Conic nonholonomic constraints on surfaces and control systems

Timothée Schmoderer \& Witold Respondek

INSA Rouen Normandie
timothee.schmoderer@insa-rouen.fr

June 24, 2021

Overview

(1) Definitions and Motivations
(2) Characterisation of conic submanifolds
(3) Classification of conic submanifolds

4 Conclusion and perspectives

Definitions

(1) smooth: means C^{∞} smooth,
(2) We consider a smooth manifold \mathcal{X} of dimension 2 , since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) $T \mathcal{X}$: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),

We consider a smooth sub-manifold $\mathcal{S} \subset \mathrm{T} \mathcal{X}$, locally given by:

$$
\begin{equation*}
S^{\prime}(x, \dot{x})=0 \tag{S}
\end{equation*}
$$

We assume that S is smooth and that $\frac{\partial S}{\partial \dot{x}} \neq 0$.

Definitions

(1) smooth: means C^{∞} smooth,
(2) We consider a smooth manifold \mathcal{X} of dimension 2 , since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) TX: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),

We consider a smooth sub-manifold $\mathcal{S} \subset \mathrm{T} \mathcal{X}$, locally given by:

We assume that S is smooth and that $\frac{\partial S}{\partial \dot{x}} \neq 0$.

Definitions

(1) smooth: means C^{∞} smooth,
(2) We consider a smooth manifold \mathcal{X} of dimension 2 , since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) $T \mathcal{X}$: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),

$$
\text { We consider a smooth sub-manifold } \mathcal{S} \subset \mathrm{T} \mathcal{X} \text {, locally given by: }
$$

We assume that S is smooth and that $\frac{\partial S}{\partial \dot{x}} \neq 0$.

Definitions

(1) smooth: means C^{∞} smooth,
(2) We consider a smooth manifold \mathcal{X} of dimension 2 , since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) $T \mathcal{X}$: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),

We consider a smooth sub-manifold $\mathcal{S} \subset \mathrm{TX}$, locally given by:

$$
\begin{equation*}
S(x, \dot{x})=0 \tag{S}
\end{equation*}
$$

We assume that S is smooth and that $\frac{\partial S}{\partial \dot{x}} \neq 0$.

What is it?

A submanifold \mathcal{S} is a nonholonomic constraint.

Motivations - 1

Dubin's car

Back to [D, 1957]. Consider the simple model of a car,

$$
\left\{\begin{aligned}
\dot{z} & =\cos (\theta) \\
\dot{y} & =\sin (\theta) \\
\dot{\theta} & =u
\end{aligned}\right.
$$

where (z, y) is the centre of mass, and θ is the orientation. Then Dubin's car describes an elliptic nonholonomic constraint given by

$$
(\dot{z})^{2}+(\dot{y})^{2}=1 .
$$

Motivations - 2

Quadratic submanifolds in Physics are common

From [$B, 1991$]. Consider the attitude control problem for a rigid spacecraft governed by gas jets. Let $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \mathbb{R}^{3}$ be the orientation of the satellite and $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \mathbb{R}^{3}$ be the angular velocity measured in a specific frame attached to the satellite. The control problem is,

$$
\begin{cases}\dot{\theta}_{1}=\omega_{1} & \dot{\omega}_{1}=a_{1} \omega_{2} \omega_{3} \\ \dot{\theta}_{2}=\omega_{2} & \dot{\omega}_{2}=u_{2} \\ \dot{\theta}_{3}=\omega_{3} & \dot{\omega}_{3}=u_{3}\end{cases}
$$

which is the quadratic submanifold (in $T \mathbb{R}^{3}$) given by $\dot{\omega}_{1}=a_{1} \dot{\theta}_{2} \dot{\theta}_{3}$

Motivations - 3

From the mathematical point of view-1
Also in [B, 1991], Bonnard started a classification of quadratic control systems (not of submanifolds), he left very interesting questions to answer.

From the mathematical point of view-2
The following sub-manifold appear in [A-N-N, 2015] as infinitesimal realisation of the simple Lie Algebra $\mathfrak{s o}(r+2, s+2)$ (where (r, s) is the signature of k).

