Conic nonholonomic constraints on surfaces and control systems

Timothée Schmoderer & Witold Respondek

INSA Rouen Normandie

timothee.schmoderer@insa-rouen.fr

June 24, 2021

- 2 Characterisation of conic submanifolds
- 3 Classification of conic submanifolds
- 4 Conclusion and perspectives

() *smooth*: means C^{∞} smooth,

We consider a *smooth* manifold X of dimension 2, since all results are local, we can imagine X an open subset of ℝ², equipped with coordinates x = (z, y),

If TX: the tangent bundle of X, with coordinates (x, \dot{x}) ,

We consider a smooth sub-manifold $\mathcal{S} \subset \mathsf{T}\mathcal{X}$, locally given by:

$$S(x, \dot{x}) = 0. \tag{S}$$

We assume that S is smooth and that $\frac{\partial S}{\partial x} \neq 0$.

• smooth: means C^{∞} smooth,

We consider a *smooth* manifold X of dimension 2, since all results are local, we can imagine X an open subset of ℝ², equipped with coordinates x = (z, y),

(a) TX: the tangent bundle of X, with coordinates (x, \dot{x}) ,

We consider a smooth sub-manifold $\mathcal{S} \subset \mathsf{T}\mathcal{X}$, locally given by:

$$S(x,\dot{x}) = 0. \tag{S}$$

We assume that S is smooth and that $\frac{\partial S}{\partial x} \neq 0$.

• smooth: means C^{∞} smooth,

We consider a *smooth* manifold X of dimension 2, since all results are local, we can imagine X an open subset of ℝ², equipped with coordinates x = (z, y),

③ $T\mathcal{X}$: the tangent bundle of \mathcal{X} , with coordinates (x, \dot{x}) ,

We consider a smooth sub-manifold $\mathcal{S} \subset \mathsf{T}\mathcal{X}$, locally given by:

$$S(x,\dot{x}) = 0. \tag{S}$$

We assume that S is smooth and that $\frac{\partial S}{\partial x} \neq 0$.

• smooth: means C^{∞} smooth,

- We consider a *smooth* manifold X of dimension 2, since all results are local, we can imagine X an open subset of ℝ², equipped with coordinates x = (z, y),
- **③** $T\mathcal{X}$: the tangent bundle of \mathcal{X} , with coordinates (x, \dot{x}) ,

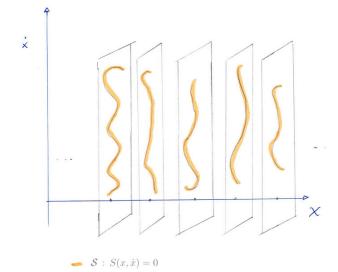
We consider a smooth sub-manifold $\mathcal{S} \subset \mathsf{T}\mathcal{X},$ locally given by:

$$S(x,\dot{x}) = 0. \tag{S}$$

We assume that S is smooth and that $\frac{\partial S}{\partial \dot{x}} \neq 0$.

What is it?

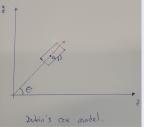
A submanifold ${\mathcal S}$ is a nonholonomic constraint.



Dubin's car

Back to [D, 1957]. Consider the simple model of a car,

$$\begin{cases} \dot{z} = \cos(\theta) \\ \dot{y} = \sin(\theta) \\ \dot{\theta} = u \end{cases}$$



where (z, y) is the centre of mass, and θ is the orientation. Then Dubin's car describes an elliptic nonholonomic constraint given by

$$(\dot{z})^2 + (\dot{y})^2 = 1.$$

Quadratic submanifolds in Physics are common

From [B, 1991]. Consider the *attitude control problem* for a rigid spacecraft governed by gas jets. Let $\theta = (\theta_1, \theta_2, \theta_3) \in \mathbb{R}^3$ be the orientation of the satellite and $\omega = (\omega_1, \omega_2, \omega_3) \in \mathbb{R}^3$ be the angular velocity measured in a specific frame attached to the satellite. The control problem is,

$$\begin{cases} \dot{\theta}_1 = \omega_1 & \dot{\omega}_1 = a_1 \omega_2 \omega_3 \\ \dot{\theta}_2 = \omega_2 & \dot{\omega}_2 = u_2 \\ \dot{\theta}_3 = \omega_3 & \dot{\omega}_3 = u_3 \end{cases}$$

which is the quadratic submanifold (in $T\mathbb{R}^3$) given by $\dot{\omega}_1 = a_1 \dot{\theta}_2 \dot{\theta}_3$

From the mathematical point of view-1

Also in [B, 1991], Bonnard started a classification of quadratic control systems (not of submanifolds), he left very interesting questions to answer.

