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Equine osteoarthritis: Strategies to
enhance mesenchymal stromal
cell-based acellular therapies

Manon Jammes, Romain Contentin†, Frédéric Cassé† and

Philippe Galéra*

BIOTARGEN, UNICAEN, Normandie University, Caen, France

Osteoarthritis (OA) is a degenerative disease that eventually leads to the complete

degradation of articular cartilage. Articular cartilage has limited intrinsic capacity for

self-repair and, to date, there is no curative treatment for OA. Humans and horses

have a similar articular cartilage and OA etiology. Thus, in the context of a One Health

approach, progress in the treatment of equine OA can help improve horse health and

can also constitute preclinical studies for human medicine. Furthermore, equine OA

a�ects horse welfare and leads to significant financial losses in the equine industry.

In the last few years, the immunomodulatory and cartilage regenerative potentials

of mesenchymal stromal cells (MSCs) have been demonstrated, but have also raised

several concerns. However, most of MSC therapeutic properties are contained in their

secretome, particularly in their extracellular vesicles (EVs), a promising avenue for

acellular therapy. From tissue origin to in vitro culture methods, various aspects must

be taken into consideration to optimize MSC secretome potential for OA treatment.

Immunomodulatory and regenerative properties of MSCs can also be enhanced

by recreating a pro-inflammatory environment to mimic an in vivo pathological

setting, but more unusual methods also deserve to be investigated. Altogether, these

strategies hold substantial potential for the development of MSC secretome-based

therapies suitable for OA management. The aim of this mini review is to survey the

most recent advances on MSC secretome research with regard to equine OA.
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1. Introduction

Articular cartilage is the connective tissue that covers the extremities of bones in diarthrodial

joints. Its viscoelasticity allows for shock absorption and joint mobility without friction (1).

Articular cartilage is composed of specialized cells called chondrocytes, and an abundant

extracellular matrix mainly enriched in type II collagen (Col II) and aggrecan. Osteoarthritis

(OA) is a degenerative joint disease that, in its later stages, affects the whole joint and

leads to decreased joint mobility, pain and impaired quality of life. During OA, articular

cartilage homeostasis is disrupted and the overproduction of catabolic enzymes, such as

matrix metalloproteinases (MMP) and aggrecanases, leads to cartilage degradation, articular

inflammation and, eventually, subchondral bone exposure (1). OA management is challenging

because cartilage has a limited capacity for self-repair. To date, there are no curative

OA treatments.

As in humans, horses can develop OA due to aging or intense physical activity, directly

affecting horse health and welfare, and diminishing performance in sport and race horses (2).

OA can thus put an early end to a horse career, leading to economic losses (3). The horse

is also an excellent preclinical model for OA, because human and equine articular cartilage

share many similarities in terms of anatomy, mechanical functioning, and cellular andmolecular

composition (2, 4).
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Current clinical treatments of equine OA such as anti-

inflammatory drugs, dietary supplements or viscosupplementation

are only symptomatic and do not prevent the degenerative process of

the disease (2). However, among the various emerging regenerative

therapies, strategies based on mesenchymal stromal cells (MSCs)

appear to hold promise. MSCs possess immunomodulatory and anti-

inflammatory effects and regenerative properties that have direct

effects or act indirectly through the release of bioactive molecules

free or enclosed in extracellular vesicles (EVs) such as exosomes or

ectosomes (5).

Here, we explore the relevance and future challenges of

MSC-derived EVs (MSC-EVs) as a new orthobiologic approach to

manage equine OA.

2. Mesenchymal stromal cell-based
therapies

MSCs are defined as multipotent cells able to self-replicate and

differentiate into distinct cell types, such as adipocytes, osteoblasts

or chondrocytes. Bone marrow (BM) is the most common source of

MSCs, even though these cells can be found in several other niches in

an organism [adipose tissue (AT), umbilical cord (UC), dental pulp,

synovium, etc.] (5). Research over the last few years has suggested

that MSCs hold great potential for diverse therapeutic applications

through putative immunomodulatory, anti-inflammatory effects or

by stimulating tissue regeneration (6–9).

Regarding articular diseases, MSCs have shown the potency

to reduce OA-related pain and increase cartilage repair (6, 9).

