ProtHumins R6 ¼ k6 � HMF½ �2 � Prot:½ � ln k6 Trefð Þð Þ and Ea6
R�Tref

Abbreviations: BF, butyl formiate; BMF, butoxymethylfurfural; FA, formic acid;

HMF, hydroxymethylfurfural; LA, levulinic acid.

FIGURE 2 Mechanism for the alcoholysis of 5-hydroxymethylfurfural (5-HMF): Models 1 and 2. BF, butyl formiate; BL, butyl

levulinate; 5-BMF, butoxymethylfurfural; FA, formic acid; LA, levulinic acid.
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Studio, is more suitable than the non-linear least squares
approach.[36,37] In the Bayesian framework, the minimi-
zation of the objective function (OF) requires the deter-
mination of the determinant criterion.[38]

The GREGPLUS subroutine minimizes the OF, deter-
mines the credible intervals for each estimated parame-
ter, and calculates the normalized parameter covariance.

The minimization of the OF is done via successive
quadratic programming.[34,37]

OF¼ aþbþ1ð Þ � ln υj j ð27Þ

where υj j is the determinant of the covariance matrix of
the responses, b is the number of responses, and a is the
number of events in response. Each element of this
matrix is as follows:

υij ¼
Xn
u¼1

Ciu� bCiu

h i
� Cju� bCju

h i
ð28Þ

where Ciu is the experimental concentration and bCiu is
the estimated value for response i and event u; and Cju

the experimental concentration and bCju the estimated
value for response j and event u.

The credible intervals of the estimated parameters
were evaluated by the marginal highest posterior den-
sity (HPD).

A modified Arrhenius equation expresses the rate
constants to consider the temperature effect. To decrease
the strong correlation between the pre-exponential
factor and the activation energy, Buzzi-Ferraris
recommended linearizing the Arrhenius equation[39] as
follows:

k Tð Þ¼ exp ln k Trefð Þð Þþ Ea

R �Tref
� 1�Tref

T

� �� �
ð29Þ

where Tref is the reference temperature.
Three different approaches were used for the kinetic

modelling:

TABLE 4 Model 3 and kinetic

constants to estimate.
Reaction Rate expression Constants to estimate

5�HMFþH2O !Prot FAþ Int1 R1 ¼ k1 � HMF½ � � Prot:½ � ln k1 Trefð Þð Þ and Ea1
R�Tref

Int1þH2O !Prot LA R2 ¼ k2 � INT1½ � � Prot:½ � ln k2 Trefð Þð Þ and Ea2
R�Tref

5�HMFþBuOH !Prot BMF R3 ¼ k3 � HMF½ � � BuOH½ � � Prot:½ � ln k3 Trefð Þð Þ and Ea3
R�Tref

BMFþBuOH !Prot Int1þBF R4 ¼ k4 � BMF½ � � BuOH½ � � Prot:½ � ln k4 Trefð Þð Þ and Ea4
R�Tref

Int1þBuOH !Prot BL R5 ¼ k5 � INT1½ � � BuOH½ � � Prot:½ � ln k5 Trefð Þð Þ and Ea5
R�Tref

FAþBuOH !Prot BFþH2O
R6 ¼ k6 � FA½ � � BuOH½ � � Prot:½ � ln k6 Trefð Þð Þ and Ea6

R�Tref

LAþBuOH !Prot BFþH2O
R7 ¼ k7 � LA½ � � BuOH½ � � Prot:½ � ln k7 Trefð Þð Þ and Ea7

R�Tref

5�HMF !ProtHumins R8 ¼ k8 � HMF½ � � Prot:½ � ln k8 Trefð Þð Þ and Ea8
R�Tref

Abbreviations: BF, butyl formiate; BMF, butoxymethylfurfural; FA, formic acid;
HMF, hydroxymethylfurfural; LA, levulinic acid.

TABLE 5 Model 4 and kinetic

constants to estimate.
Reaction Rate expression Constants to estimate

5�HMFþH2O !Prot FAþ Int1 R1 ¼ k1 � HMF½ � � Prot:½ � ln k1 Trefð Þð Þ and Ea1
R�Tref

Int1þH2O !Prot LA R2 ¼ k2 � INT1½ � � Prot:½ � ln k2 Trefð Þð Þ and Ea2
R�Tref

5�HMFþBuOH !Prot BMF R3 ¼ k3 � HMF½ � � BuOH½ � � Prot:½ � ln k3 Trefð Þð Þ and Ea3
R�Tref

BMFþBuOH !Prot Int1þBF R4 ¼ k4 � BMF½ � � BuOH½ � � Prot:½ � ln k4 Trefð Þð Þ and Ea4
R�Tref