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal realisation of the simple Lie Algebra $\mathfrak{so}(r+2, s+2)$ (where (r, s) is the signature of k).

$$\dot{z} = \frac{1}{2} \sum_{ij}^{m} k_{ij} \dot{y}^{i} \dot{y}^{j}$$

From the mathematical point of view-1

Also in [B, 1991], Bonnard started a classification of quadratic control systems (not of submanifolds), he left very interesting questions to answer.

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal realisation of the simple Lie Algebra $\mathfrak{so}(r+2, s+2)$ (where (r, s) is the signature of k).

$$\dot{z} = \frac{1}{2} \sum_{ij}^{m} k_{ij} \dot{y}^{i} \dot{y}^{j}.$$

Problems

Definition (Equivalence of submanifolds)

We say that two sub-manifold S and \tilde{S} , given by $\{S(x, \dot{x}) = 0\}$ and $\{\tilde{S}(\tilde{x}, \dot{\tilde{x}}) = 0\}$, are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x} = \phi(x)$ and a nonvanishing function $\delta(x, \dot{x})$ such that

$$\tilde{S}(\phi(x), D\phi(x)\dot{x}) = \delta(x, \dot{x})S(x, \dot{x}).$$

Conic submanifolds

In the tangent bundle TX of a smooth 2D manifold.

 Characterise the submanifolds S that are equivalent to a conic submanifold S_q given by

$$S_q = \dot{x}^T g(x) \dot{x} + 2\omega(x) \dot{x} + h(x) = 0.$$

Olassify normal forms of those submanifolds

Problems

Definition (Equivalence of submanifolds)

We say that two sub-manifold S and \tilde{S} , given by $\{S(x, \dot{x}) = 0\}$ and $\{\tilde{S}(\tilde{x}, \dot{\tilde{x}}) = 0\}$, are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x} = \phi(x)$ and a nonvanishing function $\delta(x, \dot{x})$ such that

$$\tilde{S}(\phi(x), D\phi(x)\dot{x}) = \delta(x, \dot{x})S(x, \dot{x}).$$

Conic submanifolds

In the tangent bundle $T\mathcal{X}$ of a smooth 2D manifold.

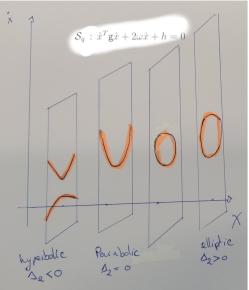
Characterise the submanifolds S that are equivalent to a conic submanifold S_q given by

$$S_q = \dot{x}^T g(x) \dot{x} + 2\omega(x) \dot{x} + h(x) = 0.$$

2 Classify normal forms of those submanifolds.

 (\mathcal{S}_a)

Conic submanifolds



We assume that S_q is nondegenerate, that is $\Delta_1(x_0) =$ $\det \begin{pmatrix} g(x_0) & \omega(x_0)^T \\ \omega(x_0) & h(x_0) \end{pmatrix} \neq 0.$

Then conic submanifold can be classified using

 $\Delta_2(x) = \det(g(x)).$

Using classical results in differential geometry we can easily find a normal form when $\Delta_2 \neq 0$ and when $\Delta_2 \equiv 0$.

The idea: prolong a parametrization of the submanifold $S = \{S(x, \dot{x}) = 0\}$ and then see it as a control-affine system.

$$S \iff \dot{x} = F(x, w), \quad S(x, F(x, w)) = 0 \quad \forall w \in \mathcal{U}$$
$$\iff \begin{cases} \dot{x} = F(x, w) \\ \dot{w} = u \end{cases}, \qquad (\Sigma_{\mathcal{S}})$$

where $u \in \mathbb{R}$ is the *control*, and $\xi = (z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Example (Dubin's car)

$$\begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \end{cases} \longrightarrow \begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \\ \dot{w} = u \end{cases}$$

The idea: prolong a parametrization of the submanifold $S = \{S(x, \dot{x}) = 0\}$ and then see it as a control-affine system.

$$S \iff \dot{x} = F(x, w), \quad S(x, F(x, w)) = 0 \quad \forall w \in \mathcal{U}$$
$$\iff \begin{cases} \dot{x} = F(x, w) \\ \dot{w} = u \end{cases}, \quad (\Sigma_{\mathcal{S}})$$

where $u \in \mathbb{R}$ is the *control*, and $\xi = (z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Example (Dubin's car)

$$\begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \end{cases} \longrightarrow \begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \\ \dot{w} = u \end{cases}$$