Additionally, OA-afflicted horses treated with intra-articular

injections of MSCs show improvement in clinical signs, cartilage

appearance and athletic performance (10–12). In the context

of autologous chondrocyte transplantation (ACT), equine MSC

(eMSC)-derived cartilage organoids overcome the limitations

inherent to the use of dedifferentiated chondrocytes and may provide

an accurate and reliable drug screening model for OA (13–17).

Although the direct use of MSCs remains promising for

equine OA treatments, several challenges have been identified,

including their in vivo distribution, a low engraftment rate, their

immunogenicity and their possible tumorigenicity risk (18–24)

(Figure 1).

3. Mesenchymal stromal cell-derived
extracellular vesicles as a new
orthobiologic therapy

The MSC secretome contains a broad spectrum of compounds

including nucleic acids, proteins such as cytokines, growth factors

or even lipids. Some of these compounds can be encapsulated in

vesicles, called EVs. EVs include apoptotic bodies (>1µm diameter),

ectosomes or microvesicles (100–1,000 nm) and exosomes (30–

200 nm). Among the MSC secretome, exosomes contain numerous

molecules with proven pro-regenerative and anti-inflammatory

properties as reviewed in Hade et al. (25). In addition, numerous

studies have demonstrated the cartilage regeneration potential of

EVs (26).

Exosomes originate from the endocytic pathway, develop within

multivesicular bodies (MVBs) and are delivered to the extracellular

environment when MVBs fuse with the plasma membrane (27).

Exosomes enter the cells through membrane fusion, endocytosis or

interaction with a receptor that is subsequently internalized.

Given the disadvantages attributed to MSC-based cellular

therapy, secretome-, EV- and exosome-based strategies are an

appealing alternative to explore the therapeutic potential of eMSCs

in equine OA management. To date, only a few studies have

demonstrated the therapeutic potential of eMSC-EVs in the context

of horse OA. Using an in vitro cartilage organoid model, our

research group has already demonstrated the pro-anabolic potential

of eMSC-conditioned media (CM) and the presence of exosomes

in eMSC-CM (28). The CM corresponds to the medium in which

cell were cultured, hence it contains components that had been

secreted by the cells. Noteworthy, because cells cultured in vitro do

not have exactly the same features than their in vivo counterparts,

the CM and the secretome of MSC in vivo might differ. MSC-EVs

can decrease the transcript levels of MMP and pro-inflammatory

molecules (29, 30). Furthermore, EVs can be used as biomarkers

to evaluate the progression of OA (31). However, to date, in vivo

cartilage regeneration using EVs in the equine model remains to

be demonstrated.

Nevertheless, environment deeply influences MSC secretion

and constitutes a variable worth of consideration to improve the

capacities attributed to their therapeutic effect (32–34). The MSC

therapeutic potential and secretome differ according to the tissue

they derive from and can be modulated by several factors as

discussed below.

4. Therapeutic potential of
mesenchymal stromal cells and their
derivatives depends on the source and
the culture procedure

MSCs from all sources share similarities, regarding in particular

their self-renewal, multipotency and immunomodulation capacities.

Nevertheless, the individual, the age, the tissue and the niche

MSCs are isolated from lead to slight variations of their properties

(35) including their secretory production. For example, AT-

eMSCs, peripheral blood (PB)-eMSCs, BM-eMSCs and UC-

eMSCs display significant variation in inflammation-related gene

expression, although interferon-γ (IFN-γ) stimulation homogenizes

the gene expression profile between the studied MSC sources (36).

Furthermore, their immunomodulatory properties can be induced

through different mechanisms. For example, AT-eMSCs and UC-

eMSCs can induce lymphocyte apoptosis, whereas BM-eMSCs, PB-

eMSCs and cord blood (CB)-eMSCs induce lymphocyte cell cycle

arrest (37). Our research group has demonstrated differences in

proliferation and differentiation capacity between BM-eMSCs, CB-

eMSCs and UC-eMSCs (13–17). BM-eMSCs are more prone to

produce hyaline-like cartilage extracellular matrix (ECM) with low

amounts of atypical molecules than are CB-eMSCs and UC-eMSCs.