Motivations - 3

From the mathematical point of view-1
Also in [B, 1991], Bonnard started a classification of quadratic control
systems (not of submanifolds), he left very interesting questions to answer

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal realisation of the simple Lie Algebra $\mathfrak{s o}(r+2, s+2)$ (where (r, s) is the signature of k).

$$
\dot{z}=\frac{1}{2} \sum_{i j}^{m} k_{i j} \dot{y}^{i} \dot{y}^{j}
$$

Problems

Definition (Equivalence of submanifolds)

We say that two sub-manifold \mathcal{S} and $\tilde{\mathcal{S}}$, given by $\{S(x, \dot{x})=0\}$ and $\{\tilde{S}(\tilde{x}, \dot{\tilde{x}})=0\}$, are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x}=\phi(x)$ and a nonvanishing function $\delta(x, \dot{x})$ such that

$$
\tilde{S}(\phi(x), D \phi(x) \dot{x})=\delta(x, \dot{x}) S(x, \dot{x})
$$

Conic submanifolds
In the tangent bundle $T \mathcal{X}$ of a smooth 2D manifold
(1) Characterise the submanifolds \mathcal{S} that are equivalent to a conic submanifold \mathcal{S}_{q} given by
(3) Classify normal forms of those submanifolds.

Problems

Definition (Equivalence of submanifolds)

We say that two sub-manifold \mathcal{S} and $\tilde{\mathcal{S}}$, given by $\{S(x, \dot{x})=0\}$ and $\{\tilde{S}(\tilde{x}, \dot{\tilde{x}})=0\}$, are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x}=\phi(x)$ and a nonvanishing function $\delta(x, \dot{x})$ such that

$$
\tilde{S}(\phi(x), D \phi(x) \dot{x})=\delta(x, \dot{x}) S(x, \dot{x})
$$

Conic submanifolds

In the tangent bundle $T \mathcal{X}$ of a smooth 2D manifold.
(1) Characterise the submanifolds \mathcal{S} that are equivalent to a conic submanifold \mathcal{S}_{q} given by

$$
\begin{equation*}
S_{q}=\dot{x}^{T} g(x) \dot{x}+2 \omega(x) \dot{x}+h(x)=0 \tag{q}
\end{equation*}
$$

(2) Classify normal forms of those submanifolds.

Conic submanifolds

We assume that \mathcal{S}_{q} is nondegenerate, that is $\Delta_{1}\left(x_{0}\right)=$ $\operatorname{det}\left(\begin{array}{cc}g\left(x_{0}\right) & \omega\left(x_{0}\right)^{T} \\ \omega\left(x_{0}\right) & h\left(x_{0}\right)\end{array}\right) \neq 0$.

Then conic submanifold can be classified using

$$
\Delta_{2}(x)=\operatorname{det}(g(x))
$$

Using classical results in differential geometry we can easily find a normal form when $\Delta_{2} \neq 0$ and when $\Delta_{2} \equiv 0$.

Solving the equivalence problem by feedback equivalence of control-affine systems

The idea: prolong a parametrization of the submanifold $\mathcal{S}=\{S(x, \dot{x})=0\}$ and then see it as a control-affine system.

$\left(\Sigma_{\mathcal{S}}\right)$
where $u \in \mathbb{R}$ is the control, and $\xi=(z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Example (Dubin's car)
Starting from the submanifold $(\dot{z})^{2}+(\dot{y})^{2}=1$ we have

Solving the equivalence problem by feedback equivalence of control-affine systems

The idea: prolong a parametrization of the submanifold $\mathcal{S}=\{S(x, \dot{x})=0\}$ and then see it as a control-affine system.

$$
\mathcal{S} \Longleftrightarrow \dot{x}=F(x, w), \quad S(x, F(x, w))=0 \quad \forall w \in \mathcal{U}
$$

where $u \in \mathbb{R}$ is the control, and $\xi=(z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Example (Dubin's car)
Starting from the submanifold $(\dot{z})^{2}+(\dot{y})^{2}=1$ we have

Solving the equivalence problem by feedback equivalence of control-affine systems

The idea: prolong a parametrization of the submanifold $\mathcal{S}=\{S(x, \dot{x})=0\}$ and then see it as a control-affine system.

$$
\begin{align*}
\mathcal{S} & \Longleftrightarrow \dot{x}=F(x, w), \quad S(x, F(x, w))=0 \quad \forall w \in \mathcal{U} \\
& \Longleftrightarrow\left\{\begin{array}{l}
\dot{x}=F(x, w) \\
\dot{w}=u
\end{array}\right. \tag{S}
\end{align*}
$$

where $u \in \mathbb{R}$ is the control, and $\xi=(z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Example (Dubin's car)
Starting from the submanifold $(\dot{z})^{2}+(\dot{y})^{2}=1$ we have

