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Abstract  10 

A simplified AM2 model was developed to characterize mussel solid-state anaerobic digestion. This 11 

model considers two different substrates for mussels’ degradation: the mussel meat and the 12 

mussel juice obtained after sanitization. This model was implemented to characterize the 13 

anaerobic degradation of Mytilus edulis species. This model was verified, implemented, and 14 

validated in 60L batch reactors in mesophilic conditions. Two different experiments were used to 15 

calibrate kinetics using reaction invariants and an interior point optimization method. A 16 

conditioning study and a sensitivity analysis were done and had shown a better sensitivity with 17 

delayed substrate injections throughout the experiment with a factor of 10. An 88.6% 18 

accumulation of methane yield of the BMP measurement was observed, corresponding to 57.7% 19 

volatile removal with a minimum mass balance of 96.1%. Additionally, the model proposed in this 20 

study was able to successfully predict the two characteristic methane yield peaks observed during 21 

solid-state anaerobic digestion.  22 

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2589014X23001299
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1 Introduction 25 

Shellfish aquaculture consists of domestic shellfish farming by humans. Mussels are among the 26 

most popular farmed shellfish in the world, with an increasing worldwide production of over 2 27 

million tonnes per year, with China, Chili, and Spain as the main producers (FAO, 2020). Mytilus 28 

edulis, otherwise known as blue mussels, is the third more farmed species after Mytilus 29 

galloprovincialis and Mytilus chilensis with over 10 % of global mussel production. France is one of 30 

the main producers of this last species with an annual production of 47,000 t (FAO, 2020). 31 

However, only 660 kg.t-1 is suitable for human consumption (Vareltzis and Hundeland, 2012), 32 

resulting in a large amount of waste that could be valued. Many parts of the mussel could indeed 33 

be used: byssal thread, shell, and mussel meat are sources of fat, protein, carbohydrates, and other 34 

bioactive compounds. These by-products from mussel wastes could be valorized as functional 35 

ingredients for animals (Sardenne et al., 2019; Afrose et al., 2016) or humans (Vijaykrishnaraj et al., 36 

2016; Zhang et al., 2013), as building material (Martínez-Garcia et al., 2020; Martínez-Garcia et al., 37 

2019) or as soil improvement to improve soil fertility and microbial activity (Fernandez-Calviño et al., 38 

2018; Messiga et al., 2016) or soil decontamination (DiLoreto et al., 2016; Fernandez-Calviño et al., 39 

2015; Seco et al., 2014). Compounds of chemical interest could be extracted from mussel wastes as 40 

bioactive proteins, polyunsaturated fatty acids, enzymes, mineral compounds, or pigments (Naik 41 

and Hayes, 2019; Pintado et al., 1999). Another way to valorize mussel wastes is anaerobic 42 

digestion (AD). AD is a biological process that consists of the degradation of an organic substrate by 43 

a microbial consortium to produce biogas and digestate. This process kinetics may be divided into 4 44 

main steps which are hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Kothari et al., 45 

2014; Li et al., 2011; Amani et al., 2010). Solid-state anaerobic digestion (SS-AD) is defined by a 46 
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total solid content higher than 15 % and is less common in industrial applications but is more 47 

efficient in the digestion of high solid content feedstock like cattle manure or corn silage 48 

(Karthikeyan and Visvanathan, 2013; André et al., 2018). This approach reduces the reactor size, 49 

the amount of water used, and thus the amount of energy required. However, many scientific 50 

challenges still exist in this process due to the lack of knowledge on SS-AD including local 51 

accumulation of inhibitors as volatile fatty acids (VFA) due to the medium heterogeneity (André et 52 

al., 2018).  53 

AD of Mytilus edulis have already been implemented (Wollak et al., 2018; Akizuki et al., 2018) with 54 

great methane yield between 310 m3.tVS
-1 and 490 m3.tVS

-1 using one-step and two-step processes. 55 

Other studies showed that optimal conditions are reached when alkalinity is controlled (Murto et 56 

al., 2004). Concerning Mytilus edulis, the salt concentration is an important parameter to 57 

guarantee  optimal methane production and avoid process inhibitions (Zhang et al., 2017; Anwar et 58 

al., 2016; Kimata-Kino et al., 2011). Mytilus edulis SS-AD was already carried out in an Upflow 59 

Anaerobic Sludge Blanket (UASB) with a methane yield of 330 m3.tVS
-1 (Nkemka and Murto, 2013) 60 

attesting the SS-AD feasibility while maintaining process efficiency, but the digestion of mussels 61 

including shells gave low methane production. A better understanding of the phenomenon is 62 

necessary to provide a better degree of predictability regarding methane production. 63 

Mathematical modeling can be a useful understanding tool for representing biological kinetics 64 

through equations (Du et al., 2021; Fdez.-Güelfo et al., 2011). This understanding could help to 65 

implement some prediction and control tools to optimize methane production for SS-AD (Zhou et 66 

al., 2020; Donoso-Bravo et al., 2011). Different SS-AD models were developed in the literature 67 