Int1þBuOH !Prot BL R5 ¼ k5 � INT1½ � � BuOH½ � � Prot:½ � ln k5 Trefð Þð Þ and Ea5
R�Tref

FAþBuOH !Prot BFþH2O
R6 ¼ k6 � FA½ � � BuOH½ � � Prot:½ � ln k6 Trefð Þð Þ and Ea6

R�Tref

LAþBuOH !Prot BFþH2O
R7 ¼ k7 � LA½ � � BuOH½ � � Prot:½ � ln k7 Trefð Þð Þ and Ea7

R�Tref

5�HMF !ProtHumins R8 ¼ k8 � HMF½ �2 � Prot:½ � ln k8 Trefð Þð Þ and Ea8
R�Tref

Abbreviations: BF, butyl formiate; BMF, butoxymethylfurfural; FA, formic acid;
HMF, hydroxymethylfurfural; LA, levulinic acid.
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• Use of all experiments for the regression and no
validation stage.

• Use of the holdout approach[40,41]: 80% of experiments
for regression and 20% for validation; 90% of experi-
ments for regression and 10% for validation.

• Use of CV[12,40–46]: 5-fold and 10-fold methods.

Visual fitting, parity plots, SSR, or CV evaluate regres-
sion or validation stages. In the multi-response system,
one should calculate these properties for each observable.

4.1 | All experiments

The 60 experiments (Table S2) with different errors were
used for the regression to estimate the kinetic constants.

The fit of the model to the experimental data can give
a first overview regarding the model reliability. Neverthe-
less, it could be challenging to discriminate different
models just based on the fitting.

Figures 3–6 show the fit to Run 55 for Models 1–4 with
the lowest error, that is, error 1. In Run 55, a significant

FIGURE 3 Fit of Model 1 to the experimental concentrations (error 1) with error standard deviations for Run 55. cBF, concentration

of butyl formiate; cBL, concentration of butyl levulinate; cBMF, concentration of 5-butoxymethylfurfural; cHMF, concentration of

5-hydroxymethylfurfural; cLA, concentration of levulinic acid.
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amount of LA was added. One can notice that Models
1 and 2 (Figures 3 and 4) show a slightly lower fitting qual-
ity than Models 3 and 4. It is difficult to discriminate
between models based on fitting visuals. In SI (Figures S6–
S9), we notice that parity plots for error 3 show that Model
3 is slightly better than Model 4.

Figure 7 displays the sum of squared residuals
from regression (SSRReg) for the different models and
errors.

SSRReg_i¼
X

Csimulated value of i�Cexperimental value of i
� 	2

ð30Þ

Figure 7 shows that for errors 1, 4, and 3, we can
observe that Model 3 gives the lowest values of SSRReg_i.
Nevertheless, we cannot discriminate between Models 3
and 4 for errors 2 and 5, that is, the ones with the higher
degree of noise.

The AIC is another model selection tool that con-
siders the trade-off between the number of estimated
parameters and SSRReg values.

[14,43,47–50]

AIC¼number of independent events

� ln SSRReg_All

number of independent events

� �
þ2number of estimated parameters ð31Þ

FIGURE 4 Fit of Model 2 to the experimental concentrations (error 1) with error standard deviations for Run 55. cBF, concentration

of butyl formiate; cBL, concentration of butyl levulinate; cBMF, concentration of 5-butoxymethylfurfural; cHMF, concentration of

5-hydroxymethylfurfural; cLA, concentration of levulinic acid.
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where SSRReg_All is the sum of squared residuals from
regression for BF, BL, LA, BMF, and HMF. Table 6 shows
the AIC values for different models, SSRReg_All, and the
number of estimated parameters. For errors 1, 4, 3,
and 2, Table 6 shows that Model 3 is the most reliable
because AIC is the lowest for this model. For error 5, that
is, the one with the highest noise level, Model 2 is pre-
dicted to be the most reliable based on AIC value.

Tables S3–S6 show the estimated values for all Models
with credible intervals, represented by HPD. For errors
with low levels of noise (errors 1, 4, and 3), the credible
intervals are low due to the wide range of operating con-
ditions. By increasing the noise level, Models have diffi-
culty estimating some kinetic constants. For example,

Model 3 cannot estimate some kinetic constants for Reac-
tions (2) or (5) when errors 2 and 5 are applied. Indeed,
these two reactions involve the intermediate Int1 that we
do not track.

The correlation matrix (Table S7) shows no correla-
tion between estimated parameters, meaning that they
are well-identified.

Figure S10 shows the estimated constants with their
credible intervals for Model 3 compared to true constants.