Solving the equivalence problem by feedback equivalence of control-affine systems

The idea: prolong a parametrization of the submanifold $\mathcal{S}=\{S(x, \dot{x})=0\}$ and then see it as a control-affine system.

$$
\begin{align*}
\mathcal{S} & \Longleftrightarrow \dot{x}=F(x, w), \quad S(x, F(x, w))=0 \quad \forall w \in \mathcal{U} \\
& \Longleftrightarrow\left\{\begin{array}{l}
\dot{x}=F(x, w) \\
\dot{w}=u
\end{array}\right. \tag{S}
\end{align*}
$$

where $u \in \mathbb{R}$ is the control, and $\xi=(z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Example (Dubin's car)

Starting from the submanifold $(\dot{z})^{2}+(\dot{y})^{2}=1$ we have

$$
\left\{\begin{array} { l }
{ \dot { z } = \operatorname { c o s } (w) } \\
{ \dot { y } = \operatorname { s i n } (w) }
\end{array} \longrightarrow \left\{\begin{array}{l}
\dot{z}=\cos (w) \\
\dot{y}=\sin (w) \\
\dot{w}=u
\end{array}\right.\right.
$$

Transformations diagram

What is the notion of equivalence for affine systems that make this diagram commute?

$$
\begin{array}{ccc}
\mathcal{S} & \stackrel{(\phi, \delta)}{\longleftrightarrow} & \mathcal{S}_{q} \\
\uparrow & & \\
& & \\
\Sigma_{\mathcal{S}} & \stackrel{?}{\longleftrightarrow} & \Sigma_{\mathcal{S}_{q}}
\end{array}
$$

Feedback equivalence

We consider $\Sigma^{i}: \dot{\xi}=f^{i}(\xi)+g^{i}(\xi) u^{i}$ with $u^{i} \in \mathbb{R}, i=1,2$.

Definition (Affine Feedback Equivalence)

We say that two control-affine systems Σ^{1} and Σ^{2} are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x), \beta(\cdot) \neq 0$, and a diffeomorphism ϕ of \mathcal{X} such that:

It is like taking the control $u^{1}=\alpha+\beta u^{2}$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^{2}=\phi_{\star} \mathcal{A}^{1}$ where $\mathcal{A}^{i}=f^{i}+\operatorname{span}\left\{g^{i}\right\}$

Feedback equivalence

We consider $\Sigma^{i}: \dot{\xi}=f^{i}(\xi)+g^{i}(\xi) u^{i}$ with $u^{i} \in \mathbb{R}, i=1,2$.

Definition (Affine Feedback Equivalence)

We say that two control-affine systems Σ^{1} and Σ^{2} are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x), \beta(\cdot) \neq 0$, and a diffeomorphism ϕ of \mathcal{X} such that:

$$
\begin{aligned}
f^{2} & =\frac{\partial \phi}{\partial x}\left(f^{1}+\alpha g^{1}\right) \\
g^{2} & =\frac{\partial \phi}{\partial x}\left(g^{1} \beta\right)
\end{aligned}
$$

It is like taking the control $u^{1}=\alpha+\beta u^{2}$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^{2}=\phi_{\star} \mathcal{A}^{1}$ where $\mathcal{A}^{i}=f^{i}+\operatorname{span}\left\{g^{i}\right\}$

Feedback equivalence

We consider $\Sigma^{i}: \dot{\xi}=f^{i}(\xi)+g^{i}(\xi) u^{i}$ with $u^{i} \in \mathbb{R}, i=1,2$.

Definition (Affine Feedback Equivalence)

We say that two control-affine systems Σ^{1} and Σ^{2} are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x), \beta(\cdot) \neq 0$, and a diffeomorphism ϕ of \mathcal{X} such that:

$$
\begin{aligned}
f^{2} & =\frac{\partial \phi}{\partial x}\left(f^{1}+\alpha g^{1}\right) \\
g^{2} & =\frac{\partial \phi}{\partial x}\left(g^{1} \beta\right)
\end{aligned}
$$

It is like taking the control $u^{1}=\alpha+\beta u^{2}$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^{2}=\phi_{\star} \mathcal{A}^{1}$ where $\mathcal{A}^{i}=f^{i}+\operatorname{span}\left\{g^{i}\right\}$.