(Coutu et al., 2022; Xu et al., 2015) including modeling of perfectly mixed systems using ordinary 68 

differential equation systems (ODE) to reach a compromise between the model complexity and the 69 

kinetic parameters identifiability as the AM2 model (Bernard et al., 2001). The current models of 70 
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anaerobic digestion are simple models such as the Gompertz model, perfectly mixed models such 71 

as the ADM1 model and its derivatives, heterogeneous models such as the distributed model and 72 

its derivatives for solid-state anaerobic digestion, and statistical models such as the logistical model 73 

(Liu et al., 2023). However, no model available in the literature is adapted to a substrate such as 74 

Mytilus edulis due to the complexity of its degradation. Indeed, the degradation of the mussel and 75 

the released juice of the mussel with the risks of inhibitions that this implies cannot be simply 76 

modeled using the models available in the literature. This study aimed to mathematically develop 77 

an innovative modified AM2 model to characterize complex substrates SS-AD such as Mytilus edulis 78 

SS-AD. This model was verified, implemented, and validated in 60L batch reactors in mesophilic 79 

conditions using the asymptotic observers’ method, which is not used much in the literature and is 80 

yet a very practical method to obtain as much experimental information as possible from the 81 

measurements made. 82 

2 Materials and methods 83 

2.1 Physicochemical characterization of substrate and inoculum 84 

Undersize Mytilus edulis mussels (MeM) used for SS-AD were sampled from the CultiMer France 85 

workshop (Vivier-sur-Mer, France). These mussels were separated and crushed (with a thickness of 86 

12 mm) from marketable bouchot mussels with a mussel sizer and a grinder on the sorting line,  87 

randomly sampled and transported to the UniLaSalle Polytechnic Institute (Beauvais, France). A 88 

sanitizing step during 1h at 70°C (Klarstein 60L, Germany) was realized. During these operations, 89 

mussels released a liquid called released juice (RJ) which was considered a different substrate than 90 

mussels during SS-AD. Liquid bovine manure (LM) was sampled from the farm of the UniLaSalle 91 

Polytechnic Institute (Beauvais, France) and was used as inoculum to bring the microbial 92 

consortium. LM was filtered by a mesh with 5 mm diameter holes to avoid solid clogging in the 93 

recirculation pipe. 94 



 

Page 5 sur 27 

 

The total solid content (TS) and the volatile solid (VS) content of MeM, RJ, and inoculum were 95 

determined by a 105°C drying for 24h and combustion at 550°C for 2h (APHA, 1988). The pH was 96 

measured with a pH meter (Mettler Toledo, Switzerland), and the total volatile fatty acid content 97 

(VFA) and the buffer capacity (TAC) were determined with an automatic titrator (Mettler Toledo, 98 

Switzerland) by two titrations using sulfuric acid. For VFA/TAC measurement, samples were 99 

centrifuged at 9000 rpm for 20 min to remove the micro-organisms which could induce an 100 

intracellular content release. Chemical Oxygen Demand (COD), Ammonium concentration, Calcium, 101 

Sodium, and total Nitrogen concentration were determined using WTW kits (WTW, Germany). All 102 

measures have been triplicated. The biochemical methane potential (BMP) of each substrate was 103 

measured using an AMPTS I device (Automatic Potential Test System, Bioprocess Control, Sweden) 104 

according to Holliger et al. (2016). All the results are reported in Table 1. 105 

2.2 Experimental set-up 106 

Two batch reactors made of polyethylene with a total volume of 60 L (considering a 50 cm height 107 

and a 39 cm diameter) were used for one run of experiments under mesophilic conditions. 108 

Experiments are (R1) and (R2). Each reactor was equipped with a plastic holder to separate the 109 

liquid and the solid phases. The reaction process took place in the liquid phase. A grid with holes of 110 

5 mm diameter was placed on the plastic holder to avoid solid blockages due to pieces of shells in 111 

the recirculation pipe. The liquid phase composed of inoculum and RJ was recirculated in each 112 

reactor with an external peristaltic pump (Masterflex, USA) respecting a liquid flow rate of 15 L.h-1, 113 

for 15 min each hour. Thus, the liquid phase was spread out across the top of the solid phase inside 114 

the reactor. Each reactor was connected to a biogas flow counter (Drum gas meter TG05,  Ritter, 115 

Germany), and biogas production was continuously measured and daily averaged. The biogas 116 

composition was daily measured with a biogas analyzer (MGA300 multi-gas analyzer ADC gas 117 
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analysis Ltd., Hoddesdon United Kingdom) and manually verified with a portative biogas analyzer 118 

(Multitec 540 Sewerin, Germany) to avoid measurement drift due to daily recalibration.  119 

RJ brings a non-negligible quantity of volatile content which contributed to VFA accumulation and 120 

could cause biological inhibitions (Karthikeyan and Visvanathan, 2013; Siegert and Banks, 2005). To 121 

study the RJ impact on MeM SS-AD, different addition strategies were adopted on each reactor. 122 

