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Simple Summary: This review article aims in describing the origins of chondrosarcoma radiation-
resistance and proposes several potential solutions in order to improve the treatment, in regard with
tumor grade and characteristics.

Abstract: Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant
and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible
in some specific locations. Such resistances can be explained by the particular composition of the
tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the
oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into
cancer stem cells, which are described to be more resistant to conventional treatments. One of the
main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic
properties but also its greater biological effectiveness against tumor cells. In this review, we describe
the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other
treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.

Keywords: chondrosarcoma; radiation resistance; hadrontherapy; carbon ions therapy; hypoxia;
cancer stem cells

1. Introduction
1.1. Overview

Chondrosarcoma is a malignant cartilage tumor of the bone that accounts for about
20–30% of all primary bone sarcomas. This tumor generally affects adults between the
ages of 30 and 60 and develops in the limb cavity or on the surface of the bone [1–3].
Chondrosarcomas are uncommon in children and adolescents and represent less than 5% of
total chondrosarcomas [4]. Chondrosarcoma can develop de novo or from benign cartilage
tumors of the bone such as osteochondromas and enchondromas [1]. Anatomically, it
is located in the pelvic area, most frequently the ilium, followed by the proximal femur,
proximal humerus, distal femur, and ribs. The symptoms can last a long period of time, from
months to years, and include pain, pathologic fracture, and common lung metastasis [5].
The number of reported cases in the skull is low; tumors in the nasal cavity are especially
rare. This type of chondrosarcoma is more common in children than in adults, with the
youngest reported patient aged two years [6]. Due to the location, complete resection is
difficult to obtain, and a recurrence of the tumor is quite common.
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According to the 2020 World Health Organization, chondrosarcomas are grouped
in the malignant category and are classified into three main grades I–III, based on cel-
lularity, tumor matrix characteristics, nuclear features, and mitotic rate [7,8]. Grade I
chondrosarcomas are comprised of few cells with no variation in shape and size, and a
low metastatic potential associated with flat bone. Both grade II and III chondrosarcomas
present hyper-cellularity, variation in cell morphology, and invasion of surrounding tissue.
Grade II chondrosarcoma presents a myxoid component while grade III chondrosarcoma is
characterized by intense mitotic activity [7–10].

Chondrosarcomas can also be divided into three subtypes: central, peripheral, and
periosteum. The most common type, which happens in about 70% of cases in the proximal
femur or proximal humerus, is central chondrosarcoma. The long bones, pelvis, and
scapular belt are usually affected by peripheral chondrosarcoma and can develop from
pre-existing osteochondromas while periosteal chondrosarcoma can develop on the surface
of the bone [1,11,12]. Chondrosarcoma can be classified into lesser-known subtypes such as
dedifferentiated, mesenchymal, clear cell, and extra-skeletal myxoid chondrosarcoma [13].
Dedifferentiated chondrosarcomas develop from lower-grade common chondrosarcoma,
while mesenchymal chondrosarcoma is very malignant and has a biomorphic histological
model with small, round cell islands that interpenetrate with cartilage and dedifferentiate
spindle cells [13,14]. Clear-cell chondrosarcoma is less aggressive and is composed of cells
containing a large amount of glycogen in the cytoplasm [13,15]. Extra-skeletal myxoid
chondrosarcoma is a soft extraskeletal tissue with uncertain differentiation, a predilection
for extremities, and a low growth rate [13,16].

1.2. Genetic Characteristics of Chondrosarcoma

Chondrosarcoma relapses and metastases often, thus it is important to identify biomark-
ers that determine the best clinical approach. Diagnosing chondrosarcomas can be challeng-
ing due to its rather common symptoms, low incidence, and grading system [17]. As such,
making a correct diagnosis is a key factor for the overall treatment of the tumor. Recent de-
velopment in imaging methods, endoscopic techniques, gene analysis, biomarker detection,
and immunological, and surgical approaches have reduced diagnostic delays [18]. The
most commonly used method of diagnostic is radiography, though other imaging methods
such as tomography scan, magnetic resonance imaging, bone scintigraphy, and positron
emission tomography have been used as adjuvants for patient evaluation [19].