Main result - 1

Definition (Parametrisation of conic submanifold.)

A control-affine system Σ is quadratizable if it is feedback equivalent to

$$
\Sigma_{q}:\left\{\begin{array}{l}
\dot{z}=f^{1}(z, y, w) \\
\dot{y}=f^{2}(z, y, w) \quad, \quad \text { where } \quad \frac{\partial^{3} f^{i}}{\partial w^{3}}=\tau(z, y) \frac{\partial f^{i}}{\partial w} \\
\dot{w}=u
\end{array}\right.
$$

and $\left(\frac{\partial^{2} f}{\partial w^{2}} \wedge \frac{\partial f}{\partial w}\right)\left(x_{0}, w_{0}\right) \neq 0$.

Properties of quadratizable systems

\square we have $\Delta_{2}=-\tau$. If $\tau \equiv 0$, resp. $\tau<0$, resp. $\tau>0$, then we have $f_{P}=A(x) w^{2}+B(x) w+C(x), f_{E}=A(x) \cos (w)+B(x) \sin (w)+C(x)$

Main result - 1

Definition (Parametrisation of conic submanifold.)

A control-affine system Σ is quadratizable if it is feedback equivalent to

$$
\Sigma_{q}:\left\{\begin{array}{l}
\dot{z}=f^{1}(z, y, w) \\
\dot{y}=f^{2}(z, y, w), \quad \text { where } \quad \frac{\partial^{3} f^{i}}{\partial w^{3}}=\tau(z, y) \frac{\partial f^{i}}{\partial w} \\
\dot{w}=u
\end{array}\right.
$$

and $\left(\frac{\partial^{2} f}{\partial w^{2}} \wedge \frac{\partial f}{\partial w}\right)\left(x_{0}, w_{0}\right) \neq 0$.

Properties of quadratizable systems

Σ_{q} is a parametrisation of a conic nonholonomic constraint \mathcal{S}_{q}, for which we have $\Delta_{2}=-\tau$. If $\tau \equiv 0$, resp. $\tau<0$, resp. $\tau>0$, then we have

$$
\begin{aligned}
f_{P}=A(x) w^{2}+B(x) w+C(x), f_{E} & =A(x) \cos (w)+B(x) \sin (w)+C(x), \\
f_{H} & =A(x) \cosh (w)+B(x) \sinh (w)+C(x) .
\end{aligned}
$$

Main result - 2

Theorem (Affine feedback quadratization)

Let Σ be an control-affine system on a 3-dimensional smooth manifold with 1 control. Σ is locally around ξ_{0} feedback equivalent to Σ_{q} if, and only if,
(1) $g \wedge a d_{g} f \wedge a d_{g}^{2} f\left(\xi_{0}\right) \neq 0$,
(2) The structure functions ρ and τ in the decomposition $a d_{g}^{3} f=\rho a d_{g}^{2} f+\tau a d_{g} f \bmod \operatorname{span}\{g\}$ satisfy

$$
L_{g} \chi-\frac{2}{3} \rho \chi=0
$$

where $\chi=3 L_{g} \rho-2 \rho^{2}-9 \tau$.
These conditions are checkable by algebraic operations and derivations.

Idea of the proof

(1) Check that Σ_{q} satisfies the conditions (easy),
(2) Check that the conditions are invariant under feedback transformations,
(0) Given Σ with ρ and τ, find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_{*} g=\frac{\partial}{\partial w}$ we obtain Σ_{q}.

Corrolary

We can check that $\operatorname{sgn}(\chi)$ is an invariant of feedback transformations thus, we have the following corollary (under the same assumptions),
(1) Σ is feedback equivalent to Σ_{P} iff $\chi \equiv 0$,
(2) Σ is feedback equivalent to Σ_{E} iff $\chi>0$,
(3) Σ is feedback equivalent to Σ_{H} iff $\chi<0$.

Idea of the proof

(1) Check that Σ_{q} satisfies the conditions (easy),
(2) Check that the conditions are invariant under feedback transformations,
(0) Given Σ with ρ and τ, find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_{*} g=\frac{\partial}{\partial w}$ we obtain Σ_{q}.