The idea: prolong a parametrization of the submanifold $S = \{S(x, \dot{x}) = 0\}$ and then see it as a control-affine system.

$$S \iff \dot{x} = F(x, w), \quad S(x, F(x, w)) = 0 \quad \forall w \in \mathcal{U}$$
$$\iff \begin{cases} \dot{x} = F(x, w) \\ \dot{w} = u \end{cases}, \quad (\Sigma_{S})$$

where $u \in \mathbb{R}$ is the *control*, and $\xi = (z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Example (Dubin's car)

$$\begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \end{cases} \longrightarrow \begin{cases} z = \cos(w) \\ \dot{y} = \sin(w) \\ \dot{w} = u \end{cases}$$

The idea: prolong a parametrization of the submanifold $S = \{S(x, \dot{x}) = 0\}$ and then see it as a control-affine system.

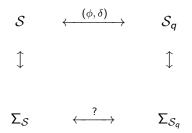
$$S \iff \dot{x} = F(x, w), \quad S(x, F(x, w)) = 0 \quad \forall w \in \mathcal{U}$$
$$\iff \begin{cases} \dot{x} = F(x, w) \\ \dot{w} = u \end{cases}, \qquad (\Sigma_{S})$$

where $u \in \mathbb{R}$ is the *control*, and $\xi = (z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Example (Dubin's car)

$$\begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \end{cases} \longrightarrow \begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \\ \dot{w} = u \end{cases}$$

What is the notion of equivalence for affine systems that make this diagram commute ?



We consider Σ^i : $\dot{\xi} = f^i(\xi) + g^i(\xi)u^i$ with $u^i \in \mathbb{R}$, i = 1, 2.

Definition (Affine Feedback Equivalence)

We say that two control-affine systems Σ^1 and Σ^2 are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x)$, $\beta(\cdot) \neq 0$, and a diffeomorphism ϕ of \mathcal{X} such that:

$$f^{2} = \frac{\partial \phi}{\partial x} \left(f^{1} + \alpha g^{1} \right),$$
$$g^{2} = \frac{\partial \phi}{\partial x} \left(g^{1} \beta \right).$$

It is like taking the control $u^1 = \alpha + \beta u^2$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^2 = \phi_* \mathcal{A}^1$ where $\mathcal{A}^i = f^i + \text{span} \{g^i\}$.

We consider Σ^i : $\dot{\xi} = f^i(\xi) + g^i(\xi)u^i$ with $u^i \in \mathbb{R}$, i = 1, 2.

Definition (Affine Feedback Equivalence)

We say that two control-affine systems Σ^1 and Σ^2 are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x)$, $\beta(\cdot) \neq 0$, and a diffeomorphism ϕ of \mathcal{X} such that:

$$f^{2} = \frac{\partial \phi}{\partial x} \left(f^{1} + \alpha g^{1} \right),$$
$$g^{2} = \frac{\partial \phi}{\partial x} \left(g^{1} \beta \right).$$

It is like taking the control $u^1 = \alpha + \beta u^2$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^2 = \phi_* \mathcal{A}^1$ where $\mathcal{A}^i = f^i + \text{span} \{g^i\}$.

We consider Σ^i : $\dot{\xi} = f^i(\xi) + g^i(\xi)u^i$ with $u^i \in \mathbb{R}$, i = 1, 2.

Definition (Affine Feedback Equivalence)

We say that two control-affine systems Σ^1 and Σ^2 are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x)$, $\beta(\cdot) \neq 0$, and a diffeomorphism ϕ of \mathcal{X} such that:

$$\begin{split} f^2 &= \frac{\partial \phi}{\partial x} \left(f^1 + \alpha g^1 \right), \\ g^2 &= \frac{\partial \phi}{\partial x} \left(g^1 \beta \right). \end{split}$$

It is like taking the control $u^1 = \alpha + \beta u^2$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^2 = \phi_* \mathcal{A}^1$ where $\mathcal{A}^i = f^i + \text{span} \{g^i\}$.

Main result - 1

Definition (Parametrisation of conic submanifold.)