The impact of eMSC origin on antibacterial activity has also been

demonstrated (38) and the eMSC secretome also depends on the

tissue source they derive from. Indeed, Navarette et al. have reported

that the miRNA content of EVs differs between AT- and endometrial

eMSCs from the same animal (39). In addition to the inter-tissue

origin heterogeneity, eMSCs derived from the same tissue source
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FIGURE 1

MSC-based acellular therapies are an appealing strategy to bypass cellular therapy limitations. Cellular therapies based on mesenchymal stromal cells

(MSCs) demonstrate a promising potential in the management of equine osteoarthritis (OA) by reducing joint inflammation and enhancing cartilage

regeneration. However, MSC intra-articular injection can be immunogenic and brings several concerns inherent to their nature. As the main part of MSC

therapeutic potential lies in their secretome, notably in extracellular vesicles (EVs), acellular therapies appear to be a promising alternative to increase the

safety of MSC-based therapy while improving its e�cacy. EVs are highly biocompatible and can easily di�use into tissues thanks to their small size. To

date, acellular therapies still exhibit a few limitations but several strategies are in progress to overcome them. The Figure was partly generated using

Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

can show differences in gene expression and functional heterogeneity

(40). Ultimately, the differentiation status of MSCs modulates their

properties. As an example, BM-eMSCs engaged in a chondrogenic

differentiation process exert a weaker inflammatory response to IL-

1β than naive BM-eMSCs (41). eMSC heterogeneity suggests that

these cells are highly influenced by their environment. Considering

the impact of MSC origin on their properties, tissue source should

be wisely selected before exploiting their secretome. Hence, in the

study of the therapeutic potential of eMSCs, medium composition

and culture conditions must be carefully selected.

Culture medium supplementation with fetal bovine serum (FBS)

is widely used to support in vitro MSC proliferation. One of

the challenges in the use of FBS resides in its non-standardized

and variable composition between batches (42). This xenogeneic

supplement can interfere with MSC metabolism, phenotype and, by

consequence, the properties of their secretome. Additionally, FBS

is a limiting factor in in vivo applications because it can trigger

an immune response. For instance, eMSCs cultured with FBS have

exacerbated immunogenicity compared with eMSCs cultured with

allogenic or autogenic equine BM supernatant-supplemented culture

medium (43). The use of autologous equine serum can be considered

for the culturing eMSCs because horses can tolerate the removal

of 25% of their blood volume (44). Replacing FBS with equine

platelet lysate as a medium supplement has also been tested, and

resulted in similar growth and phenotypical BM-MSC characteristics

(45) as well in moderately increased immunomodulatory marker

expression (46). In contrast, Pezzanite et al. demonstrated the

superiority of FBS over equine serum supplementation to generate

functional eMSCs (47). Serum-free medium is another alternative

to FBS supplementation during MSC expansion. This option is

being investigated, especially during CM and EV harvest, to avoid

the co-isolation of xenogeneic contaminants that can reduce the

therapeutic efficacy of EVs. Serum-free-cultured eMSCs decrease the

pro-inflammatory mediator secretion of activated T-cells, but to a

lesser extent than eMSCs cultured with FBS (48). In the last few

decades, efforts have beenmade to culture the cells in vitro in contexts

similar to those in vivo, particularly using three-dimensional (3D)

cultures instead of monolayers (2D). MSCs cultured in 3D undergo

morphological and metabolic changes, and their proliferation and

survival rate are increased (49). Compared with a monolayer culture,

CM from MSCs cultured in spheroids suppress macrophage pro-

inflammatory cytokine secretion and enhance the production of the

anti-inflammatory cytokine interleukin (IL)-10 (50). Additionally,

MSCs grown in dynamic 3D cultures—spinner flasks and a rotating

bioreactor—show enhanced therapeutic properties, but mRNA

profiles differ according to the method used (51). To date, these

culture methods have not yet been tested in the equine model.

Long-term in vitro expansion affects MSCs (52). A large

proportion of MSCs become senescent and display altered

differentiation and immunosuppressive potential (53, 54).
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Therefore, early passages should be preferred to harness eMSC

therapeutic properties. Noteworthily, cryopreservation does not

appear to interfere with eMSC differentiation potential and

therapeutic potential (55, 56), but the isolation protocol can affect the

characteristics of these cells (57). Nevertheless, the MSC secretome,

particularly EVs, can exhibit diminished immunosuppressive

properties after freeze-thawing (58).

The surrounding environment inevitably affects eMSCs.

Controlling it remains a real challenge that must be addressed to

increase the reproducibility of the therapeutic effects of MSCs or

MSC-derived products such as EVs. On the other hand, the ability

of MSCs to adapt to their environment also represents a tremendous

opportunity to improve their therapeutic potential (Figure 2).