Corrolary

We can check that sgn (χ) is an invariant of feedback transformations thus, we have the following corollary (under the same assumptions),
(1) Σ is feedback equivalent to Σ_{P} iff $\chi \equiv 0$,
(2) Σ is feedback equivalent to Σ_{E} iff $\chi>0$,
(3) Σ is feedback equivalent to Σ_{H} iff $\chi<0$

Idea of the proof

(1) Check that Σ_{q} satisfies the conditions (easy),
(2) Check that the conditions are invariant under feedback transformations,
(3) Given Σ with ρ and τ, find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_{*} g=\frac{\partial}{\partial w}$ we obtain Σ_{q}.

Idea of the proof

(1) Check that Σ_{q} satisfies the conditions (easy),
(2) Check that the conditions are invariant under feedback transformations,
(3) Given Σ with ρ and τ, find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_{*} g=\frac{\partial}{\partial w}$ we obtain Σ_{a}.

Corrolary

We can check that $\operatorname{sgn}(\chi)$ is an invariant of feedback transformations thus, we have the following corollary (under the same assumptions),
(1) Σ is feedback equivalent to Σ_{P} iff $\chi \equiv 0$,
(2) Σ is feedback equivalent to Σ_{E} iff $\chi>0$,
(3) Σ is feedback equivalent to Σ_{H} iff $\chi<0$.

Normal forms of conic systems and submanifolds - 1

If $g \wedge \operatorname{ad}_{g} f\left(\xi_{0}\right) \neq 0$, then a control-affine system is feedback equivalent to,

$$
\Sigma_{h}:\left\{\begin{array}{l}
\dot{z}=h(x, y, w) \\
\dot{y}=w \\
\dot{w}=u
\end{array} \quad, \quad f=\left(\begin{array}{c}
h \\
w \\
0
\end{array}\right), g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right.
$$

for which we have $\rho=\frac{h^{(3)}}{h^{(2)}}$ and $\tau \equiv 0$. Then the conditions of the theorem

If Σ_{h} is feedback equivalent to Σ_{q}, then locally, we have

where a, b, c, d, e are any smooth function of x such that $a(0) \neq 0 . \equiv$

Normal forms of conic systems and submanifolds - 1

If $g \wedge \operatorname{ad}_{g} f\left(\xi_{0}\right) \neq 0$, then a control-affine system is feedback equivalent to,

$$
\Sigma_{h}:\left\{\begin{array}{l}
\dot{z}=h(x, y, w) \\
\dot{y}=w \\
\dot{w}=u
\end{array} \quad, \quad f=\left(\begin{array}{l}
h \\
w \\
0
\end{array}\right), g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right.
$$

for which we have $\rho=\frac{h^{(3)}}{h^{(2)}}$ and $\tau \equiv 0$. Then the conditions of the theorem read

$$
3 \rho^{\prime \prime}-6 \rho \rho^{\prime}+\frac{4}{3} \rho^{3}=0
$$

If Σ_{h} is feedback equivalent to Σ_{q}, then locally, we have

Normal forms of conic systems and submanifolds - 1

If $g \wedge \operatorname{ad}_{g} f\left(\xi_{0}\right) \neq 0$, then a control-affine system is feedback equivalent to,

$$
\Sigma_{h}:\left\{\begin{array}{l}
\dot{z}=h(x, y, w) \\
\dot{y}=w \\
\dot{w}=u
\end{array} \quad, \quad f=\left(\begin{array}{c}
h \\
w \\
0
\end{array}\right), g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right.
$$

for which we have $\rho=\frac{h^{(3)}}{h^{(2)}}$ and $\tau \equiv 0$. Then the conditions of the theorem read

$$
3 \rho^{\prime \prime}-6 \rho \rho^{\prime}+\frac{4}{3} \rho^{3}=0
$$

If Σ_{h} is feedback equivalent to Σ_{q}, then locally, we have

$$
h(x, w)=2 a\left(\frac{w^{2}}{\left(\sqrt{d w^{2}+e w+1}+1\right)^{2}-d w^{2}}\right)+b w+c
$$

where a, b, c, d, e are any smooth function of x such that $a(0) \neq 0$.