A control-affine system Σ is *quadratizable* if it is feedback equivalent to

$$\Sigma_{q} : \begin{cases} \dot{z} = f^{1}(z, y, w) \\ \dot{y} = f^{2}(z, y, w) \\ \dot{w} = u \end{cases}, \text{ where } \frac{\partial^{3} f^{i}}{\partial w^{3}} = \tau(z, y) \frac{\partial f^{i}}{\partial w}$$

and
$$\left(\frac{\partial^2 f}{\partial w^2} \wedge \frac{\partial f}{\partial w}\right)(x_0, w_0) \neq 0.$$

Properties of quadratizable systems

 Σ_q is a parametrisation of a conic nonholonomic constraint S_q , for which we have $\Delta_2 = -\tau$. If $\tau \equiv 0$, resp. $\tau < 0$, resp. $\tau > 0$, then we have

 $f_P = A(x)w^2 + B(x)w + C(x), \ f_E = A(x)\cos(w) + B(x)\sin(w) + C(x),$ $f_H = A(x)\cosh(w) + B(x)\sinh(w) + C(x).$

Main result - 1

Definition (Parametrisation of conic submanifold.)

A control-affine system Σ is *quadratizable* if it is feedback equivalent to

$$\Sigma_{q} : \begin{cases} \dot{z} = f^{1}(z, y, w) \\ \dot{y} = f^{2}(z, y, w) \\ \dot{w} = u \end{cases}, \text{ where } \frac{\partial^{3} f^{i}}{\partial w^{3}} = \tau(z, y) \frac{\partial f^{i}}{\partial w}$$

and
$$\left(\frac{\partial^2 f}{\partial w^2} \wedge \frac{\partial f}{\partial w}\right)(x_0, w_0) \neq 0.$$

Properties of quadratizable systems

 Σ_q is a parametrisation of a conic nonholonomic constraint S_q , for which we have $\Delta_2 = -\tau$. If $\tau \equiv 0$, resp. $\tau < 0$, resp. $\tau > 0$, then we have

$$f_P = A(x)w^2 + B(x)w + C(x), \ f_E = A(x)\cos(w) + B(x)\sin(w) + C(x), f_H = A(x)\cosh(w) + B(x)\sinh(w) + C(x).$$

Theorem (Affine feedback quadratization)

Let Σ be an control-affine system on a 3-dimensional smooth manifold with 1 control. Σ is locally around ξ_0 feedback equivalent to Σ_q if, and only if,

•
$$g \wedge ad_g f \wedge ad_g^2 f(\xi_0) \neq 0$$
,

2 The structure functions ρ and τ in the decomposition $ad_g^3 f = \rho ad_g^2 f + \tau ad_g f \mod span\{g\}$ satisfy

$$L_g \chi - \frac{2}{3} \rho \chi = 0,$$

where
$$\chi = 3L_g \rho - 2\rho^2 - 9\tau$$
.

These conditions are checkable by algebraic operations and derivations.

Idea of the proof

• Check that Σ_q satisfies the conditions (easy),

- Otheck that the conditions are invariant under feedback transformations,
- (a) Given Σ with ρ and τ , find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_*g = \frac{\partial}{\partial w}$ we obtain Σ_q .

Corrolary

- Σ is feedback equivalent to Σ_P iff $\chi \equiv 0$,
- S is feedback equivalent to Σ_E iff $\chi > 0$,
- 3 Σ is feedback equivalent to Σ_H iff $\chi < 0$.

Idea of the proof

- Check that Σ_q satisfies the conditions (easy),
- Otheck that the conditions are invariant under feedback transformations,
- (a) Given Σ with ρ and τ , find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_* g = \frac{\partial}{\partial w}$ we obtain Σ_q .

Corrolary

- Σ is feedback equivalent to Σ_P iff $\chi \equiv 0$,
- S is feedback equivalent to Σ_E iff $\chi > 0$,
- 3 Σ is feedback equivalent to Σ_H iff $\chi < 0$.

Idea of the proof

- Check that Σ_q satisfies the conditions (easy),
- Otheck that the conditions are invariant under feedback transformations,
- Given Σ with ρ and τ , find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_*g = \frac{\partial}{\partial w}$ we obtain Σ_q .

Corrolary

- Σ is feedback equivalent to Σ_P iff $\chi \equiv 0$,
- S is feedback equivalent to Σ_E iff $\chi > 0$,
- 3 Σ is feedback equivalent to Σ_H iff $\chi < 0$.

- **D** Check that Σ_q satisfies the conditions (easy),
- Check that the conditions are invariant under feedback transformations,
- (a) Given Σ with ρ and τ , find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_*g = \frac{\partial}{\partial w}$ we obtain Σ_q .