The inoculum/substrate ratio was similar in the two experimented conditions (I/S=0.41) to 123 

compare the experimental results. Each reactor was filled with 12 kg of MeM and 23 kg of LM. RJ 124 

was added in each reactor following a different strategy for each reactor: 3.5 kg of RJ was placed 125 

inside the first reactor (R1) at the beginning of the experiment and 5 constant additions of 0.7 kg of 126 

RJ were made in the second reactor (R2) during day 4, day 7, day 10, day 14, and day 17 with a 127 

ratio I/S=0.41.  128 

Once these reactors were filled, each of them was sealed and the temperature was held at a 129 

constant value of 37°C with a thermostatically controlled water bath for each experiment for 41 130 

days. Each experiment is described in Fig 1. At the end of each experiment, mass balances were 131 

determined. 132 

2.3 Mathematical model implementation 133 

2.3.1 Modeling assumptions 134 

Let us first consider the following assumptions for the derivation of the dynamical model of the 135 

process. First of all, all the state variables are expressed in COD units, and in consequence carbon 136 

dioxide does not appear in the model because it could not be oxidized. Moreover, the 137 

disintegration, hydrolysis, and acidogenesis steps have been gathered in a single step named DHA 138 

and modeled by  first-order kinetics as proposed in Bollon et al. (2011). This assumption could be 139 

made because MeM and RJ are mostly composed of proteins, lipids, and carbohydrates whose 140 
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hydrolysis is the limiting step. In addition, the acidogenic step is very fast in comparison with the 141 

hydrolysis step. Instead of different volatile fatty acids, only a generic equivalent acetic acid was 142 

considered (Bernard et al., 2001). As a consequence, the acetogenesis step was removed from the 143 

model. These assumptions allow us to reduce the number of parameters to be determined. 144 

Regarding biomass growth, the methanogenic biomass is assumed to be constant, which means 145 

that microbial growth and death are neglected. Indeed, less than 10% of the organic part of 146 

substrates is turned into biomass (Batstone et al., 2002) and this assumption allows us to identify 147 

the kinetic parameters. Ammonia was not considered in this model because there was always a 148 

very constant concentration of ammonia in all measurements. Hydrogen is an intermediate gas in 149 

SS-AD and its concentration is negligible, therefore hydrogen was not considered either. Methane 150 

was assumed to have negligible solubility in the liquid phase and therefore the methane liquid-gas 151 

transfer was neglected to simplify the model. Finally, RJ was supposed more easily degradable than 152 

MeM due to the solutes’ accessibility, and all the organic substrate entering the batch reactor was 153 

assumed fully biodegradable. 154 

2.3.2 Anaerobic digestion model and reaction kinetics 155 

A three-reaction-based biological kinetic model scheme was used for this study to provide a simple 156 

and understandable representation of the phenomenon. In this model, the DHA biomass (��) 157 

hydrolyses and converts MeM (���) and RJ (���) into VFA (S�) during the DHA step. Then VFA is 158 

converted into methane (���) during the methanogenesis step. The following equations present 159 

the model reactions: 160 

DHA - MeM ��� 	

→ k��S� + �1 − k����� 
(1) 

DHA - RJ ��� 	
�→ k��S� + �1 − k����� 
(2) 
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Methanogenesis �� ��→ ����� (3) 

A first-order kinetic was used for DHA steps, and a Haldane kinetic model with acid concentration 161 

inhibition was used to consider for methanogenesis step for the accumulated methane yield. k�� 162 

and k�� represent respectively the acidogenesis and methanogenesis conversion rates, �1 − k��� 163 

and �1 − k��� represent respectively the acidogenesis biomass and methanogenesis biomass 164 

growth rates. A Peterson matrix summarizes these kinetics in Table 2. In this table, μ�� represents 165 

the DHA rate of X� other ���, μ�� represents the DHA rate of X� other ���, K�� represents the half-166 

saturation constant associated with ��� and ���, μ���� represents the maximum growth rate of X� 167 

other S� and K� is the inhibition constant associated with the consumption of S�. The dynamical 168 

system obtained for mesophilic SS-AD is composed of 5 ordinary differential equations (ODE):  169 

������ = −r�� 
(4) 

������ = −r�� 
(5) 

����� = k��r�� + k��r�� − "� 
(6) 

����� = �1 − k���r�� + �1 − k���r�� 
(7) 

������ = ��"� 
(8) 

 170 

2.3.3 State variables initialization 171 

There are 5 state variables in the model, a lower number than other models of the literature as the 172 

ADM1 (Batstone et al., 2002) and modified solid-state models (Bollon et al., 2011; Abbassi-173 