Normal forms of conic systems and submanifolds - 2

A normal form of conic submanifolds \mathcal{S}_{q} is given by

$$
S_{q}=(e(\dot{z}-c)-2 a \dot{y})^{2}-4 d(\dot{z}-c)^{2}-8 a(\dot{z}-c)=0
$$

for which $\Delta_{2}=-16 a^{2} d$ can smoothly go through 0 . (https://www.geogebra.org/m/qzkmfzsf)

Classification of conic submanifolds

We will now be working within the following three classes of conic submanifolds:

$$
\begin{aligned}
& \Xi_{P}: \dot{x}=A(x) w^{2}+B(x) w+C(x), \\
& \Xi_{E}: \dot{x}=A(x) \cos (w)+B(x) \sin (w)+C(x), \\
& \Xi_{H}: \dot{x}=A(x) \cosh (w)+B(x) \sinh (w)+C(x),
\end{aligned}
$$

seen as nonlinear control systems, satisfying $A \wedge B \neq 0$. The group of transformations is a pure feedback $w=\alpha(x)+\beta(x) \tilde{w}$ and a diffeomorphism $\tilde{x}=\phi(x)$.
forms:

and

and, additionally, $C=$ const.

Classification of conic submanifolds

We will now be working within the following three classes of conic submanifolds:

$$
\begin{aligned}
& \Xi_{P}: \dot{x}=A(x) w^{2}+B(x) w+C(x), \\
& \Xi_{E}: \dot{x}=A(x) \cos (w)+B(x) \sin (w)+C(x), \\
& \Xi_{H}: \dot{x}=A(x) \cosh (w)+B(x) \sinh (w)+C(x),
\end{aligned}
$$

seen as nonlinear control systems, satisfying $A \wedge B \neq 0$. The group of transformations is a pure feedback $w=\alpha(x)+\beta(x) \tilde{w}$ and a diffeomorphism $\tilde{x}=\phi(x)$. We try to characterise the following normal forms:

$$
A=\frac{\partial}{\partial z}, \quad \text { and } \quad B=\frac{\partial}{\partial y}, \text { and, additionally, } C=\text { const. }
$$

Classification of elliptic/hyperbolic submanifolds - 1

We focus on

$$
\begin{aligned}
& \bar{\Xi}_{E}: \dot{x}=A(x) \cos (w)+B(x) \sin (w)+C(x), \\
& \bar{\Xi}_{H}: \dot{x}=A(x) \cosh (w)+B(x) \sinh (w)+C(x) .
\end{aligned}
$$

We associate a (pseudo-)Riemanian metric $g_{ \pm}$to the pair (A, B) :

$$
\mathrm{g}_{ \pm}(A, A)=1, \quad \mathrm{~g}_{ \pm}(B, B)= \pm 1, \quad \mathrm{~g}_{ \pm}(A, B)=0
$$

Theorem (Normal form of elliptic/hyperbolic systems)

$\bar{\Xi}_{E}$, resp. Ξ_{H}, is feedback equivalent to

$$
\Xi_{E}^{\prime}:\left\{\begin{array}{l}
\dot{z}=\cos (w)+c_{0}(x) \\
\dot{y}=\sin (w)+c_{1}(x)
\end{array}, \quad \Xi_{H}^{\prime}:\left\{\begin{array}{l}
\dot{z}=\cosh (w)+c_{0}(x) \\
\dot{y}=\sinh (w)+c_{1}(x)
\end{array}\right.\right.
$$

if and only the Gaussian curvature of $g_{ \pm}$vanishes.

Classification of elliptic/hyperbolic submanifolds - 2

Theorem (Canonical form of flat elliptic systems with constant C)
A system $\bar{\Xi}_{E}^{\prime}$ with $\left(c_{0}, c_{1}\right) \in \mathbb{R}^{2}$ is equivalent to the canonical form

$$
\Xi_{E}^{\Gamma_{E}}:\left\{\begin{aligned}
\dot{z} & =\cos (w)+\sqrt{\Gamma_{E}} \\
\dot{y} & =\sin (w)
\end{aligned}\right.
$$

where $\Gamma_{E}=\left(c_{0}\right)^{2}+\left(c_{1}\right)^{2}$ is an invariant.
For elliptic submanifolds we have the following family of canonical forms

Classification of elliptic/hyperbolic submanifolds - 2

Theorem (Canonical form of flat elliptic systems with constant C)
A system $\bar{\Xi}_{E}^{\prime}$ with $\left(c_{0}, c_{1}\right) \in \mathbb{R}^{2}$ is equivalent to the canonical form

$$
\Xi_{E}^{\Gamma_{E}}:\left\{\begin{aligned}
\dot{z} & =\cos (w)+\sqrt{\Gamma_{E}} \\
\dot{y} & =\sin (w)
\end{aligned}\right.
$$

where $\Gamma_{E}=\left(c_{0}\right)^{2}+\left(c_{1}\right)^{2}$ is an invariant.
For elliptic submanifolds we have the following family of canonical forms

$$
\mathcal{S}_{E}^{\Gamma_{E}}=\left\{\left(\dot{z}-\sqrt{\Gamma_{E}}\right)^{2}+(\dot{y})^{2}=1\right\}
$$