The most frequent mutations found in chondrosarcomas are on isocitrate dehydro-
genase (IDH) genes, on arginines R132 for IDH1 and R140/R172 for IDH2 [20]. These
genes codes for Krebs cycle enzymes are responsible for the conversion of isocitrate into
α-ketoglutarate (α-KG). These mutations induce a gain in function of these enzymes, which
can then transform α-KG into an oncometabolite, D-2-hydroxyglutarate (D-2-HG) [21].
Decreased α-KG and increased D-2-HG are associated with epigenetic modifications,
such as decreased DNA methylation and hypermethylation of histones associated with
differentiation [22]. These changes can also impact the microenvironment since they can
impact collagen maturation [23] and block the activity of prolyl hydroxylases [24] thus
inducing the stabilization of HIF-1α [25] and HIF-2α [26], responsible for adaptation to
hypoxia. The expression of these factors, independently of O2 concentrations, will be
responsible for tumor progression and radioresistance. In addition, chondrosarcoma cells
are often EXT1/2 mutated and CDKN2A/B deletions are also frequent, as well as COL2A1
mutations [27]. In osteosarcoma, another rare malignant bone tumor, the expression of sev-
eral repetitive elements was observed differentially expressed with normal bone. HERVs’
(human endogenous retroviruses) integrated sequences and satellite elements were the
most significantly differential expressed elements between osteosarcoma and normal tis-
sues and could help to understand the genesis mechanism of such sarcoma [28]. In addition,
a transcriptomic analysis of osteosarcoma bone samples revealed that BTNL9, MMP14,
ABCA10, ACACB, COL11A1, and PKM2 were expressed differentially with the highest
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significance between tumor and normal bone, and reflected the changes in the regulation
of the degradation of collagen and extracellular matrix [29].

1.3. Chondrosarcoma Standard Treatment

According to ESMO guidelines [30], standard treatment depends on the localization,
the histological subtype, and the level of differentiation. Grade I low-grade peripheral
chondrosarcoma (arising from osteochondroma) or grade I central chondrosarcoma of
the long bones, can be managed with minimally-invasive surgery (curetage for example)
without adjuvant treatment. On the opposite higher-grade chondrosarcoma, such as
clear cell chondrosarcoma, mesenchymal chondrosarcoma, and dedifferentiated or axial
chondrosarcoma (pelvic, spine, or skull base) should be extensively resected with wide
margins and postoperative irradiation is often proposed in case R1 or R2 resections, or for
the management of local recurrences. For R1 and R2 low-grade skull-base chondrosarcomas,
the best timing for irradiation remains to be discussed. Immediate or delayed irradiation
could be proposed according to each center’s policies. Recent evidence suggests that
mesenchymal chondrosarcoma may be chemotherapy sensitive, and may be considered
for adjuvant or neoadjuvant therapy [30]. The next parts of this review article will be
specifically focused on high-grade chondrosarcoma.

It is known that chondrosarcoma is a chemo- and radioresistant tumor [31]. Slow
proliferation, overexpression of the protein involved in drug resistance MDR1, poor vascu-
larization, and dense extracellular matrix may be responsible for chemo- and radioresistance
of chondrosarcoma [32]

Although many studies have obtained good results, monotherapy of heterogeneous
chondrosarcoma is a concern due to the tumor’s ability to adapt. Moreover, the failure of a
monotherapy should not exclude its potential for being an adjuvant therapy in combined
treatment. The use of novel nonconventional therapies can improve the outcome, though
the adverse effects should be taken into consideration and further clinical investigations
are required to assess the safety and efficacy in a large group of patients.

1.3.1. Chondrosarcoma Chemotherapy

Chemotherapy is rarely effective and the studies on patients are limited due to the
rarity of these diseases [32]. As such, current treatments have a base in ostosarcoma
treatment [33]. As such, palliative treatments with cisplatin, doxorubicin, or ifosfamide are
also used in clinical treatments [34] even though chondrosarcoma has presented resistance
to doxorubicin in vitro [35].

Nonconventional treatments for chondrosarcoma include molecularly-targeted ther-
apies, epigenetic approaches, immunotherapy, and herbal therapies [33,36]. Some of the
targets for chondrosarcoma therapies involve mutations of isocitrate dehydrogenases
IDH1 and IDH2 [37–40], angiogenesis [41,42], cyclin-dependent kinases (CDK) [43], tyro-
sine kinase inhibitor [44], mechanisms involved in the signaling pathway of Rapamycin
(mTOR) [45,46], agents of hypomethylation, and histone deacetylase (HDAC) [47–49].
Clinical studies involving immune checkpoint inhibition are in the early stages and show
promising results despite patients’ mixed responses to some inhibitors [50–52]. A large
and complete overview of new targeted therapies in chondrosarcoma can be found in
two recent review studies by Boehme et al. [32] and Tlemsani et al. [27].

1.3.2. Chondrosarcoma Radiotherapy

Conventional radiation therapy is used for patients with incomplete resections, inop-
erable tumors, or metastases [53–55].

Photon radiotherapy has low accuracy, with undesirable toxicity in the surrounding
normal tissue, and is not suitable for targeting tumors larger than 2.5 cm [56]. Over the past
decade, radiation therapy has developed better control over localization and dosage with a
limited effect on surrounding healthy tissue [57]. There are several types of radiological
techniques used to treat inoperable tumors such as external radiation/source therapy,
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modified fraction radiotherapy, internal radiation therapy, and particle therapy. Therefore,
each type of radiation therapy machine has distinct physical characteristics, which may
influence clinical outcomes [58].