Guendouz et al., 2012; Coutu et al., 2022), due to the previous assumptions. The total COD of LM, 174 
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MeM (���), and RJ were measured. RJ contained initial VFA extracted from mussels during 175 

sanitizing. This is why COD of RJ was divided into initial VFA (S�#) and initial RJ (���). Initial VFA 176 

content was measured and initial RJ was deduced from this value. The COD of biomass was divided 177 

into DHA biomass (��) and methanogenic biomass (��) respecting a 25%-75 % ratio according to 178 

Gavala et al. (2003). �� was supposed to be constant all along SS-AD per the modeling 179 

assumptions.  180 

2.3.4 Mass balance model 181 

A total mass balance and a first simulation were led to perform a model validation of the 182 

initialization conditions and during calibration and validation steps. This step allows us to verify 183 

mass conservation. The total mass balance expressed in equation (9) meets equation (10).   184 

$%�&' (&)) *&'&+,- = S�� + S�� + �� + ��� (9) 

�S11�� + �S12�� + ��2�� + ������ = 0 (10) 

 185 

2.4 Computational aspects 186 

2.4.1 Calibration and Validation steps 187 

Calibration was performed on the experiment (R2) for which RJ was added at constant intervals 188 

with constant amounts. This procedure allowed us to generate data that better scan the kinetics 189 

curves. 7 stages were identified in this experiment: stage 1 represents the period during which only 190 

MeM was consumed and RJ was absent from the reactor. Stages 2 through 6 represent the periods 191 

between each RJ addition. Finally, stage 7 represents the period during which all the RJ and the 192 

MeM were consumed and only the remaining VFA was consumed. The identification of these 193 

different stages allowed us to determine the kinetic parameters of the DHA step and the 194 
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monitoring of unmeasured state variables as presented in section 2.4.3. The validation step was 195 

conducted on the experiment (R1) for which all RJ was injected into the reactor at the beginning of 196 

the experiment. The cumulative methane production, the methane flow rate, and the VFA 197 

concentration were then compared with the simulated values to validate the calibration step. 2 198 

periods were identified in the first experiment (R1): a first stage of rapid consumption of RJ with a 199 

little degradation of MeM, and a second stage during which only the remaining MeM was 200 

consumed. The kinetic parameters of the DHA were also determined in this experiment to validate 201 

the values obtained during the calibration step.    202 

2.4.2 Identifiability of model parameters and unmonitored variables 203 

The notion of reaction invariants (Dochain and Vanrolleghem, 2001) allows writing a part of 204 

process dynamics independently of the reaction kinetics. This property is very helpful when one or 205 

more variables are not accessible for measurement. Reaction invariants rely on the mass balance 206 

or part of the mass balance to determine the concentration of one or more of the solutes in the 207 

process. This method is applied in this part to determine hydrolysis parameters ��� and ��� and 208 

substrate concentrations ��� and ���. 209 

2.4.2.1 Hydrolysis parameters determination 210 

The yield constants k1
1 and k1

2 were first identified during the anaerobic digestion. For this, the 211 

periods during which only MeM was consumed allowed to determine the constant k1
2 while the 212 

periods for which both substrates were consumed allowed to determine k1
1. Two assumptions 213 

were made to use the reaction invariant method:  214 

• The methanogenesis step is the limiting kinetic step 215 

• The methane produced in aqueous form is instantaneously transferred to the gas phase 216 
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These assumptions resulted in a k2 constant and 
0123,506 = 0. The reaction invariant used for the 217 

determination of k1
1 is Z2 defined in equation (11). Based on the assumptions presented above, 218 

equations (12), (13), and (14) were obtained and the coefficient k1
2 was calculated by integration 219 

from the experimental data.  220 

7� = ������ + 89� + ���,:��  

 

(11) 

�7��� = ��� ������ + �89��� = −"� = − ;12���  (12) 

��� < ����
=
�,>

=
�,?
+ < �89�@A=>

@A=?
= − 1�� < ;12���6>

6?
 

(13) 

��� = − B���,CD − ���,CE F + ���89�D − 89�E�
��B���,D − ���,EF  

(14) 

Knowing the value of k1
2, the same method was applied over the periods during which both 221 

substrates were consumed to determine k1
1. The considered reaction invariant Z1 is presented in 222 

equation (15). Under the assumptions made earlier, equations (16), (17), and (18) were obtained. 223 

k1
1 was then determined by integration from the experimental data. Results are presented in Table 224 

3. 225 

7� = ������ + ������ + 89� + �����  (15) 

�7��� = ��� ������ + ��� ������ + �89��� = − ;12���  (16) 
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��� < ����
=

,>

=

,?
+ ��� < ����

=
�,>

=
�,?
+ < �89�@A=>

@A=?
= − 1�� < ;12���6>

6?
 

