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Definitions

1 smooth: means C∞ smooth,

2 We consider a smooth manifold X of dimension 2, since all results are
local, we can imagine X an open subset of R2, equipped with
coordinates x = (z , y),

3 TX : the tangent bundle of X , with coordinates (x , ẋ),

We consider a smooth sub-manifold S ⊂ TX , locally given by:

S(x , ẋ) = 0. (S)

We assume that S is smooth and that ∂S
∂ẋ 6= 0.
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What is it?

A submanifold S is a nonholonomic constraint.
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Motivations - 1

Dubin’s car

Back to [D, 1957]. Consider the simple model of a car,


ż = cos(θ)
ẏ = sin(θ)

θ̇ = u

,

where (z , y) is the centre of mass, and θ is the orientation. Then Dubin’s
car describes an elliptic nonholonomic constraint given by

(ż)2 + (ẏ)2 = 1.
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Motivations - 2

Quadratic submanifolds in Physics are common

From [B, 1991]. Consider the attitude control problem for a rigid
spacecraft governed by gas jets. Let θ = (θ1, θ2, θ3) ∈ R3 be the
orientation of the satellite and ω = (ω1, ω2, ω3) ∈ R3 be the angular
velocity measured in a specific frame attached to the satellite. The control
problem is, 

θ̇1 = ω1 ω̇1 = a1ω2ω3

θ̇2 = ω2 ω̇2 = u2

θ̇3 = ω3 ω̇3 = u3

which is the quadratic submanifold (in TR3) given by ω̇1 = a1θ̇2θ̇3
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Motivations - 3

From the mathematical point of view-1

Also in [B, 1991], Bonnard started a classification of quadratic control
systems (not of submanifolds), he left very interesting questions to answer.

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal
realisation of the simple Lie Algebra so(r + 2, s + 2) (where (r , s) is the
signature of k).

ż =
1

2

m∑
ij

kij ẏ
i ẏ j .
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Problems

Definition (Equivalence of submanifolds)

We say that two sub-manifold S and S̃, given by {S(x , ẋ) = 0} and
{S̃(x̃ , ˙̃x) = 0}, are (locally)-equivalent if there exists a (local)
diffeomorphism x̃ = φ(x) and a nonvanishing function δ(x , ẋ) such that

S̃(φ(x),Dφ(x)ẋ) = δ(x , ẋ)S(x , ẋ).

Conic submanifolds

In the tangent bundle TX of a smooth 2D manifold.

1 Characterise the submanifolds S that are equivalent to a conic
submanifold Sq given by

Sq = ẋTg(x)ẋ + 2ω(x)ẋ + h(x) = 0. (Sq)

2 Classify normal forms of those submanifolds.
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Conic submanifolds

We assume that Sq is non-
degenerate, that is ∆1(x0) =

det

(
g(x0) ω(x0)T

ω(x0) h(x0)

)
6= 0.

Then conic submanifold
can be classified using

∆2(x) = det(g(x)).

Using classical results in dif-
ferential geometry we can eas-
ily find a normal form when
∆2 6= 0 and when ∆2 ≡ 0.
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Solving the equivalence problem by feedback equivalence
of control-affine systems

The idea: prolong a parametrization of the submanifold
S = {S(x , ẋ) = 0} and then see it as a control-affine system.

S ⇐⇒ ẋ = F (x ,w), S(x ,F (x ,w)) = 0 ∀w ∈ U

⇐⇒
{

ẋ = F (x ,w)
ẇ = u

, (ΣS)

where u ∈ R is the control, and ξ = (z , y ,w) ∈ X × R is the extended
coordinate system.

Example (Dubin’s car)

Starting from the submanifold (ż)2 + (ẏ)2 = 1 we have{
ż = cos(w)
ẏ = sin(w)

−→


ż = cos(w)
ẏ = sin(w)
ẇ = u
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Transformations diagram

What is the notion of equivalence for affine systems that make this
diagram commute ?

S (φ, δ)←−−−−−→ Sqxy xy
ΣS

?←−−−→ ΣSq

T. Schmoderer (INSAR) Conic submanifolds June 24, 2021 11 / 24



Feedback equivalence

We consider Σi : ξ̇ = f i (ξ) + g i (ξ)ui with ui ∈ R, i = 1, 2.

Definition (Affine Feedback Equivalence)

We say that two control-affine systems Σ1 and Σ2 are feedback equivalent
if and only if there exist smooth functions α(x) and β(x), β(·) 6= 0, and a
diffeomorphism φ of X such that:

f 2 =
∂φ

∂x

(
f 1 + αg1

)
,

g2 =
∂φ

∂x

(
g1β

)
.

It is like taking the control u1 = α + βu2. Geometrically, it is the
equivalence of affine distributions A2 = φ?A1 where Ai = f i + span

{
g i
}

.
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Main result - 1

Definition (Parametrisation of conic submanifold.)