Clinical studies have shown poor results from low-dose radiation therapy. Indeed,
delivering a dose higher than 70 Gy is mandatory to obtain local control. This dose is
difficult to reach with conventional radiotherapy due to surrounding neural structures
for which the tolerance dose is well below 70 Gy (from 54 to 60 Gy for the optic tract
or brainstem, and 50 Gy for the spinal cord, for example). Modern techniques such as
intensive modulated radiotherapy (IMRT), stereotactic radiosurgery, and hadron therapy
can overcome these limits [59]. Reports show long-term promising results in patients
with spine tumors when using a combination of IMPT and IMRT [60] or for patients
with intracranial chondrosarcoma undergoing stereotactic radiosurgery [61]. Survival rates
depend on the dose, age, tumor size, and quality of the surgical treatment. An improvement
in radiation delivery remains necessary to increase the therapeutic ratio [55].

2. Radiation Resistance of Chondrosarcoma: Microenvironment, Molecular and
Cellular Consequences

As previously mentioned, chondrosarcoma is particularly resistant to conventional
radiotherapy, especially due to its very dense cartilaginous extracellular matrix and the
presence of some cells in the tumor tissue that may proliferate slowly, whereas radiotherapy
(RT) is more effective on rapidly dividing cells [62].

2.1. Hypoxia-Related Radiation Resistance

The characteristics mentioned above, and the low proportion of blood vessels in these
tumors, also lead to a hypoxic microenvironment in the tumor. It is widely described
that the decrease in oxygen content causes a reduction in the effectiveness of X-ray RT.
Indeed, the lethal effects of X-rays are triggered by indirect DNA damage, which is mainly
caused by the formation of reactive oxygen species (ROS) due to the radiolysis of water
and dissolved oxygen [63]. Thus, hypoxia leads directly to a decrease in the efficiency of
RT via an absence of O2 concentrations (Figure 1).

Hypoxia allows an adaptation of the cancer cells which can give rise to radioresis-
tance. Different signaling pathways have been described, such as autophagy increase [64],
stabilization and signaling of the HIF-1 factor, increased secretion of exosomes, or repro-
gramming of energy metabolism [65].

Concerning chondrosarcoma, HIF-1α stabilization is observed when cells are cultured
in hypoxia [66]. The expression of HIF-1α notably allows the activation of angiogenesis
pathways, via the expression of vascular endothelial growth factor (VEGF) [66,67]. In the
clinic, the high expression of the hypoxia factor HIF1-α is notably associated with poor
prognosis and metastatic tumors with poor patient survival. This suggests that activation
of the transcription factor HIF-1α may play a role in tumor progression [68,69]. More
recent studies have shown that HIF-2α also plays an important role in the progression
of chondrosarcoma cells by promoting tumor-initiating and invasive properties [26]. In
addition, mutations found in chondrosarcoma such as mutations located in IDH1/2 (>50%
of chondrosarcomas) have been described to induce constitutive activation of HIF-1α and
Hif-2α factors [25,26]. Although hypoxia is known to induce radioresistance in other
cancer cell models, very few publications have been able to make this link directly in
chondrosarcoma. For example, one study showed that overexpression of HIF-1α was
associated with an overexpression of BCL-xl (a bcl2 family factor), notably conducting
to antiapoptotic properties that can generate chemo- and radioresistance [70]. In closely
related models, such as osteosarcoma, it has been shown that hypoxia can induce increased
autophagy in connection with radioresistance [64].

The hypoxic microenvironment can also cause a form of resistance, by favoring the
presence of more resistant cellular subtypes, the cancer stem cells (CSCs) [71]. Indeed, it
has been described that the factors HIF-1α and HIF-2α allow the proliferation of CSCs
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via the activation of the PI3K/AKT [72] and NF-κB [73] pathways. These hypoxia factors
enable the activation of the notch [74,75], and hedgehog [76] pathways, responsible for
maintaining the stem potential of this cell subtype [77].
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Figure 1. Hypoxia and cancer stem cells radioresistance in chondrosarcoma. Hypoxia and IDH-1
mutation lead to HIF-1α and HIF-2α stabilization. These regulated pathways enhance cell radiore-
sistance and increase the proportion of cancer stem cells. Specific inhibitors (in red), such as HIF-2,
PARP, and mTOR inhibitors demonstrated a capacity to reverse cell resistance and are considered in
order to radiosensitize chondrosarcomas.