Corrolary

- **①** Σ is feedback equivalent to Σ_P iff $\chi \equiv 0$,
- **2** Σ is feedback equivalent to Σ_E iff $\chi > 0$,
- **③** Σ is feedback equivalent to Σ_H iff $\chi < 0$.

If $g \wedge \operatorname{ad}_g f(\xi_0) \neq 0$, then a control-affine system is feedback equivalent to,

$$\Sigma_h: \left\{ \begin{array}{rr} \dot{z} &=h(x,y,w) \\ \dot{y} &=w \\ \dot{w} &=u \end{array} \right., \quad f=\begin{pmatrix}h \\ w \\ 0 \end{pmatrix}, \ g=\begin{pmatrix}0 \\ 0 \\ 1 \end{pmatrix},$$

for which we have $\rho = \frac{h^{(3)}}{h^{(2)}}$ and $\tau \equiv 0$. Then the conditions of the theorem read

$$3\rho'' - 6\rho\rho' + \frac{4}{3}\rho^3 = 0.$$

If Σ_h is feedback equivalent to Σ_q , then locally, we have

$$h(x,w) = 2a\left(\frac{w^2}{(\sqrt{dw^2 + ew + 1} + 1)^2 - dw^2}\right) + bw + c,$$

where a, b, c, d, e are any smooth function of x such that $a(0) \neq 0$.

If $g \wedge \operatorname{ad}_g f(\xi_0) \neq 0$, then a control-affine system is feedback equivalent to,

$$\Sigma_h: \left\{ \begin{array}{rr} \dot{z} &=h(x,y,w) \\ \dot{y} &=w \\ \dot{w} &=u \end{array} \right., \quad f=\begin{pmatrix}h \\ w \\ 0 \end{pmatrix}, \ g=\begin{pmatrix}0 \\ 0 \\ 1 \end{pmatrix},$$

for which we have $\rho=\frac{h^{(3)}}{h^{(2)}}$ and $\tau\equiv$ 0. Then the conditions of the theorem read

$$3\rho'' - 6\rho\rho' + \frac{4}{3}\rho^3 = 0.$$

If Σ_h is feedback equivalent to Σ_q , then locally, we have

$$h(x,w) = 2a\left(\frac{w^2}{(\sqrt{dw^2 + ew + 1} + 1)^2 - dw^2}\right) + bw + c,$$

where a, b, c, d, e are any smooth function of x such that $a(0) \neq 0$.

If $g \wedge \operatorname{ad}_g f(\xi_0) \neq 0$, then a control-affine system is feedback equivalent to,

$$\Sigma_h: \left\{ \begin{array}{rr} \dot{z} &=h(x,y,w) \\ \dot{y} &=w \\ \dot{w} &=u \end{array} \right., \quad f=\begin{pmatrix}h\\w\\0\end{pmatrix}, \ g=\begin{pmatrix}0\\0\\1\end{pmatrix},$$

for which we have $\rho=\frac{h^{(3)}}{h^{(2)}}$ and $\tau\equiv 0.$ Then the conditions of the theorem read

$$3\rho'' - 6\rho\rho' + \frac{4}{3}\rho^3 = 0.$$

If Σ_h is feedback equivalent to Σ_q , then locally, we have

$$h(x,w)=2a\left(\frac{w^2}{(\sqrt{dw^2+ew+1}+1)^2-dw^2}\right)+bw+c,$$

where a, b, c, d, e are any smooth function of x such that $a(0) \neq 0$.

A normal form of conic submanifolds S_q is given by

$$S_q = (e(\dot{z}-c)-2a\dot{y})^2 - 4d(\dot{z}-c)^2 - 8a(\dot{z}-c) = 0$$

for which $\Delta_2 = -16a^2d$ can smoothly go through 0. (https://www.geogebra.org/m/qzkmfzsf)

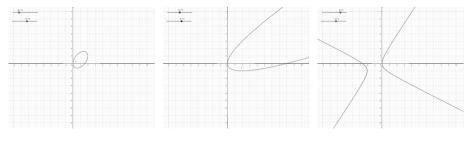


Figure: d = -1

Figure: d = 0

Figure: d = 1

T. Schmoderer (INSAR)

Conic submanifolds

June 24, 2021 17 / 24

We will now be working within the following three classes of conic submanifolds:

$$\Xi_P : \dot{x} = A(x)w^2 + B(x)w + C(x), \Xi_E : \dot{x} = A(x)\cos(w) + B(x)\sin(w) + C(x), \Xi_H : \dot{x} = A(x)\cosh(w) + B(x)\sinh(w) + C(x),$$

seen as nonlinear control systems, satisfying $A \wedge B \neq 0$. The group of transformations is a pure feedback $w = \alpha(x) + \beta(x)\tilde{w}$ and a diffeomorphism $\tilde{x} = \phi(x)$. We try to characterise the following normal forms:

$$A = \frac{\partial}{\partial z}$$
, and $B = \frac{\partial}{\partial y}$, and, additionally, $C = const$.