(17) 

��� = − B���,CD − ���,CE F + ���B���,D − ���,EF + ���89�D − 89�E�
��B���,D − ���,EF  

(18) 

2.4.2.2 Unmonitored state variables tracking with asymptotic observers 226 

The method of reaction invariants was also used to determine the evolution of unmeasured state 227 

variables. For this, the property of reaction invariants was used to estimate their value and to 228 

deduce the state variable values as a function of time. Thus, the reaction invariant Z2 was 229 

estimated to determine the evolution of S1
2 during periods when only MeM was consumed and the 230 

reaction invariant Z1 was estimated to determine S1
1 during periods when both substrates were 231 

consumed. The expressions presented in equations (19) and (20) allowed the estimation of Z1 and 232 

Z2 considering the concentration of methane gas. The expression of these two reaction invariants 233 

allowed us to deduce the curve shapes of S1
2 and S1

1 using equations (21) and (22).   234 

7�G = ������,6 + 89�6 + ���,C6
��  (19) 

7�G = ������,# + ������,# + 89�# + ���,C#
��  (20) 

���G = 1��� H7�G − 89� − ���,C�� I (21) 

���G = 1��� H7�G − 89� − ���,C�� − ������I 

 

(22) 
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2.4.2.3 DHA kinetic parameters determination 235 

The kinetic parameters of the DHA step for RJ and MeM were determined differently. Indeed, the 236 

experimental S0 concentration was known at the beginning and the end of the experimental data 237 

set and allowed us to integrate the DHA first-order kinetics to directly determine µ1
1 and µ1

2 238 

according to equations (23) and (24). Results are presented in Table 3. 239 

JK
L ������ = −r�� = −M������������� = −r�� = −M�������  

(23) 

 240 

JN
NK
NN
LM�� = ln Q����� = �E����B� = �DFR

S ����6>6?

M�� = ln Q����� = �E����B� = �DFR
S ����6>6?

 

(24) 

2.4.2.4 Haldane kinetic parameters determination 241 

In practice, it is difficult to obtain the kinetic parameters of a Haldane kinetic model. Indeed, even 242 

if the parameters are structurally identifiable like a Monod model (Aborhey and Williamson, 1978), 243 

the presence of uncertainty and noise as well as the number of experimental data, particularly over 244 

inhibition makes these parameters often practically unidentifiable (Dochain and Vanrolleghem, 245 

2001). Thus, the set of parameters determined by an optimization method may not be unique. The 246 

method developed here from the literature aims at maximizing the accuracy of the obtained data. 247 

The estimation of the Haldane kinetic parameters was performed by minimizing an objective 248 

function considering the three measured state variables: the cumulative methane production, the 249 

methane flow rate, and the VFA concentration. This function has also considered arbitrarily chosen 250 
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weights to possibly balance the weight of one state variable over the others in the identification 251 

process. The objective function is defined in equation (25) as a function of the parameter set to be 252 

determined T = [M�VWX; Z=�; Z[].  253 

]�T� = ^ _ �̀B���,EaEV�T̂� − ���,EcXdFeB���,EaEV�T̂� − ���,EcXdFf
gh�

+ �̀B;12�,EaEV �T̂� − ;12�,EcXd FeB;12�,EaEV �T̂� − ;12�,EcXd F
+ ìB89�EaEV�T̂� − 89�EcXdFeB89�EaEV�T̂� − 89�EcXdFj  

(25) 

where J is the objective function. N represents the number of experimental points, and �̀, �̀ and 254 

ì the weights assigned to each state variable, equal to 1, 0.5, and 2, respectively. An interior point 255 

optimization method was used to perform the nonlinear optimization of the objective function 256 

under constraints. The problem was solved with the SciIPOpt toolkit on Scilab 6.0 (ESI Group). The 257 

relative convergence tolerance was chosen equal to 1x10-3. The constraints and initialization for 258 

each kinetic parameter were found in the literature and arbitrarily chosen (Zaher et al., 2009; 259 

Müller et al., 2002). These data are illustrated in Table 3. 260 

2.4.3 Sensitivity analysis and Conditioning of the objective function 261 

The vector of the state variables studied for the calibration of Haldane kinetics depended on time, 262 

other state variables, and model parameters as shown in equation (26).  The sensitivity of each 263 

parameter is defined by equation (27) and the model sensitivity matrix is determined by equation 264 

(28).  265 

� = ����, ;12�, 89��, T = �M�VWX, Z=�, Z[� 
(26) 

���� = klkT (27) 
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k����k� = km��, l, T�kl � + km��, l, T�kT , klk� = m��, l, T� (28) 

The determination of the sensitivity matrix allowed us to determine the sensitivity of the output 266 

variables for each input parameter of the calibration step. The calculations were performed using 267 

the complex-step derivation approximation method (Martin et al., 2003). Moreover, the 268 

approximation of the objective function allowed us to draw the curves of the function according to 269 

the values of the parameters to be determined and according to the domains of existence defined 270 

for these parameters. The objective function was plotted as a function of each pair of parameters 271 

to be determined in order to determine the quality of the conditioning of the objective function 272 