We were able to estimate all parameters quite well
(Figure S10). When the level of noise increases, it is
more challenging to estimate kinetic constants for
Reactions (2) and (5), because we do not track the
intermediates.

FIGURE 5 Fit of Model 3 to the experimental concentrations (error 1) with error standard deviations for Run 55. cBF, concentration

of butyl formiate; cBL, concentration of butyl levulinate; cBMF, concentration of 5-butoxymethylfurfural; cHMF, concentration of

5-hydroxymethylfurfural; cLA, concentration of levulinic acid.
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4.2 | Holdout method

The holdout method uses a part of the experimental
data for the regression and the other part for the
validation.

Besides SSRReg_i, we define the sum of squared resid-
uals from the validation stage SSRVal_i as follows:

SSRVal_i¼
X

Csimulated value of ið
�Cexperimental value from regression set of iÞ2 ð32Þ

From this method, we can analyze the quality of
regression and validation.

We considered two options: 80% of the 60 runs are
used for regression, and 90% of the 60 runs are used for
regression.

4.2.1 | 80% of experiments for regression and
20% for validation

Experiments used for validation were 3, 24, 28, 40, 41, 45,
46, 48, 51, 55, 57, and 58. These experiments were ran-
domly selected from all experiments.

Figure 8 shows the SSRReg_i for all models. We can
observe that the regression quality decreased compared

FIGURE 6 Fit of Model 4 to the experimental concentrations (error 1) with error standard deviations for Run 55. cBF, concentration

of butyl formiate; cBL, concentration of butyl levulinate; cBMF, concentration of 5-butoxymethylfurfural; cHMF, concentration of

5-hydroxymethylfurfural; cLA, concentration of levulinic acid.
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to the regression quality when all data were used
(Figure 7). Surprisingly, with error 2, it is Model 4 that is
the most reliable, that is, with lower SSRReg_i. With error
5, it is not possible to discriminate between the 4 models.

In the Supporting Information, we can find the esti-
mated values and statistical data (Table S8).

Figure 9 shows the SSRVal_i for all models. A similar
observation can be done for the regression stage, that is,
in error 2, we cannot discriminate between Models 3 and
4; in error 5, we cannot discriminate between all models.

Figure S11 shows that when the noise level
increases, it is challenging to estimate the kinetic

FIGURE 7 SSRReg (mol2/L2) for all experiments and models. BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural;

HMF, hydroxymethylfurfural; LA, levulinic acid; SSRReg, sum of squared residuals from regression.
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constants correctly from Reactions (2) and (5). Com-
pared to the regression with all data, estimation qual-
ity is slightly lower for high errors, that is, errors
2 and 5.

4.2.2 | 90% of experiments for regression and
10% for validation

Experiments used for validation were 9, 26, 30, 49,
55, and 58. These experiments were randomly selected
from all experiments.

From Figure 10, we can observe the same trend as for
the holdout approach 80/20. With error 2, we cannot dis-
criminate between Models 3 and 4. With error 4, we can-
not discriminate between any models.

From Figure 11, we can draw the same conclusions
as from Figure 9 regarding the validation stage.
This means that both approaches are good for this
system.

In the Supporting Information, we can find the esti-
mated values and statistical data (Table S9).

Figure S12 shows that kinetic constants for Reactions
(2) and (5) are challenging to identify when the noise
degree increases. This is because both reactions involve
the intermediate that we do not track.

4.2.3 | Comparison SSRReg_i

ni from regression
and SSRVal_i

ni from Validation

between both holdout method

To compare both holdout methods, the following terms
were calculated: SSRReg_i

ni from regression
and SSRVal_i

ni from Validation
. The terms

ni from regression and ni from validation are the number of experi-
ments used for the regression and validation stages,
respectively.

Figure S13 shows the value of SSRReg_i

ni from regression
and

SSRVal_i
ni from Validation

for error 3. For both methods, we can draw the
same conclusions concerning the model selection. Thus,
it could be more interesting to use 90/10 than 80/20 to
improve the quality of estimated parameters.

4.3 | CV method

The 60 experiments were divided randomly into 5-fold
(Table 7) and 10-fold (Table 8) methods. From the litera-
ture, K = 10 is considered by several authors as the opti-
mal value.[51] The regression stage was made on K minus
1 folds and the validation stage was on the remaining fold
(Tables 9 and 10).

Kinetic constants were estimated from each regres-
sion, and these estimated constants were used for the

TABLE 6 Akaike information

criterion (AIC), number of estimated

parameters, and SSRReg_All for
different numbers.