We will now be working within the following three classes of conic submanifolds:

$$\Xi_P : \dot{x} = A(x)w^2 + B(x)w + C(x), \Xi_E : \dot{x} = A(x)\cos(w) + B(x)\sin(w) + C(x), \Xi_H : \dot{x} = A(x)\cosh(w) + B(x)\sinh(w) + C(x),$$

seen as nonlinear control systems, satisfying $A \wedge B \neq 0$. The group of transformations is a pure feedback $w = \alpha(x) + \beta(x)\tilde{w}$ and a diffeomorphism $\tilde{x} = \phi(x)$. We try to characterise the following normal forms:

$$A = \frac{\partial}{\partial z}$$
, and $B = \frac{\partial}{\partial y}$, and, additionally, $C = const$.

We focus on

$$\Xi_E : \dot{x} = A(x)\cos(w) + B(x)\sin(w) + C(x),$$

$$\Xi_H : \dot{x} = A(x)\cosh(w) + B(x)\sinh(w) + C(x).$$

We associate a (pseudo-)Riemanian metric g_{\pm} to the pair (A, B):

$$\mathsf{g}_{\pm}(A,A)=1, \quad \mathsf{g}_{\pm}(B,B)=\pm 1, \quad \mathsf{g}_{\pm}(A,B)=0.$$

Theorem (Normal form of elliptic/hyperbolic systems)

 Ξ_E , resp. Ξ_H , is feedback equivalent to

$$\Xi'_{E}: \begin{cases} \dot{z} = \cos(w) + c_{0}(x) \\ \dot{y} = \sin(w) + c_{1}(x) \end{cases}, \quad \Xi'_{H}: \begin{cases} \dot{z} = \cosh(w) + c_{0}(x) \\ \dot{y} = \sinh(w) + c_{1}(x) \end{cases}$$

if and only the Gaussian curvature of g_{\pm} vanishes.

T. Schmoderer (INSAR)

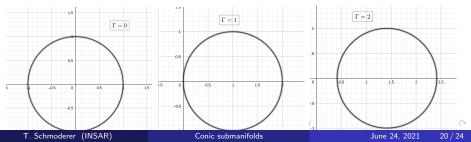
Theorem (Canonical form of flat elliptic systems with constant C)

A system Ξ'_E with $(c_0, c_1) \in \mathbb{R}^2$ is equivalent to the canonical form $\Xi_E^{\Gamma_E} : \begin{cases} \dot{z} = \cos(w) + \sqrt{\Gamma_E} \\ \dot{y} = \sin(w) \end{cases}$

where $\Gamma_E = (c_0)^2 + (c_1)^2$ is an invariant.

For elliptic submanifolds we have the following family of canonical forms

 $\mathcal{S}_E^{\Gamma_E} = \left\{ (\dot{z} - \sqrt{\Gamma_E})^2 + (\dot{y})^2 = 1 \right\}$



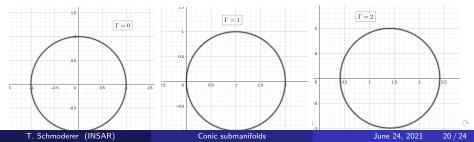
Theorem (Canonical form of flat elliptic systems with constant C)

A system Ξ'_E with $(c_0, c_1) \in \mathbb{R}^2$ is equivalent to the canonical form $\Xi^{\Gamma_E}_E : \begin{cases} \dot{z} = \cos(w) + \sqrt{\Gamma_E} \\ \dot{y} = \sin(w) \end{cases}$

where $\Gamma_E = (c_0)^2 + (c_1)^2$ is an invariant.