5. Future directions to enhance the
therapeutic potential of MSC and their
derivatives

It has already been proven that the unstimulated eMSC secretome

can enhance the equine articular chondrocyte phenotype and

increase their migratory capacity (28, 30). Nevertheless, therapeutic

capacities of naive MSCs developing in a healthy environment

have not been optimized. To maximize the MSC therapeutic

properties, stimulation by extrinsic factors can mimic a pathological

situation, leading to a boost in the MSC immunomodulatory and

therapeutic capacities (8). In OA, this is illustrated in vivo by a pro-

inflammatory environment induced by a cartilage lesion, triggering

an MSC reaction to external aggression. These diverse procedures

are collectively called preconditioning, licensing or priming and are

probably the key to improvements in the regenerative potential of the

MSC secretome (Figure 2).

Given that MSCs evolve in vivo in hypoxic conditions (2%−9%

oxygen) (59), growing them under a 21% oxygen atmosphere can

alter their phenotype and their secretome. Low oxygen tension

regulates hypoxia-inducible factor (HIF-1α) activity that triggers

the transcription of diverse genes involved in eMSC stemness-

associated features, differentiation and self-renewal (60). Because

EV cargo reflects the nature and composition of their cell source,

these factors are likely to be found in the eMSC secretome and

modify their properties (61). Recently, Zhang et al. (62) showed

that the secretome of hypoxia-preconditioned MSCs enhanced rat

chondrocyte proliferation and migration and inhibited apoptosis

compared with rat chondrocytes cultured with the secretome from

MSCs grown in normoxia. To our knowledge, none of the hypoxia

preconditioning advantages described previously have yet been

demonstrated in equines.

When tissue is damaged, inflammatory factors and chemokines

are released by immune cells recruited to the inflammation site,

triggering eMSC activation. Reproducing this process in vitro is

one way to enhance eMSC-EV therapeutic capacities. Interferon γ

(IFN-γ) is known as the gold standard cytokine priming for MSCs.

Many studies confirm its abilities to enhance eMSC secretome-

mediated chondroprotection and downregulate inflammatory genes

in equine chondrocytes (63, 64). IFN-γ can also increase the

immunosuppressive properties of murine BM-MSCs, but priming

does not enhance the capacities of EVs (58). Depending on

their source, eMSCs vary in their response to IFN-γ, but this

cytokine lowers inter-tissue differences in unstimulated eMSC

immunomodulatory gene expression (36). Therefore, tissue of origin

may not be a crucial parameter when IFN-γ is used to license eMSCs.

Moreover, eMSC surface expression of major histocompatibility

complex (MHC)-II in horses is increased by IFN-γ and decreased

by IL-1β. However, tumor necrosis factor-α (TNF-α) has no impact

on the expression of MHC-II, demonstrating the importance of

the nature of the cytokine used for eMSC stimulation on their

antigenicity and immunomodulation (65).

However, a single molecule is not an accurate replication of the

whole inflammatory environment. Pro-inflammatory cytokines can

exert distinct actions. For example, preconditioning human MSCs

with TNF-α enhances the chondrogenic differentiation potential of

the cells, whereas IL-1β does not enhance the chondrogenic potential

of MSCs (66). Thus, a combination of several of these factors may be

more accurate. Stimulation of eMSCs with IFN-γ and TNF-α resulted

in the overexpression of immunomodulation-related genes (67).

Alone or in combination, these cytokines also significantly increased

the expression of prostaglandin-endoperoxide synthase 2 (PGE2)

and indoleamine 2,3-dioxygenase (IDO) in eMSCs (68). PGE2 (37)

and IDO both mediate most of the inhibition of equine lymphocyte

proliferation, although the involvement of IDO in the horse model is

a subject of debate (69). Recently, injection of the secretome from

TNFα and IFNγ-stimulated eMSCs in LPS-induced osteoarthritic

equine joints (70) led to reduced inflammatory symptoms and higher

ECM marker expression in joints treated with concentrated CM.

Nonetheless, no differences were noted between MSC-secretome and

MSC groups. To our knowledge, this is the only MSC-CM in vivo

experiment that has been carried out in the equine model.