(Munack, 1989). 273 

3 Results and discussion 274 

3.1 Batch reactors performance 275 

Mass balances were determined at the end of each experiment, with a minimal value of 96.1% 276 

attesting to the absence of local batch failures. The VS removal during these experiments was 277 

determined with an average value of 57.7 ± 0.1%. During preliminary experiments, when 278 

substrates were not immersed in the liquid phase, a VS removal of 64% was observed with the 279 

same experiment duration. This observation could be explained by a strong VFA production at the 280 

beginning of experiments which could cause a temporary inhibition impacting the methane yield 281 

(Wollak et al., 2018). Accumulated methane yield and VFA concentration are represented in Fig. 2 282 

for each reactor. Two methane flow production peaks could be observed at the beginning and the 283 

end of the experiment. This behavior is typical of solid-state anaerobic digestion (André et al., 284 

2015; Degueurce et al., 2016; Riggio et al., 2017) and the main challenge for solid-state anaerobic 285 

digestion is to consider this behavior in a mathematical model (Coutu et al., 2022). The experiment 286 

was stopped after 42 days to remain realistic about the real operating time of batch reactors and 287 
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to respect the usual industrial constraints. The accumulated methane yield reached was 288 

respectively 99.5% and 88.6% of the BMP measurement at the end of experiments for the reactors 289 

(R1) and (R2) attesting to great experimental conditions. 290 

3.2 Identifiability of model parameters and unmonitored variables 291 

Equations (14) and (18) were used on the results of the experiment (R2) to determine the values 292 

and standard deviations of the yield coefficients k1
1 and k1

2. Equation (14) was used to determine 293 

the k1
2 coefficient in the stage where only MeM was consumed. This stage is identified in the 294 

experiment (R2) as stage 1 before the first injection of RJ. The coefficient k1
1 was then identified 295 

over stage 2, representing the first RJ injection, using equation (18). All the results obtained are 296 

presented in Table 3. No outliers were observed during this step, with a value of k1
1 obtained of 297 

0.977 and a value of k1
2 of 0.987.  298 

In order to validate these values, the parameters k1
1 and k1

2 were determined with the same 299 

method using the results of the experiment (R1). The hypothesis was made that the experiment 300 

(R1) was divided into 2 stages: a first stage with degradation of both substrates and rapid 301 

degradation of the RJ, and a second stage where only the MeM was consumed. Equation (14) was 302 

used in the second stage of the experiment (R1) and equation (18) in the first stage. The values 303 

obtained were k1
1=0.976 and k1

2=0.987, which validated the calibration performed previously.  304 

The values of parameters µ1
1 and µ1

2 were also obtained using equations (24) from the data 305 

obtained from the experiment (R2). µ1
2 was first determined in stage 1 and then µ1

1 was 306 

determined between each addition of RJ in stages 2 to 6. The values obtained for the calibration of 307 

these two parameters were µ1
1=3.15.10-2 h-1 and µ1

2=1.42.10-4 h-1. To validate these results, µ1
1 and 308 

µ1
2 were also determined in the experiment (R1). The second identified stage of (R1) was used to 309 

determine µ1
1 and then the first identified stage of (R1) was used to determine µ1

2. The values 310 
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obtained were µ1
1=1.68.10-2 h-1 and µ1

2=1.44.10-4 h-1. These values were of the same order of 311 

magnitude as the values obtained during the calibration, which validated the calibration of the 312 

parameters µ1
1 and µ1

2 from the experiment (R2). 313 

In order to obtain the unmonitored variables in the experiment (R1), the reaction invariant notion 314 

was also used (Dochain et al., 1992). The monitoring of these state variables allowed validation of 315 

state variables simulated from the calibration data on the experiment (R1). Equations (21) and (22) 316 

were used and the results obtained are presented in Fig 3. 317 

3.3 Calibration of Haldane kinetic parameters  318 

The calibration step of Haldane kinetic parameters aimed to obtain the best fitting with the 319 

calibration data set of the experiment (R2). Two different data sets were used to calibrate and 320 

validate this set of parameters through 3 state variables: the cumulated methane production, the 321 

VFA concentration, and the methane flow rate observed respectively in experiments (R2) and (R1). 322 

The calibration step was carried out by trial and error to obtain the best dataset possible. First of 323 

all, a conditioning study of the objective function was done to determine if the objective function 324 

was well-conditioned. Then a minimization procedure of the objective function was done using an 325 

interior point optimization method. 326 

3.3.1 Conditioning of the objective function 327 

The study of the conditioning of the objective function allowed us to determine if the Haldane 328 

kinetic parameters were identifiable. To perform this study, the value of the objective function 329 

presented in equation (25) was determined by discretization by varying each parameter over the 330 

calibration interval considered. The calibration interval is presented in Table 3.  A discretization 331 

step was arbitrarily chosen to divide the calibration interval into 20 equal parts for each parameter, 332 

which represented 8000 estimations of the objective function. Once the values of the objective 333 
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function were obtained as a function of each set of parameters, the objective function was plotted 334 

as a function of the parameters associated in pairs. The result of this conditioning is presented in 335 