For elliptic submanifolds we have the following family of canonical forms

$$\mathcal{S}_E^{\Gamma_E} = \left\{ (\dot{z} - \sqrt{\Gamma_E})^2 + (\dot{y})^2 = 1 \right\}$$



Theorem (Canonical form of flat hyperbolic systems with constant C)

A system
$$\equiv'_{H}$$
 with $(c_{0}, c_{1}) \in \mathbb{R}^{2}$ is equivalent to one of the canonical forms
 $\equiv_{H}^{\Gamma_{H},\varepsilon}: \begin{cases} \dot{z} = \cosh(w) + \varepsilon \sqrt{\Gamma_{H}} \\ \dot{y} = \sinh(w) \end{cases}$, or $\equiv_{H}^{0,0}: \begin{cases} \dot{z} = \cosh(w) \\ \dot{y} = \sinh(w) \end{cases}$
or $\equiv_{H}^{-\Gamma_{H}}: \begin{cases} \dot{z} = \cosh(w) \\ \dot{y} = \sinh(w) + \sqrt{-\Gamma_{H}} \end{cases}$, or $\equiv_{H}^{0,\varepsilon}: \begin{cases} \dot{z} = \cosh(w) + \varepsilon \\ \dot{y} = \sinh(w) + 1 \end{cases}$

depending on $\Gamma_H = (c_0)^2 - (c_1)^2$ satisfying $\Gamma_H > 0$, $\Gamma_H < 0$, or $\Gamma_H = 0$, and where $\varepsilon = sgn(c_0) = \pm 1$. Moreover (Γ_H, ε) is a complete invariant.

For hyperbolic submanifolds, we have the following families of canonical forms

$$\mathcal{S}_{H}^{\Gamma_{H}} = \left\{ (\dot{z} - \sqrt{\Gamma_{H}})^{2} - (\dot{y})^{2} = 1 \right\}, \quad \mathcal{S}_{H}^{0,0} = \left\{ (\dot{z})^{2} - (\dot{y})^{2} = 1 \right\}$$

 $\mathcal{S}_{H}^{-\Gamma_{H}} = \left\{ (\dot{z})^{2} - (\dot{y} - \sqrt{-\Gamma_{H}})^{2} = 1
ight\}, \quad \mathcal{S}_{H}^{0,1} = \left\{ (\dot{z} - 1)^{2} - (\dot{y} - 1)^{2} = 1
ight\},$

Theorem (Canonical form of flat hyperbolic systems with constant C)

A system
$$\Xi'_{H}$$
 with $(c_{0}, c_{1}) \in \mathbb{R}^{2}$ is equivalent to one of the canonical forms
 $\Xi_{H}^{\Gamma_{H},\varepsilon}$: $\begin{cases} \dot{z} = \cosh(w) + \varepsilon \sqrt{\Gamma_{H}} \\ \dot{y} = \sinh(w) \end{cases}$, or $\Xi_{H}^{0,0}$: $\begin{cases} \dot{z} = \cosh(w) \\ \dot{y} = \sinh(w) \end{cases}$
or $\Xi_{H}^{-\Gamma_{H}}$: $\begin{cases} \dot{z} = \cosh(w) \\ \dot{y} = \sinh(w) + \sqrt{-\Gamma_{H}} \end{cases}$, or $\Xi_{H}^{0,\varepsilon}$: $\begin{cases} \dot{z} = \cosh(w) + \varepsilon \\ \dot{y} = \sinh(w) + 1 \end{cases}$

depending on $\Gamma_H = (c_0)^2 - (c_1)^2$ satisfying $\Gamma_H > 0$, $\Gamma_H < 0$, or $\Gamma_H = 0$, and where $\varepsilon = sgn(c_0) = \pm 1$. Moreover (Γ_H, ε) is a complete invariant.

For hyperbolic submanifolds, we have the following families of canonical forms

$$\begin{split} \mathcal{S}_{H}^{\Gamma_{H}} &= \left\{ (\dot{z} - \sqrt{\Gamma_{H}})^{2} - (\dot{y})^{2} = 1 \right\}, \quad \mathcal{S}_{H}^{0,0} = \left\{ (\dot{z})^{2} - (\dot{y})^{2} = 1 \right\} \\ \mathcal{S}_{H}^{-\Gamma_{H}} &= \left\{ (\dot{z})^{2} - (\dot{y} - \sqrt{-\Gamma_{H}})^{2} = 1 \right\}, \quad \mathcal{S}_{H}^{0,1} = \left\{ (\dot{z} - 1)^{2} - (\dot{y} - 1)^{2} = 1 \right\}, \end{split}$$