Number of
estimated
parameters SSRReg_All AIC

Model 1–error 1 12 1.67 �122,760

Model 2–error 1 12 0.71 �134,422

Model 3–error 1 16 0.01 �189,770

Model 4–error 1 16 0.06 �168,226

Model 1–error 4 12 0.72 �134,344

Model 2–error 4 12 0.73 �134,016

Model 3–error 4 16 0.03 �175,822

Model 4–error 4 16 0.08 �164,112

Model 1–error 3 12 0.78 �133,131

Model 2–error 3 12 0.80 �132,813

Model 3–error 3 16 0.10 �160,748

Model 4–error 3 16 0.15 �155,680

Model 1–error 2 12 1.61 �123,309

Model 2–error 2 12 1.62 �123,216

Model 3–error 2 16 0.98 �130,035

Model 4–error 2 16 1.02 �129,560

Model 1–error 5 12 14.07 �93,731

Model 2–error 5 12 14.06 �93,749

Model 3–error 5 16 14.46 �93,353

Model 4–error 5 16 102.54 �66,645
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FIGURE 8 SSRReg_i for all models. BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural; HMF, hydroxymethylfurfural;

LA, levulinic acid; SSR, sum of squared residuals.
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FIGURE 9 SSRVal_i for all models. BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural; HMF, hydroxymethylfurfural;

LA, levulinic acid; SSR, sum of squared residuals.
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FIGURE 10 SSRReg_i for all models. BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural; HMF, hydroxymethylfurfural;

LA, levulinic acid; SSR, sum of squared residuals.

LEVENEUR 15



FIGURE 11 SSRVal_i for all models. BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural; HMF, hydroxymethylfurfural;

LA, levulinic acid; SSR, sum of squared residuals.
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validation. To evaluate the capacity of prediction for a
model, the CV Kð Þ number was calculated.

CV Kð Þ ¼ 1
K
�
X

Ci,experimental from validation set�Ci,simulated
� 	2

K

ð33Þ

TABLE 7 Distribution of the 60 runs in the 5 folds.

Runs Runs Runs Runs Runs

FOLD 1 5 FOLD 2 2 FOLD 3 11 FOLD 4 1 FOLD 5 6

10 4 12 3 7

15 9 23 8 17

20 21 24 13 19

22 26 29 14 28

25 27 33 16 31

30 32 38 18 34

35 36 39 37 41

44 46 40 42 43

45 48 49 47 55

50 52 53 51 56

59 60 57 54 58

TABLE 8 Distribution of the 60 runs in the 10 folds.

Fold Runs Fold Runs Fold Runs Fold Runs Fold Runs

FOLD 1 42 FOLD 2 2 FOLD 3 49 FOLD 4 8 FOLD 5 6

35 1 46 23 21

7 12 3 5 48

44 17 38 47 41

28 57 9 50 56

53 36 18 58 24

FOLD 6 43 FOLD 7 34 FOLD 8 51 FOLD 9 52 FOLD 10 27

40 60 59 14 55

26 31 32 4 37

11 16 39 29 19

10 20 25 54 13

33 22 45 15 30

TABLE 9 Different sets for regression and validation.

Set Regression Validation

Set 1 Folds 1-2-3-4 Fold 5

Set 2 Folds 5-1-2-3 Fold 4

Set 3 Folds 4-5-1-2 Fold 3

Set 4 Folds 3-4-5-1 Fold 2

Set 5 Folds 2-3-4-5 Fold 1

TABLE 10 Different sets for regression and validation for

10-fold method.

Set Regression Validation

Set 1 Folds 1-2-3-4-5-6-7-8-9 Fold 10

Set 2 Folds 10-1-2-3-4-5-6-7-8 Fold 9

Set 3 Folds 9-10-1-2-3-4-5-6-7 Fold 8

Set 4 Folds 8-9-10-1-2-3-4-5-6 Fold 7

Set 5 Folds 7-8-9-10-1-2-3-4-5 Fold 6

Set 6 Folds 6-7-8-9-10-1-2-3-4 Fold 5

Set 7 Folds 5-6-7-8-9-10-1-2-3 Fold 4

Set 8 Folds 4-5-6-7-8-9-10-1-2 Fold 3

Set 9 Folds 3-4-5-6-7-8-9-10-1 Fold 2

Set 10 Folds 2-3-4-5-6-7-8-9-10 Fold 1
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FIGURE 12 SSR_i
5 for all models using the 5-fold method (Table S10). BF, butyl formiate; BL, butyl levulinate; BMF,

butoxymethylfurfural; HMF, hydroxymethylfurfural; LA, levulinic acid; SSR, sum of squared residuals.
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FIGURE 13 Cross-validation (CV) for 5-fold method (Table S12). BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural;

HMF, hydroxymethylfurfural; LA, levulinic acid.
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FIGURE 14 SSR_i
10 for all models for 10-fold method (Table S13). BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural;

HMF, hydroxymethylfurfural; LA, levulinic acid; SSR, sum of squared residuals.
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FIGURE 15 Cross-validation (CV) for 10-fold method (Table S15). BF, butyl formiate; BL, butyl levulinate; BMF, butoxymethylfurfural;

HMF, hydroxymethylfurfural; LA, levulinic acid.
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A model with a lower CV(K) has a higher prediction
capacity.