2.2. Radioresistance Links with CSCs

Cancer stem cells (CSCs) are a subpopulation of cancer cells within the tumor that have
been associated with treatment resistance, tumor relapse, and metastasis in several cancers
including chondrosarcoma (CS). CSC (or tumor-initiating cells) are seen as drivers of tumor
establishment and growth, often correlated to aggressive, heterogeneous, and therapy-
resistant tumors [78]. The concept of CSC is also related to specific cellular biomarkers.
Indeed, several markers expressed in CSCs can also be found in adult tissue-resident stem
cell populations [79]. In order to describe this particular type of cell, we kept the term
of CSCs, knowing that it could be the subject of controversial theories [80,81]. CSCs are
defined as dedifferentiated cells that have unlimited proliferation and self-renewal abilities
and can reinitiate and reconstitute tumor heterogeneity [82]. CSCs have inherited normal
stem cells properties, including a hypoxic niche that protects them from treatments and
promotes the quiescence state, telomerase activity, an increase in the activity of membrane
transporters and detoxification enzyme, activation of antiapoptotic pathways, an enhanced
DNA repair capacity, and catabolism of ROS (Figure 1). These properties will block or
reduce the cellular effects induced by actual antitumor treatments [2,3]. These persisting
cells, even few in number, can proliferate and reconstitute the tumor with all its phenotypic
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diversity. Resistance to therapeutic treatment, such as chemotherapy and radiotherapy,
could be associated with the fact that current therapies do not target CSCs [83].

Several CSC identification and isolation methods have been described [84]. In vitro
assays are commonly used to isolate CSCs such as the sphere formation assay called
tumorspheres, under nonadherent, serum-free conditions and enriched with growth factors.
In vivo, the isolated CSCs are transplanted in immunocompromised mice to assess the
tumorigenic capacity of the CSCs. As CSCs have the same properties as normal stem cells,
they can be identified within the tumors with normal stem cell markers such as SOX2,
OCT3/4, Nanog, or Nestin. They are also identified in multiple solid tumors by means of
the CSC’s specific cell surface markers and side population phenotype [85].

In CS, CSCs are commonly characterized by molecular markers such as aldehyde
dehydrogenase (ALDH) and prominin-1 (CD133) [86]. ALDH is an enzyme that oxidizes
aldehydes to carboxylic acids and allows cells to resist oxidative stress. Every cell expresses
ALDH, however, cells with high ALDH activity have demonstrated enhanced tumorigenic-
ity in several cancer cell types, characteristic of CSCs [87]. CD133 is a transmembrane
glycoprotein, and its exact function remains to be elucidated, though it seems to be involved
in membrane organization, cell differentiation, proliferation, and signal transduction. In
addition, it might also have a role in apoptosis inhibition, and the upregulation of FLICE-
like inhibitory protein (FLIP), leading to chemoresistance [88]. This cell-surface protein is
known as an important driver of tumor progression and as a CSC marker [89].

Several studies identify CS CSC as ALDH+ and CD133+ cells and it was considered
that the combination of ALDH+ CD133+ was the best marker to identify the tumor pop-
ulation enriched with the CSC phenotype [87,90]. Tirino et al. provided evidence of the
presence of CSC in human primary bone sarcoma and demonstrated the possibility to use
the CD133 marker for their identification [85]. They showed that CD133 was expressed
in 21 fresh biopsies from bone and soft tissue sarcomas. After sorting cells, the CD133+
cells were able to reconstitute the original cell population, demonstrating the capacity
of CSCs to dedifferentiate and rebuild tumor heterogeneity. Furthermore, they showed
that the CD133+ cells were able to form tumorspheres. These spheres were positive for
CD133 and the transcription factors OCT3/4, Nanog, Sox-2, and Nestin, which are in-
volved in self-renewal and in the preservation of pluri-multipotency of normal stem cells.
They demonstrated the ability of this cell population to differentiate into adipocytes and
osteoblasts, supporting the fact that they originate from the mesenchymal stem cells of
bone sarcomas. In addition, they showed in vivo that the cell population was capable of
generating tumors in mice. These different evidences proved that the CD133+ sorted cells
were CSCs, and, thus, CD133 is a useful marker for the identification of the CSC popula-
tion. Greco et al. showed a significant correlation between ALDH activity and metastatic
potential in ten patients with bone sarcoma, including CS. Moreover, they proved that bone
sarcoma cells were sensitive to ALDH inhibition with disulfiram, involving a potential use
of ALDH inhibition as a therapeutic strategy for radio and chemoresistant CS, although
more investigations are required [87].