A control-affine system Σ is quadratizable if it is feedback equivalent to

Σq :


ż = f 1(z , y ,w)
ẏ = f 2(z , y ,w)
ẇ = u

, where
∂3f i

∂w3
= τ(z , y)

∂f i

∂w

and
(
∂2f
∂w2 ∧ ∂f

∂w

)
(x0,w0) 6= 0.

Properties of quadratizable systems

Σq is a parametrisation of a conic nonholonomic constraint Sq, for which
we have ∆2 = −τ . If τ ≡ 0, resp. τ < 0, resp. τ > 0, then we have

fP = A(x)w2 + B(x)w + C (x), fE = A(x) cos(w) + B(x) sin(w) + C (x),

fH = A(x) cosh(w) + B(x) sinh(w) + C (x).
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Main result - 2

Theorem (Affine feedback quadratization)

Let Σ be an control-affine system on a 3-dimensional smooth manifold
with 1 control. Σ is locally around ξ0 feedback equivalent to Σq if, and
only if,

1 g ∧ adg f ∧ ad2
g f (ξ0) 6= 0,

2 The structure functions ρ and τ in the decomposition
ad3

g f = ρ ad2
g f + τ adg f mod span {g} satisfy

Lgχ−
2

3
ρχ = 0,

where χ = 3Lgρ− 2ρ2 − 9τ .

These conditions are checkable by algebraic operations and derivations.
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Idea of the proof

1 Check that Σq satisfies the conditions (easy),

2 Check that the conditions are invariant under feedback
transformations,

3 Given Σ with ρ and τ , find a feedback (α, β) such that ρ̃ ≡ 0, then
applying a diffeomorphism φ satisfying φ∗g = ∂

∂w we obtain Σq.

Corrolary

We can check that sgn (χ) is an invariant of feedback transformations
thus, we have the following corollary (under the same assumptions),

1 Σ is feedback equivalent to ΣP iff χ ≡ 0,

2 Σ is feedback equivalent to ΣE iff χ > 0,

3 Σ is feedback equivalent to ΣH iff χ < 0.
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Normal forms of conic systems and submanifolds - 1

If g ∧ adg f (ξ0) 6= 0, then a control-affine system is feedback equivalent to,

Σh :


ż = h(x , y ,w)
ẏ = w
ẇ = u

, f =

h
w
0

 , g =

0
0
1

 ,

for which we have ρ = h(3)

h(2) and τ ≡ 0. Then the conditions of the theorem
read

3ρ′′ − 6ρρ′ +
4

3
ρ3 = 0.

If Σh is feedback equivalent to Σq, then locally, we have

h(x ,w) = 2a

(
w2

(
√
dw2 + ew + 1 + 1)2 − dw2

)
+ bw + c,

where a, b, c , d , e are any smooth function of x such that a(0) 6= 0.
T. Schmoderer (INSAR) Conic submanifolds June 24, 2021 16 / 24



Normal forms of conic systems and submanifolds - 1

If g ∧ adg f (ξ0) 6= 0, then a control-affine system is feedback equivalent to,

Σh :
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Normal forms of conic systems and submanifolds - 2

A normal form of conic submanifolds Sq is given by

Sq = (e(ż − c)− 2aẏ)2 − 4d(ż − c)2 − 8a(ż − c) = 0

for which ∆2 = −16a2d can smoothly go through 0.
(https://www.geogebra.org/m/qzkmfzsf)

Figure: d = −1 Figure: d = 0 Figure: d = 1
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Classification of conic submanifolds

We will now be working within the following three classes of conic
submanifolds:

ΞP : ẋ = A(x)w2 + B(x)w + C (x),

ΞE : ẋ = A(x) cos(w) + B(x) sin(w) + C (x),

ΞH : ẋ = A(x) cosh(w) + B(x) sinh(w) + C (x),

seen as nonlinear control systems, satisfying A ∧ B 6= 0. The group of
transformations is a pure feedback w = α(x) + β(x)w̃ and a
diffeomorphism x̃ = φ(x). We try to characterise the following normal
forms:

A =
∂

∂z
, and B =

∂

∂y
, and, additionally, C = const.
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Classification of elliptic/hyperbolic submanifolds - 1

We focus on

ΞE : ẋ = A(x) cos(w) + B(x) sin(w) + C (x),

ΞH : ẋ = A(x) cosh(w) + B(x) sinh(w) + C (x).

We associate a (pseudo-)Riemanian metric g± to the pair (A,B):

g±(A,A) = 1, g±(B,B) = ±1, g±(A,B) = 0.