Fig 4. In these figures, it is evident that the objective function was ill-conditioned because the 336 

objective function as a function of each pair of parameters was represented by a very flattened 337 

ellipse (Dochain and Vanrolleghem, 2001). This first observation resulted in probably poor practical 338 

identifiability, which corroborated the assumptions made earlier. A sensitivity analysis was done 339 

following this conditioning study to determine which parameters were practically identifiable 340 

(Robinson et al., 1985). 341 

3.3.2 Sensitivity analysis 342 

In many biological models, kinetic parameters are highly correlated, which can result in "valley" 343 

behaviors in which several combinations of parameters can describe the same data similarly. It is 344 

therefore interesting to plot sensitivity functions to determine the practical identifiability of the 345 

studied model. The sensitivity analysis was here conducted by considering the impact of the three 346 

parameters to be determined on the three measured state variables present in the Haldane 347 

kinetics. The same curve shapes could be observed for the different parameters considered. This 348 

behavior could be observed for each state variable, which meant that the kinetic parameters were 349 

not identifiable and therefore there was not a unique solution for the set of parameters to be 350 

determined. Moreover, the sensitivity of each state variable to the KI parameter was much lower 351 

than other parameters, with an order of magnitude of 10-8 against 10-4. However, the presence of 352 

RJ injections allowed increasing the sensitivity of the different state variables to the parameters to 353 

be determined with a 10 factor. The consequence was an improvement in the identifiability of 354 

parameters during the calibration step. This phenomenon is consistent with the observations made 355 

in the literature (Vanrolleghem et al., 1995) and allowed to confirm the use of the data set from 356 

the experiment (R2) for the calibration step. Results of the sensitivity analysis are illustrated in Fig 357 
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5 for the cumulated methane production sensitivity to the KS2 parameter. Following this 358 

observation, the objective of the calibration step was to obtain the optimal set of parameters in 359 

order to fit the model with the experimental observations of (R2).  360 

3.3.3 Calibration results 361 

The calibration of Haldane kinetic parameters was done to obtain the best fitting with 362 

experimental results from the experiment (R2). This step was carried out by trial and error to find 363 

the best data set with optimal parameters. Calibration results are illustrated in Fig 6. The 364 

simulation results represented by continuous lines were close to the experimental data which were 365 

represented by dots. The Haldane kinetics obtained are presented in Table 3. These parameters 366 

values were very different from other studies in the literature. While M�VWX was in line with the 367 

literature (Zaher et al., 2009; Müller et al., 2002), the Z=� calibration value was a little high and Z[ 368 

was very low in comparison with values obtained from the literature. This difference in behavior 369 

could be explained by slower anaerobic digestion and the presence of inhibition phenomena 370 

specific to MeM and RJ.  371 

3.4 Model validation 372 

Validation steps were previously conducted on each parameter determination and a global 373 

validation was done considering experiment (R1). Results are illustrated in Fig 6. The simulation 374 

done correctly reproduced the global behavior of each solute for a complete period of 45 days. The 375 

main quality of this simplified model is the consideration of a low number of parameters, which 376 

allowed a faster and easier calibration step. However, the calibration step was very sensitive to the 377 

initialization step and parameter bounds, which could be validated by sensitivity analysis.  Although 378 

the simulated curve representing VFA concentration was representative of the experimental data, 379 

the simulated methane yield showed a deviation from the experimental values. This deviation is 380 
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due to the presence of 2 peaks of methane production characteristic of the SS-AD. The model 381 

developed in this paper allows the analysis of the behavior and evolution of the biomass and the 382 

different chemical species present. The two peaks of methane production were modelized, which 383 

is impossible with the usual models of the literature. This model is a first step to characterize 384 

complex co-substrates as MeM and RJ with a simple model using few parameters but this model 385 

could potentially evolve into a spatially distributed model introducing new parameters and using 386 

new experiments to fit perfectly with the methane production curve. 387 

3.5 Discussion about possible inhibitions  388 

The specific behavior of MeM and RJ digestion could be due to high VFA concentrations (until 19 389 

g.L-1 during our preliminary experiments) (Khartikheyan and Visvanathan, 2013) or ammonia 390 

concentrations (between 4 g.L-1 and 5 g.L-1 during our experiments). These values could be a source 391 

of inhibition (Amani et al., 2010) but the acclimatization of the inoculum was carried out upstream, 392 

which makes it possible not to impact the anaerobic digestion (Chen et al., 2008; Yenigun and 393 

Demirel, 2013). Another possibility is an inhibition of sodium chloride (Feijoo et al., 1995) but just 394 

like ammonia, the acclimatization of the inoculum was carried out upstream and there is no 395 

possible impact on the methane yield (Kimata-Kino et al., 2011). The results obtained by this study 396 

also showed that the released fluid has its importance in the SS-AD phenomenon and should not 397 

be lost during MeM grinding. The potential presence of such inhibitions could modify the methane 398 

yield and VFA accumulation curve shapes. Not all of these modifications were considered in the 399 

mathematical model of this study and could potentially falsify the calibration results. Indeed, the 400 