One of the main features of the CSC subpopulation is the overexpression of transcrip-
tion factors such as SOX2 or OCT4, involved in the maintenance of stem cell phenotype
in normal stem cells. In sarcomas, including CS, SOX2 has been found overexpressed in
CSCs [91]. The same observations were made in relation to OCT4 in osteosarcomas and
Ewing sarcoma, close models of CS. Menendez et al. introduced a system to monitor the
transcriptional activity of SOX2 and OCT4 (SORE6) in CS patient-derive cell lines, in vitro
and immunodeficient mice [91]. The system allows for isolating SOX2/OCT4 positive
cells and thus analyzing the tumor-promoting CSC in sarcoma. They detected 20% of the
SORE6+ cells, and this percentage was found increased to 40% in immunodeficient mice,
which could be due to the elevation of the CSCs during tumor progression and adaptation
to new microenvironments. They also showed that CSC-related genes, including SOX2,
were overexpressed in the tumorsphere and enhanced during sarcoma progression. These
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results proved that SOX2 can be used as a CSC marker in sarcomas. Moreover, the system
SORE6 is a good tool to evaluate the activity of antitumor drugs on CSC [91].

Another way to identify the CSC population is the so-called side population. CSC can
evade treatment potentially through the increase in ATP-binding cassette (ABC) multidrug
efflux transporters such as MDR1/ABCB1, BRCP1/ABCG2, and ABCB5 expression. The
ability of cells to exclude DNA-binding dyes is measured. A side population appears as
the cells expressing high ABC transporters exclude the dyes [84]. This was studied in
osteosarcoma, however, it would be interesting to test this assay in the CS model.

3. Hadrontherapy and Combined Therapy of Chondrosarcoma
3.1. Hadrontherapy

Hadrontherapy presents several advantages over conventional therapy using X-rays:
(1) it can accurately deliver a highly controlled dose of radiation to the tumor while sparing
surrounding healthy tissue; (2) it is more effective at treating highly-resistant tumors;
(3) the reduced exposure of the normal tissue makes it possible to reduce the length of the
treatment and/or to increase the dose to the tumor [92,93].

3.1.1. Physical Advantage of Hadrontherapy: The Bragg Peak

The first advantage of hadron is related to the physical characteristics of accelerated
ions. Indeed, in the case of hadrons, as long as accelerated particles have a high speed
(energy greater than 50 MeV/u), their ionizing effect on the tissues is relatively weak. Most
of the energy takes place towards the end of their path. At that time, this deposit increases
sharply over a distance of a few millimeters, then decreases rapidly. The profile describing
the dose deposited as a function of the depth of the tissue crossed is called the Bragg
peak [94,95]. The energy of the particle at the exit of the accelerator regulates the depth of
penetration and the position of the maximum effect. Such energy deposit at the end of the
path is greater (compared to the rest of the path where it is low) than with photons (for
which the energy deposit is relatively linear). Consequently, a large part of the energy of
the particle is deposited over a short distance. This ballistic quality makes it possible to
reach more precisely the targets located in depth, and therefore to treat cancerous tumors
that are inoperable or resistant to X or gamma rays, while better sparing the surrounding
healthy tissues and/or the organs at risk. This property makes this type of radiation more
precise than the photons (i.e., X-rays) used in conventional radiotherapy. Since the Bragg
peak is too narrow to cover a tumor in the depth, during hadrontherapy, the Bragg peak
can be spread (SOBP, spread out Bragg peak) with great dose homogeneity to cover the
target volume. The technique consists of superimposing several single Bragg peaks from
different beam energies [96].

It appears relevant to propose hadrontherapy for the treatment of chondrosarcoma
in order to limit the irradiation of the tumor surrounding tissues such as brain tissue and
the spinal cord when chondrosarcomas are situated at the base of the skull or pelvis and
femur, and more generally, the cartilage which is a tissue that cannot renew. One of the
phenomena that can cause damage to the surrounding healthy tissue is the appearance of
the bystander effect. This phenomenon occurs through the secretion of stress factors by the
irradiated cells that will impact nearby nonirradiated healthy tissues. The use of carbon
ions has been shown to reduce the occurrence of this effect [57].

3.1.2. Biological Advantage of Hadrontherapy: High LET and RBE

The second advantage of hadron is linked with the high ionization density at the
end of the path of hadrons. This causes elevated DNA damage in cancer cells, which
consequently will exhibit more difficulty in repairing themselves than the healthy cells
located upstream. It is considered that this type of radiation is between 1.5 and 3 times
more effective than a beam of photons (about 1.1 for protons) [93,97–100]. It corresponds to
the “relative biological effects” (RBE). The ionization density of particles is directly related
to the corresponding linear energy transfer (LET). High LET radiation (such as carbon-ion
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radiations) induces a greater proportion of DNA double-strand breaks (DSB) than low LET
radiation (such as X-rays, and gamma-rays). These close DSBs participate in the formation
of sites with multiple damages that are more complex, more numerous, and less easily
repairable than X-ray induced damages (Figure 2).
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Figure 2. Benefits of High LET irradiations. In the case of ionizing radiations, X-rays induce mainly
indirect damages, through the formation of free radicals and reactive oxygen species (ROS), which
generate isolated DNA damages. As observed in the case of chondrosarcoma, hypoxia can reduce
such damages. In case of high ROS levels, an enhancement of detoxification systems is triggered in
cancer stem cells. High LET radiations, such as carbon ions, induce more direct complex damages,
named localized multiple damage, independently of the oxygen level and more difficult to repair
for cells.