However, combining cytokines only considers a small part of in

vivo molecular content and interactions. Cytokine priming can have

a deleterious effect on eMSC viability and trilineage differentiation,

which is not observed when they are primed with inflammatory

synovial fluid (SF) (71). Because immunomodulatory cytokines are

also released by activated T-cells, CM from PB mononuclear cell-

activated eMSCs can diminish T-cell proliferation in a significative

manner compared with naive eMSCs (69). Platelet-rich plasma (PRP)

and bone marrow concentrate (BMC) can stimulate the migration of

eMSCs (72). These biological fluids contain various healing-related

factors and, because migration is linked to immunomodulation (73),

they may represent a strategy for eMSC preconditioning.

Hypoxia and cytokine priming are the most investigated

strategies for improving eMSC therapeutic potential. Nevertheless,

some less well-known methods may be promising. eMSCs are

naturally exposed to mechanical forces such as fluid shear stress,

hydrostatic compression or mechanical loading that affect MSC

proliferation, differentiation and migration (74). Moreover, the

human MSC secretome’s ability to modulate angiogenesis is

influenced by the mechanical environment of MSCs in both 2D

and 3D culture systems (75). To date, mechanostimulation efficiency

has not been demonstrated in the equine model. Extracorporeal

shock wave therapy (ESWT) is a type of mechanical sensing

using acoustic waves already employed in the therapies for tendon

and ligament affections, but only as an auxiliary treatment in

equine OA management. ESWT can increase metabolic activity and

differentiation of eMSCs, but no effects on immunomodulatory

potential have been observed (76). Furthermore, CM from human
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FIGURE 2

Several parameters must be considered to improve the therapeutic potential of MSC-derived EVs in the treatment of equine OA. Mesenchymal stromal

cells (MSC)-derived extracellular vesicles (EVs) have the capacity to improve equine osteoarthritis (OA) management via immunomodulation and

stimulation of cartilage matrix synthesis. However, this therapeutic potential can be enhanced by adjusting the steps in the EV production protocol. The

source of MSCs a�ects EV properties and their therapeutic capacities. The MSC culture methods can be used as a tool to optimize the therapeutic e�ect

of MSC-derived EVs. In the last years, it has been demonstrated that EV properties can be refined by adjusting oxic conditions, adding pro-inflammatory

cytokines or other physical parameters such as mechanical stress or light exposition. Setting the balance between all these factors is crucial to achieve

the most e�ective therapeutic e�ect of MCS-derived EVs for equine OA. Moreover, acellular therapy has the advantage to avoid most of direct MSC

intra-articular injections concerns such as immunogenicity. The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under

a Creative Commons Attribution 3.0 unported license.

MSCs exposed to pulsed electromagnetic fields can also enhance

articular chondrocyte migration and reduce the inflammatory state

and apoptosis of these cells (77), but no proof is available regarding

equine cells. Lastly, 1064 nm irradiation enhances IL-10 and VEGF

expression in naive eMSCs (78). Photobiomodulationmay be another

way of maximizing stimulation and therapeutic potential of eMSCs in

the treatment of equine OA.

6. Conclusion

The relevance of the equine model in OA therapy research

contributes to the emergence of new studies and better understanding

of the therapeutic potential of eMSCs. Despite recent advances in

MSC-based therapies, several hurdles still need be overcome to

propose a MSC therapy to treat equine OA. Notwithstanding the

difficulties of quantification and large-scale production due to the

novelty of the approach, eMSC-EVs may be an appropriate adjunct

to improve MSC-based equine OA management. This strategy

can benefit from the immunomodulatory, anti-inflammatory and

regenerative properties of MSCs without inducing side effects such

as immunogenicity or tumoral transformation (Figure 1).

Nonetheless, there still are numerous questions before

considering therapies based on MSC-EVs for equine joint disorders.

Issues involving eMSC origin, culture and preconditioning

conditions, method of EV isolation, enrichment, storage and dosing

need to be addressed, as well as the safety of allogenic or autologous

EVs (Figure 2). Another critical issue that needs to be examined is

the in vivo targeting of cartilage. Currently, a promising strategy is

the use of a cationic molecule that can coat EVs and reverse their

negative surface charge to infiltrate the negatively charged cartilage

more easily (79).

To address all these considerations, in vitro organoid models

of equine chondrocytes or eMSCs can be useful to optimize EV

preparation and to identify the ideal treatment for use in controlled

clinical trials on horses affected by OA.

Finally, progress in equine OA treatment using the therapeutic

potential of MSC-EVs is critical for horse welfare and the equine

industry, and may even eventually be transposable to humans as part

of a One Health approach.
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