From the regression, we defined a similar number as
follows:

SSR_i
K

¼ 1
K
�
X

Ci,experimental from regression set�Ci,simulated
� 	2

K

ð34Þ

4.3.1 | 5-fold method

Figure 12 shows SSR_i
5 for all models using 5-fold method.

We can notice that this approach allows for discriminat-
ing between all Models correctly for errors 1, 4, and 3,
based on SSR_i

5 . Increasing the noise level makes this
selection more challenging for errors 2 and 5.

In the Supporting Information, we included
Table S11 showing the estimated kinetic constants for
the different sets and all experiments from Model 3 and
error 3. The column AVERAGE shows the average
values from the estimated constants from the different
sets, and the column SD is its standard deviation. The
column All_exp is the estimated parameter obtained
from the regression using all experiments, and the col-
umn HPD is the calculated credible intervals. Even if
we can notice that the values of the columns SD and
HPD are similar, their meanings are different. The col-
umn HPD represents the credible intervals when all
runs are considered during the regression, whereas the
column SD is the standard deviation of the average
value of the estimated kinetic constants obtained from
the different sets.

We want to stress that using the k-fold method
requires estimating all the runs in the regression stage
to get the estimated kinetic constants with their credi-
ble intervals. In other words, the kinetic modeller
should present the estimated constants and credible
intervals displayed in Tables S3–S6. Hence, the regres-
sion stage uses all the data, and its accuracy is better
than the holdout method. The k-fold aids in discrimi-
nating (via CV number) and verifying if the estimated
constants are similar from the different regressions
using all runs. For the latter, the standard deviation of
the different estimated constants helps the modeller.
Table S11 shows that the estimated constants from the
different sets and all runs are similar for Model 3 with
error 3.

Figure 13 shows that Model 3 is the most reliable for
errors 1, 4, and 3. Nevertheless, when the degree of noise
increases, that is, errors 2 and 5, the selection is less
evident.

4.3.2 | CV 10-fold method

Figure 14 shows the SSR_i
10 values for the different models

for the 10-fold method. Compared to the 5-fold method,
we can notice that it is possible to discriminate even with
error 2. Figure 15 shows that it is possible to discriminate
even error 2 for CV values. The 10-fold approach is more
robust than the 5-fold one. In the Supporting Informa-
tion, we included Table S14 showing the estimated
kinetic constants for the different sets and all experi-
ments from Model 3 and error 3 for the 10-fold method.

5 | CONCLUSIONS

This manuscript proposed testing different kinetic
model assessments for the solvolysis of 5-HMF into BL
over Amberlite IR-120. The most reliable kinetic model,
obtained from a previous study, was used to create
60 synthetic runs with different operating conditions
(reaction temperature, concentrations, and catalyst
loading). These 60 synthetic runs were considered to be
true. On these synthetic runs, we added different levels
of noise.

Four models can describe the kinetics of 5-HMF
solvolysis. In the first part, the model selection was
based on the regression of all 60 synthetic runs by
using the AIC. In the second part, we used a holdout
method by comparing 80% of synthetic runs for regres-
sion and the rest for validation and 90% of synthetic
runs for regression and the rest for validation. Both
holdout methods gave similar conclusions regarding
model selection. The benefit of using 90% of runs for
the regression is that the estimated kinetic constants
are more accurate.

In the last part, we studied the k-fold CV method by
comparing the 5-fold and 10-fold methods. The 10-fold
method was the most robust because even when there
was a high degree of noise in some data, this method
found the true kinetic model.

This article shows the benefit of using the valida-
tion stage in kinetic modelling, and highlights that
model assessment should be done on the regression
and validation stage outputs. Kinetic modellers might
not want to use the holdout method because it sacri-
fices a part of the run for validation. CV such as the
10-fold method is a powerful tool because all data are
used for the regression. This approach suits complex
kinetic systems, even with significant analytical errors.
Additionally, the k-fold approach could be extended to
different chemical reactors in the same way as the clas-
sical regression analysis.
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