Classification of elliptic/hyperbolic submanifolds - 2

Theorem (Canonical form of flat hyperbolic systems with constant C)
A system Ξ_{H}^{\prime} with $\left(c_{0}, c_{1}\right) \in \mathbb{R}^{2}$ is equivalent to one of the canonical forms

$$
\begin{aligned}
& \Xi_{H}^{\Gamma_{H}, \varepsilon}:\left\{\begin{array}{ll}
\dot{z} & =\cosh (w)+\varepsilon \sqrt{\Gamma_{H}} \\
\dot{y} & =\sinh (w)
\end{array} \text {, or } \Xi_{H}^{0,0}: \begin{cases}\dot{z} & =\cosh (w) \\
\dot{y} & =\sinh (w)\end{cases} \right. \\
& \text { or } \quad \Xi_{H}^{-\Gamma_{H}}:\left\{\begin{array}{ll}
\dot{z} & =\cosh (w) \\
\dot{y} & =\sinh (w)+\sqrt{-\Gamma_{H}}
\end{array} \text {, or } \Xi_{H}^{0, \varepsilon}: \begin{cases}\dot{z} & =\cosh (w)+\varepsilon \\
\dot{y} & =\sinh (w)+1\end{cases} \right.
\end{aligned}
$$

depending on $\Gamma_{H}=\left(c_{0}\right)^{2}-\left(c_{1}\right)^{2}$ satisfying $\Gamma_{H}>0, \Gamma_{H}<0$, or $\Gamma_{H}=0$, and where $\varepsilon=\operatorname{sgn}\left(c_{0}\right)= \pm 1$. Moreover $\left(\Gamma_{H}, \varepsilon\right)$ is a complete invariant.

For hyperbolic submanifolds, we have the following families of canonical forms

Classification of elliptic/hyperbolic submanifolds - 2

Theorem (Canonical form of flat hyperbolic systems with constant C)

A system Ξ_{H}^{\prime} with $\left(c_{0}, c_{1}\right) \in \mathbb{R}^{2}$ is equivalent to one of the canonical forms

$$
\begin{aligned}
& \Xi_{H}^{\Gamma_{H}, \varepsilon}:\left\{\begin{array}{ll}
\dot{z} & =\cosh (w)+\varepsilon \sqrt{\Gamma_{H}} \\
\dot{y} & =\sinh (w)
\end{array} \text {, or } \Xi_{H}^{0,0}: \begin{cases}\dot{z} & =\cosh (w) \\
\dot{y} & =\sinh (w)\end{cases} \right. \\
& \text { or } \quad \Xi_{H}^{-\Gamma_{H}}:\left\{\begin{array}{ll}
\dot{z} & =\cosh (w) \\
\dot{y} & =\sinh (w)+\sqrt{-\Gamma_{H}}
\end{array} \text {, or } \bar{\Xi}_{H}^{0, \varepsilon}: \begin{cases}\dot{z} & =\cosh (w)+\varepsilon \\
\dot{y} & =\sinh (w)+1\end{cases} \right.
\end{aligned}
$$

depending on $\Gamma_{H}=\left(c_{0}\right)^{2}-\left(c_{1}\right)^{2}$ satisfying $\Gamma_{H}>0, \Gamma_{H}<0$, or $\Gamma_{H}=0$, and where $\varepsilon=\operatorname{sgn}\left(c_{0}\right)= \pm 1$. Moreover $\left(\Gamma_{H}, \varepsilon\right)$ is a complete invariant.