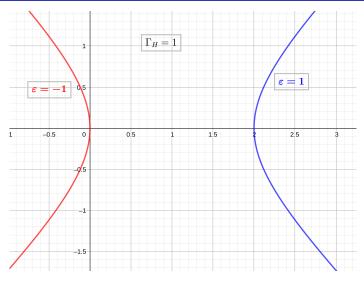


Figure: Canonical forms $\Xi_{H}^{\Gamma_{H},\varepsilon}$

T. Schmoderer (INSAR)

June 24, 2021 20 / 24

æ

Classification of parabolic submanifolds - 1

We now focus on parabolic systems

$$\Xi_P: \dot{x} = A(x)w^2 + B(x)w + C(x).$$

Proposition

A parabolic system always admits the following normal forms

$$\begin{aligned} \Xi_P' &: \left\{ \begin{array}{ll} \dot{z} &= w^2 + c_0(x) \\ \dot{y} &= w + c_1(x) \end{array} \right. \text{ or, equivalently,} \\ \Xi_P'' &: \left\{ \begin{array}{ll} \dot{z} &= w^2 + b(x)w + c_0(x) \\ \dot{y} &= w \end{array} \right. \end{aligned}$$

That is, for parabolic systems we can always obtain $A = \frac{\partial}{\partial z}$ and $B = \frac{\partial}{\partial y}$. Moreover if $\frac{\partial^2 c_1}{\partial z^2} = 0$ we have

$$\Xi_P^{\prime\prime\prime}: \begin{cases} \dot{z} = w^2 + c_0(x) \\ \dot{y} = w \end{cases}$$

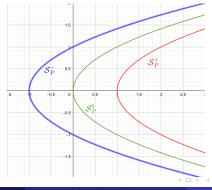
Classification of parabolic submanifolds - 2

If $c_0 \in \mathbb{R}$, we have the following canonical forms

$$\Xi_P^{\pm}: \left\{ \begin{array}{ll} \dot{z} &= w^2 \pm 1 \\ \dot{y} &= w \end{array} \right., \quad \Xi_P^0: \left\{ \begin{array}{ll} \dot{z} &= w^2 \\ \dot{y} &= w \end{array} \right.$$

i.e. we have only 3 parabolic submanifolds with constant coefficients:

$$\mathcal{S}_P^+ = \left\{ \dot{z} = (\dot{y})^2 + 1 \right\}, \quad \mathcal{S}_P^- = \left\{ \dot{z} = (\dot{y})^2 + 1 \right\}, \quad \mathcal{S}_P^0 = \left\{ \dot{z} = (\dot{y})^2 \right\}.$$



We presented an introduction to the equivalence and classification problem of *conic* submanifolds in $T\mathbb{R}^2$.

We propose a method that directly characterises the conic form without parameters i.e.

$$\begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \end{cases}, \quad \begin{cases} \dot{z} = \cosh(w) \\ \dot{y} = \sinh(w) \end{cases}, \quad \begin{cases} \dot{z} = w^2 \\ \dot{y} = w \end{cases}$$

It is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable to higher dimensions (however when m > 2, checkablity of the conditions is hard).

We presented an introduction to the equivalence and classification problem of *conic* submanifolds in $T\mathbb{R}^2$.

We propose a method that directly characterises the conic form without parameters i.e.

$$\begin{cases} \dot{z} = \cos(w) \\ \dot{y} = \sin(w) \end{cases}, \quad \begin{cases} \dot{z} = \cosh(w) \\ \dot{y} = \sinh(w) \end{cases}, \quad \begin{cases} \dot{z} = w^2 \\ \dot{y} = w \end{cases}$$

It is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable to higher dimensions (however when m > 2, checkablity of the conditions is hard).

We have results for the equivalence and classification of quadric submanifolds in $T\mathbb{R}^3,$ especially,

$$\dot{z} = a(x)(\dot{y}_1^2 + \epsilon \dot{y}_2^2) + b_1(x)\dot{y}_1 + b_2(x)\dot{y}_2 + c(x).$$

The case when $\epsilon = -1$ is called p-hyperbolic and is *easier* to solve (the geometry is nice). The case when $\epsilon = 1$, called p-elliptic, is a bit more trickier to deal with.

L. E. Dubins (1957)

On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents

American Journal of Mathematics 3, 497–516

B. Bonnard (1991)

Quadratic control systems

Mathematics of Control, Signals and Systems 4(2), 139 – 160.

I. Anderson, Z. Nie and P. Nurowski (2015) Non-rigid parabolic geometries of Monge type *Advances in Mathematics* 277, 44 – 55.