In the particular case of chondrosarcoma, in vitro studies showed a higher efficiency
of carbon ions on multiple chondrosarcoma cell lines [10,82,101,102]. The cellular effect was
directly connected with the LET of carbon ions, inducing a prolonged block of irradiated
cells in the G2 phase of the cell cycle and longer-lasting unrepaired cell damage [101,103].
Carbon ion radiations generated a positive regulation of several DNA repair genes (ATM,
NBN, ATXR, XPC, XRCC1/2/3, ERCC1, XPC, and PCNA), activating a large range of DNA
repair mechanisms [103].

Clearly, chondrosarcomas are particular tumors associated with hypoxia and cancer
stem cells, conferring on them treatment resistance. So far, there is no study to prove the
effectiveness of the use of ions on CS in a hypoxic environment.

However, in other models, the use of high LET ion radiations have already been
shown to be more effective than X-rays in killing cancer cells under hypoxia [104,105]. It
was already reported that carbon ions were more effective than X-rays in eliminating the
subpopulation of chondrosarcoma cancer stem cells [82].

3.1.3. State of Art of Hadrontherapy in Clinical Practice

There are two main ways to counteract CS radioresistance: (one) increasing the physi-
cal dose with organ-sparing irradiation methods, and proton beam irradiation is thus the
technique of choice, or (two) increasing the biological dose using carbon irradiation in the
absence or presence of radiosensitizing agents (i.e., chemotherapeutic).

The first way is becoming a standard. In fact, nowadays, high-dose proton therapy
is considered the gold standard for the treatment of chondrosarcoma [106]. Many retro-
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spective studies have been published with a very-high local-control rate for skull base
chondrosarcoma and a low toxicity rate [107–110]. In one of this largest studies, long-term
eight-year local-control rates for skull base chondrosarcoma, after high-dose proton therapy
(70 Gy, 35 fractions), were 89.7%, with only 8% of patients developing a grade III-IV toxicity
(hearing loss, radionecrosis, optic neuropathy, etc.) [107]. Among all studies, local control is
associated with residue volume, age, and brainstem, or optic compression. Clinical reports
about proton therapy for extra-cranial chondrosarcoma showed worse results with a local-
control rate of about only 50% to 60% at five years [60,111,112]. If results for skull base
chondrosarcoma are excellent for the treatment of extracranial locations, proton therapy
needs to be challenged, and carbon irradiation, due to its high RBE, should be explored.
Considering that chondrosarcomas are rare tumors and that worldwide accessibility to
proton or carbon beam facilities remains difficult, building controlled randomized stud-
ies to compare conventional radiotherapy or proton therapy to carbon therapy is a hard
challenge. Indeed, there are only two randomized trials currently recruiting patients. The
first one, the French ETOILE trial (NCT02838602) [113], aims to compare the best radio-
therapy, at the investigator site (IMRT or ideally proton therapy), with carbon therapy,
delivered at CNAO. Poor prognosis, inoperable, or macroscopically incompletely resected
(R2) radioresistant cancers, including chondrosarcoma ≥ grade II, are eligible, though skull
base chondrosarcomas are excluded. On the opposite, the second one, a German trial,
(NCT01182753) [114] is exclusively dedicated to good prognosis grade I-II chondrosarcoma
of the skull base. Consequently, their main objectives are rather different. ETOILE Trial
attempts to show an absolute improvement of the five-year PFS rate of 20% in favor of the
experimental arm, while the German trial evaluates if the innovative carbon ion therapy in
chondrosarcomas is not relevantly inferior to the standard proton treatment with respect to
the five-year local progression-free survival.

Initial results of these studies are not expected for 5 or 10 years. However, there are
a few retrospective studies or small prospective cohorts evaluating carbon irradiation,
already published, with results close to the protons. Most of these studies report data
from heterogenous series that include chondrosarcoma together with chordoma, or bone
sarcoma. Data about chondrosarcoma patients have been extracted and are presented in
Table 1. Only series with more than 10 patients are reported.

Table 1. Clinical studies involving chondrosarcoma patients (>10 patients).

Reference Patients (n) Indication Dose Efficacy Tolerance

[115] 23 with low-grade
chondrosarcoma

R2 or Biopsied
only patients

60 GyRBE using a
weekly fractionation

of 7 × 3.0 GyRBE.