Haldane kinetics for Methanogenesis step used in this study considered inhibitions on 401 

methanogenic biomass but inhibitions on other biomass were neglected and could potentially vary 402 

the calibration results. In this study, the methane yields observed were consistent with the 403 

literature (Wollak et al., 2018; Akizuki et al., 2016; Nkemka and Murto, 2013), attesting robust 404 
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experimental results to modeling the phenomenon of MeM and RJ SS-AD. However, further study 405 

will be needed to improve the fit between the model and the experimental curves by better 406 

characterizing the inhibitions of this process. 407 

4 Conclusions 408 

A simplified AM2 model was developed to characterize Mytilus edulis SS-AD. This model was 409 

verified, implemented, and validated in 60L batch reactors in mesophilic conditions. A better 410 

sensitivity with delayed substrate injections throughout the experiment with a factor of 10. These 411 

results gave a correct approximation of solutes behavior with an accumulated methane yield 412 

representing 88.6% of the BMP measurement, and a volatile removal of 57.7% attesting to great 413 

experimental conditions. and could identify the two methane production peaks characteristics of 414 

SS-AD but the results did not allow for prediction with enough accuracy to implement control tools 415 

to optimize methane production. Further work is needed with new considerations to better 416 

understand the phenomenon of Mytilus edulis solid-state anaerobic digestion. A further study 417 

could be done to evolve this model into a spatially distributed model with more parameters in 418 

order to fit perfectly with the methane production curve. 419 
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Fig 1.  Schematic representation of the experimentation set up 594 

Fig 2. Solid-state anaerobic digestion performance on experiment (R1) with A : cumulated methane 595 

production, B: VFA concentration and C: methane flow rate and experiment (R2) with D : 596 

cumulated methane production, E: VFA concentration and F: methane flow rate and experiment. 597 

Different considered stages are represented on each experiment in blue and red zones 598 

Fig 3. Unmonitored substrate concentrations of MeM and RJ all along SS-AD 599 

Fig 4. Conditioning study of the objective function for each pair of parameters with A : M�VWX and 600 

Z=�, B : Z[ and Z=� and C : M�VWX and Z[  601 

Fig 5. Results of sensitivity analysis concerning the cumulated methane production sensitivity to KS2 602 

parameter 603 

Fig 6. A: Calibration step on A: cumulated methane production and VFA concentration, B: methane 604 

flow rate and Validation step on C: cumulated methane production and VFA concentration and D: 605 

methane flow rate; dots for average experimental values, lines for simulated values 606 
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Table 1 Chemical characteristics of inoculum and substrates used 

   Run 1   Run 2  

 Unit Initial MeM Initial RJ Initial LM Initial MeM Initial RJ Initial LM 

TS % 67.2 ± 0.1 8.2 ± 0.1 3.8 ± 0.1 68.8 ± 1.6 12.4 ± 0.3 2.6 ± 0.1 

VS %TS 14.5 ± 0.5 62.4 ± 0.1 62.9 ± 0.2 12.2 ± 1.5 75.5 ± 0.7 51.5 ± 0.3 

pH - - 5.3 ± 0.1 8.2 ± 0.1 - 5.7 ± 0.1 8.1 ± 0.1 

VFA gHAc.L-1 - 8.5 ± 0.4 0.05 ± 0.05 - 5.0 ± 0.1 0.0 ± 0.1 

TAC gCaCO3.L-1 - 0.2 ± 0.2 3.9 ± 0.1 - 0.05 ± 0.05 6.7 ± 0.1 

BMP NLCH4.kgVS
-1 277 ± 11 306 ± 8 - 277 ± 11 306 ± 8 - 

 



Table 2 Peterson matrix of the model kinetics 

Step ��
� ��

� S� X� CH� Reaction rate 

DHA - MeM −1  k�
� (1 − k�

�)  r�
� = μ�

�S�
��� 

DHA - RJ  −1 k�
� (1 − k�

�)  r�
� = μ�

�S�
��� 

Methanogenesis   −1  k� 
r� = μ�

���
S�X�

S� + K�� +
S�
K�

 

 



Table 3 Kinetic parameters initialization and values obtained from calibration step 

Parameter Initialization 

value 

Calibration value Interval Unit 

     

��
� - 0.976 ± 0.001 - − 

��
� - 0.987 ± 0.001 - − 

��
� - 3.150 ± 1.068 - 10	�. ℎ	� 

��
� - 1.422 ± 1.313 - 10	�. ℎ	� 

��
�� 2.670 12.46 ± 1.204 [0.1 – 30] 10	�. ℎ	� 

��� 3.450 145.3 ± 12.67 [0.1 – 200] kg���. L	� 

�� 1.440 0.401 ± 0.061 [0.1 – 50] �g���. L	� 

 

 