Theorem (Normal form of elliptic/hyperbolic systems)

ΞE , resp. ΞH , is feedback equivalent to

Ξ′E :

{
ż = cos(w) + c0(x)
ẏ = sin(w) + c1(x)

, Ξ′H :

{
ż = cosh(w) + c0(x)
ẏ = sinh(w) + c1(x)

,

if and only the Gaussian curvature of g± vanishes.
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Classification of elliptic/hyperbolic submanifolds - 2

Theorem (Canonical form of flat elliptic systems with constant C )

A system Ξ′E with (c0, c1) ∈ R2 is equivalent to the canonical form

ΞΓE
E :

{
ż = cos(w) +

√
ΓE

ẏ = sin(w)

where ΓE = (c0)2 + (c1)2 is an invariant.

For elliptic submanifolds we have the following family of canonical forms

SΓE
E =

{
(ż −

√
ΓE )2 + (ẏ)2 = 1

}
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Classification of elliptic/hyperbolic submanifolds - 2

Theorem (Canonical form of flat hyperbolic systems with constant C )

A system Ξ′H with (c0, c1) ∈ R2 is equivalent to one of the canonical forms

ΞΓH ,ε
H :

{
ż = cosh(w) + ε

√
ΓH

ẏ = sinh(w)
, or Ξ0,0

H :

{
ż = cosh(w)
ẏ = sinh(w)

or Ξ−ΓH
H :

{
ż = cosh(w)
ẏ = sinh(w) +

√
−ΓH

, or Ξ0,ε
H :

{
ż = cosh(w) + ε
ẏ = sinh(w) + 1

,

depending on ΓH = (c0)2 − (c1)2 satisfying ΓH > 0, ΓH < 0, or ΓH = 0,
and where ε = sgn (c0) = ±1. Moreover (ΓH , ε) is a complete invariant.

For hyperbolic submanifolds, we have the following families of canonical
forms

SΓH
H =

{
(ż −

√
ΓH)2 − (ẏ)2 = 1

}
, S0,0

H =
{

(ż)2 − (ẏ)2 = 1
}

S−ΓH
H =

{
(ż)2 − (ẏ −

√
−ΓH)2 = 1

}
, S0,1

H =
{

(ż − 1)2 − (ẏ − 1)2 = 1
}
,
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Classification of elliptic/hyperbolic submanifolds - 2

Theorem (Canonical form of flat hyperbolic systems with constant C )
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ΞΓH ,ε
H :

{
ż = cosh(w) + ε

√
ΓH

ẏ = sinh(w)
, or Ξ0,0

H :

{
ż = cosh(w)
ẏ = sinh(w)

or Ξ−ΓH
H :

{
ż = cosh(w)
ẏ = sinh(w) +

√
−ΓH

, or Ξ0,ε
H :
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ẏ = sinh(w) + 1
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(ż)2 − (ẏ)2 = 1
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Figure: Canonical forms ΞΓH ,ε
H
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Classification of parabolic submanifolds - 1

We now focus on parabolic systems

ΞP : ẋ = A(x)w2 + B(x)w + C (x).

Proposition

A parabolic system always admits the following normal forms

Ξ′P :

{
ż = w2 + c0(x)
ẏ = w + c1(x)

or, equivalently,

Ξ′′P :

{
ż = w2 + b(x)w + c0(x)
ẏ = w

That is, for parabolic systems we can always obtain A = ∂
∂z and B = ∂

∂y .

Moreover if ∂2c1
∂z2 = 0 we have

Ξ′′′P :

{
ż = w2 + c0(x)
ẏ = w

.
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Classification of parabolic submanifolds - 2

If c0 ∈ R, we have the following canonical forms

Ξ±P :

{
ż = w2 ± 1
ẏ = w

, Ξ0
P :

{
ż = w2

ẏ = w
.

i.e. we have only 3 parabolic submanifolds with constant coefficients:

S+
P =

{
ż = (ẏ)2 + 1

}
, S−P =

{
ż = (ẏ)2 + 1

}
, S0

P =
{
ż = (ẏ)2

}
.
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Conclusion and perspectives

We presented an introduction to the equivalence and classification problem
of conic submanifolds in TR2.

We propose a method that directly characterises the conic form without
parameters i.e.{

ż = cos(w)
ẏ = sin(w)

,

{
ż = cosh(w)
ẏ = sinh(w)

,

{
ż = w2

ẏ = w
.

It is done by the study of the Lie algebra of infinitesimal symmetries, and
is easily generalisable to higher dimensions (however when m > 2,
checkablity of the conditions is hard).
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ż = cos(w)
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ẏ = sinh(w)

,

{
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Conclusion and perspectives

We have results for the equivalence and classification of quadric
submanifolds in TR3, especially,

ż = a(x)(ẏ2
1 + εẏ2

2 ) + b1(x)ẏ1 + b2(x)ẏ2 + c(x).

The case when ε = −1 is called p-hyperbolic and is easier to solve (the
geometry is nice). The case when ε = 1, called p-elliptic, is a bit more
trickier to deal with.
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