100% local-control rates
at 3 years

9% of grade III
late-effects

[116] 54 with grade I–II skull
base chondrosarcoma

R2 or Biopsied only
patients (including
recurrent tumors)

60 GyRBE using a
weekly fractionation

of 7 × 3.0 GyRBE.

local-control rates were
96.2% at 3 years and

89.8% at 4 years

2% of grade III
late effects

[117]

79 patients (64% grade I,
35% grade II, 1% grade

III) with skull base
chondrosarocma

Recurrences, R2,
or Biopsied

only patients

60 GyRBE at 3 GyE
per fraction

CI, 88.8–100%) and 89.8%
at 4 years

No grade III
effects reported

[118]

73 patients (20% grade I,
70% grade II, 5% grade

III, 5% dedifferenciated).
Extracranial only.

Biopsied only
patients (75%),
Recurrence or

metastatic (25%)

70.4 GyRBE,
16 fractions,

4 consecutive days a
week, 4 weeks

5-year local-control,
overall survival, and

disease-free survival rates
were 53%, 53%, and 34%

11% of grade III
late effects

[119]
16 patients with skull
base chondrosarcoma
(75% of grade II–III)

R2 or Biopsied
only patients

70.4 GyRBE,
16 fractions,

4 consecutive days a
week, 4 weeks

3-year LC rate of 94% 12.5% of grade III
late effects

[120]
21 patients with
chondrosarcoma.
Extracranial only

Not available

73.6 Gy(RBE)
delivered in
16 fractions

(4 fractions per week)

not available <5% of grade III
late effects
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For skull base chondrosarcoma, the outcomes are similar to proton therapy with a
high control rate (>90%) and a low grade III toxicity rate (≈10%) [115–117,119]. Except
for headache and dizziness, all symptoms presented at baseline significantly decreased
(−30% to −70%) after carbon beam irradiation, including fatigue, double vision, visual
defect, and cranial nerve palsies [110]. For spinal and sacral chondrosarcoma, results are
restricted to two studies and the results are disappointing with a 53% local-control rate at
five years [118,120]. The toxicity rate remains safe with 10% rate of grade III late secondary
effects, without an excess of myelopathy. Pelvis chondrosarcoma is more risky with 25% of
late grade III toxicity, and up to 50% for hypofractionated schedule 70.4 Gy RBE/16fr [121].

Combining radiosensitizers with proton or carbon beams has not yet been explored in
phase I studies. PARP inhibitor or IDH-inhibitor could be the first candidates [102,122].

3.2. Combined Approaches in Chondrosarcoma Control Strategy
3.2.1. IDH Inhibitors

Targeting IDH mutations, one of the frequent mutations in chondrosarcomas could be a
possible therapeutic solution. However, the first studies granted in chondrosarcoma, showed
variable results when using an agent reversible the IDH mutation: AGI-5198 [123,124]. More
recently, studies carried out with CRISPR/Cas9 technology [125] and with a new IDH
mutation inhibitor, the DS-1001b [126], demonstrate the importance of this mutation in the
tumorigenicity of chondrosarcoma, and therefore the interest in targeting this mutation for
chondrosarcoma treatment.

3.2.2. PARP Inhibitors

PARPs are proteins involved in DNA repair systems. The major protein, PARP1, is
mainly involved in base excision repair (BER), a single-stranded repair system [127]. The
interest in the use of PARP inhibitors is found mainly in the case of BRCA1 and BRCA2
mutated tumors [128]. Indeed, these BRCA proteins are involved in double-stranded DNA
repair systems by homologous recombination. The use of PARP inhibitors makes it possible
to maintain single-strand breaks in tumor cells, which will lead to double-strand breaks
during replication. Since homologous recombination is not effective in the case of cells
mutated for BRCA, the very toxic double-strand breaks will persist at the cellular level and
lead to cell death [128].

PARP inhibitors are mainly efficient in dividing cells which allows a low effect on
organs at risk, especially in combination with localized irradiation [129]. Indeed, these
molecules are interesting in combination with radiotherapy since they would make it possi-
ble to maintain the DNA breaks induced by the different qualities of irradiation (Figure 1).
This effect has been demonstrated in the case of chondrosarcoma, with radiosensitization
of chondrosarcoma cells against the effect of X-rays, protons, and carbon ions, with a very
marked effect in association with protons [102]. Recently, studies have demonstrated that
IDH mutations can lead to a suppression of homologous recombination, thus inducing a
BRCAness phenotype [130,131]. Under these conditions, PARP inhibitors can be considered
as a therapeutic solution since they can lead to synthetic lethality. However, in the case
of chondrosarcoma, IDHm and IDHwt cells showed variable sensitivities to the PARP
inhibitor talazoparib, independently of their mutation. Also, the reversion of the IDH1
mutation by AGI-5198 does not modify the response to talazoparib [132]. Thus, treatment
with PARP inhibitors alone, in the case of CHS, does not seem to be relevant. However, the
use of these inhibitors sensitizes chondorsarcoma cells to radiotherapy treatments [102], as
well as to temozolomide [132]. Interestingly, these sensitizations seem more effective on
IDHm cells [132].