For hyperbolic submanifolds, we have the following families of canonical forms

$$
\begin{aligned}
\mathcal{S}_{H}^{\Gamma_{H}}=\left\{\left(\dot{z}-\sqrt{\Gamma_{H}}\right)^{2}-(\dot{y})^{2}=1\right\}, \quad \mathcal{S}_{H}^{0,0}=\left\{(\dot{z})^{2}-(\dot{y})^{2}=1\right\} \\
\mathcal{S}_{H}^{-\Gamma_{H}}=\left\{(\dot{z})^{2}-\left(\dot{y}-\sqrt{-\Gamma_{H}}\right)^{2}=1\right\}, \quad \mathcal{S}_{H}^{0,1}=\left\{(\dot{z}-1)^{2}-(\dot{y}-1)^{2}=1\right\},
\end{aligned}
$$

Classification of elliptic/hyperbolic submanifolds - 2

Figure: Canonical forms $\Xi_{H}^{\Gamma_{H}, \varepsilon}$

Classification of parabolic submanifolds - 1

We now focus on parabolic systems

$$
\bar{\Xi}_{P}: \dot{x}=A(x) w^{2}+B(x) w+C(x) .
$$

Proposition

A parabolic system always admits the following normal forms

$$
\begin{aligned}
& \Xi_{P}^{\prime}:\left\{\begin{array}{ll}
\dot{z} & =w^{2}+c_{0}(x) \\
\dot{y} & =w+c_{1}(x)
\end{array} \quad\right. \text { or, equivalently, } \\
& \Xi_{P}^{\prime \prime}: \begin{cases}\dot{z} & =w^{2}+b(x) w+c_{0}(x) \\
\dot{y} & =w\end{cases}
\end{aligned}
$$

That is, for parabolic systems we can always obtain $A=\frac{\partial}{\partial z}$ and $B=\frac{\partial}{\partial y}$. Moreover if $\frac{\partial^{2} c_{1}}{\partial z^{2}}=0$ we have

$$
\Xi_{P}^{\prime \prime \prime}:\left\{\begin{array}{l}
\dot{z}=w^{2}+c_{0}(x) \\
\dot{y}=w
\end{array}\right.
$$

Classification of parabolic submanifolds - 2

If $c_{0} \in \mathbb{R}$, we have the following canonical forms

$$
\Xi_{P}^{ \pm}:\left\{\begin{array}{l}
\dot{z}=w^{2} \pm 1 \\
\dot{y}=w
\end{array}, \quad \Xi_{P}^{0}: \begin{cases}\dot{z}=w^{2} \\
\dot{y}=w\end{cases}\right.
$$

i.e. we have only 3 parabolic submanifolds with constant coefficients:

$$
\mathcal{S}_{P}^{+}=\left\{\dot{z}=(\dot{y})^{2}+1\right\}, \quad \mathcal{S}_{P}^{-}=\left\{\dot{z}=(\dot{y})^{2}+1\right\}, \quad \mathcal{S}_{P}^{0}=\left\{\dot{z}=(\dot{y})^{2}\right\} .
$$

Conclusion and perspectives

We presented an introduction to the equivalence and classification problem of conic submanifolds in TR^{2}.

We propose a method that directly characterises the conic form without parameters i.e.

It is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable to higher dimensions (however when $m>2$, checkablity of the conditions is hard)

Conclusion and perspectives

We presented an introduction to the equivalence and classification problem of conic submanifolds in TR^{2}.

We propose a method that directly characterises the conic form without parameters i.e.

$$
\left\{\begin{array}{l}
\dot{z}=\cos (w) \\
\dot{y}=\sin (w)
\end{array}, \quad\left\{\begin{array}{l}
\dot{z}=\cosh (w) \\
\dot{y}=\sinh (w)
\end{array},\left\{\begin{array}{ll}
\dot{z}=w^{2} \\
\dot{y}=w
\end{array} .\right.\right.\right.
$$

It is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable to higher dimensions (however when $m>2$, checkablity of the conditions is hard).

Conclusion and perspectives

We have results for the equivalence and classification of quadric submanifolds in \mathbb{R}^{3}, especially,

$$
\dot{z}=a(x)\left(\dot{y}_{1}^{2}+\epsilon \dot{y}_{2}^{2}\right)+b_{1}(x) \dot{y}_{1}+b_{2}(x) \dot{y}_{2}+c(x) .
$$

The case when $\epsilon=-1$ is called p -hyperbolic and is easier to solve (the geometry is nice). The case when $\epsilon=1$, called p -elliptic, is a bit more trickier to deal with.

References

L. E. Dubins (1957)

On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents
American Journal of Mathematics 3, 497-516

B. Bonnard (1991)

Quadratic control systems
Mathematics of Control, Signals and Systems 4(2), 139 - 160.
T. Anderson, Z. Nie and P. Nurowski (2015)

Non-rigid parabolic geometries of Monge type
Advances in Mathematics 277, 44 - 55.