3.2.3. Targeting the Hypoxic Microenvironment

As mentioned above, hypoxia plays an important role in the radioresistance of chon-
drosarcoma tumor cells. Indeed, the low oxygen tension directly induces the reduction of
the effects of X-rays [63]. Also, the stabilization of the HIF-1α and HIF-2α factors and the
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activation of their signaling pathways allows tumor progression via angiogenesis [66,68],
the induction of autophagy [64], the expression of antiapoptotic factors [70], or the induc-
tion and stabilization of CSCs [71]. This is why the inhibition of these main factors involved
in hypoxia signaling could be a good alternative to radiosensitize tumor cells (Figure 1).

It was recently demonstrated that inhibition of HIF-2α could induce a reduction in
the invasive properties of chondrosarcoma cells [26]. In addition, when using a specific
HIF-2α antagonist, TC-S7009, the authors were able to demonstrate a chemosensitization of
chondrosarcoma cells to cisplatin and doxurubicin. This effect has not been explored in CS
CSCs. HIF-2α inhibitors are being studied in the clinical setting, namely PT2385 [133] and
PT2977 (NCT02974738). Nevertheless, these molecules have not yet been tested in the case
of CS, nor in association with irradiation, however, they have the potential to be a good
option in the management of chondrosarcoma.

3.2.4. Targeting CSCs

Therapeutic strategies are needed in order to target both the CSCs and the nonstem
cancer cells to avoid therapy-induced CSCs, leading to metastasis and tumor relapse.
Numerous reports proposed potential targets against CSCs in solid tumors such as targeting
cell surface markers, signaling pathways, CSC niches, or inhibitors to overcome drug
resistance [83].

The evidence indicated that the mTOR pathway might have an important role in CSCs
maintenance. A combination of RX and carbon ions with drug treatments was used on the
CS cell line CH2879. They showed that rapamycin, an mTOR pathway inhibitor, combined
with miR-34, a tumor-suppressive micro-RNA, associated with the regulation of stem-like
cells in solid tumors, could overcome CSC-associated radioresistance. As such, a higher
decrease in tumorsphere formation and (aldehyde dehydrogenase) ALDH+ CSCs was
observed in cells treated with rapamycin and miR-34 combination, compared to individual
treatments. In addition, it was also demonstrated that the combined treatment improves
carbon-ion therapy at a lower dose than used in the case of X-ray, suggesting that the risks
of relapse and metastasis might be decreased and the environing tissues could be better
preserved [82]. Other studies reported proline-rich polypeptide 1 (PRP1) as a potential
therapeutic agent in CS to target CSCs [116,120,134]. PRP1 is known to have cytotastic,
antiproliferative, immunomodulatory, and tumor suppressor properties, and is an mTOR
inhibitor (Figure 1). It was shown that PRP1 treatment on the JJ012 cells’ monolayer and
the 3D spheroid model significantly decreased the ALDH high CSC population [134,135].
A combination of disulfiram and Cu2+ (DSF/Cu) has also been proven to target CSCs.
Wang et al. studied the complex DSF–CU as a radiosensitizer on the SW1353 cell line
and the ability of the complex to target CSC by analyzing the ALDH+/CD133+ level,
tumorspheres, stem marker expression, and the inhibition of the stem feature in mice.
They highlighted the increase of CSCs after irradiation by tumorsphere formation and
the increased level of stem transcription factors HER2 and SLUG. DSF–Cu association
allowed for the elimination of almost all of the tumorspheres in vitro, and the decrease
of ALDH+/CD133+ cells. In vivo, DSF–Cu decreased the tumor volume and enhanced
survival in mice. The antitumor activity of this complex could enable the increase of the
therapeutic index of radiotherapy [90].

Although more and more strategies are emerging in order to target CSCs, there are
still only a few studies in CS. Therefore, more investigations using CS are required to better
identify the different mechanisms and the responses to therapies.

4. Conclusions

Chondrosarcoma is resistant to conventional antineoplastic treatments, owing to its
particular microenvironment. The hypoxic environment directly induces chemo- and
radioresistance. It may also promote cell survival and differentiation into CSCs, which are
naturally more resistant to chemo- or radiotherapy.



Cancers 2023, 15, 1962 12 of 18

The development of hadrontherapy seems a relevant treatment alternative. Prelimi-
nary results indicate a better antitumoral effect. In addition, the use of specific molecules
such as PARP, HIF, or IDH inhibitors, in combination with hadrontherapy, remains a
promising strategy to improve local control and overall survival.
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