Introduction to the equivalence and classification of quadratic sub-manifolds in $T\mathbb{R}^2$

Timothée Schmoderer & Witold Respondek

INSA Rouen Normandie

timothee.schmoderer@insa-rouen.fr

November 7, 2020

Overview

- Definitions and Motivations
- 2 Equivalence of quadratic sub-manifolds
- 3 Classification of quadratic sub-manifolds
- 4 Conclusion and perspectives

- **1** smooth: means C^{∞} smooth,
- ② We consider a *smooth* manifold \mathcal{X} of dimension 2, since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^2 , equipped with coordinates x=(z,y),
- **3** TX: the tangent bundle of X, with coordinates (x, \dot{x}) ,
- ① Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\mathrm{ad}_f g := [f,g] = \frac{\partial g}{\partial x} f \frac{\partial f}{\partial x} g \in V^\infty(\mathcal{X})$

We consider a smooth sub-manifold $\mathcal{F} \subset T\mathcal{X}$, locally given by:

$$F(x,\dot{x}) = 0. (\mathcal{F})$$

- **1** smooth: means C^{∞} smooth,
- We consider a *smooth* manifold \mathcal{X} of dimension 2, since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^2 , equipped with coordinates x = (z, y),
- ① TX: the tangent bundle of X, with coordinates (x, \dot{x}) ,
- ① Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\mathrm{ad}_f g := [f,g] = \frac{\partial g}{\partial x} f \frac{\partial f}{\partial x} g \in V^\infty(\mathcal{X})$

We consider a smooth sub-manifold $\mathcal{F} \subset T\mathcal{X}$, locally given by:

$$F(x,\dot{x}) = 0. (\mathcal{F})$$

- **1** smooth: means C^{∞} smooth,
- ② We consider a *smooth* manifold $\mathcal X$ of dimension 2, since all results are local, we can imagine $\mathcal X$ an open subset of $\mathbb R^2$, equipped with coordinates x=(z,y),
- **1** TX: the tangent bundle of X, with coordinates (x, \dot{x}) ,
- ① Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\mathrm{ad}_f g := [f,g] = \frac{\partial g}{\partial x} f \frac{\partial f}{\partial x} g \in V^\infty(\mathcal{X})$

We consider a smooth sub-manifold $\mathcal{F} \subset T\mathcal{X}$, locally given by:

$$F(x,\dot{x}) = 0. (\mathcal{F})$$

- **1** smooth: means C^{∞} smooth,
- ② We consider a *smooth* manifold \mathcal{X} of dimension 2, since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^2 , equipped with coordinates x = (z, y),
- **1** TX: the tangent bundle of X, with coordinates (x, \dot{x}) ,
- **②** Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\mathrm{ad}_f g := [f,g] = \frac{\partial g}{\partial x} f \frac{\partial f}{\partial x} g \in V^\infty(\mathcal{X})$

We consider a smooth sub-manifold $\mathcal{F} \subset \mathsf{T}\mathcal{X}$, locally given by:

$$F(x,\dot{x}) = 0. (\mathcal{F})$$

- **1** smooth: means C^{∞} smooth,
- ② We consider a *smooth* manifold $\mathcal X$ of dimension 2, since all results are local, we can imagine $\mathcal X$ an open subset of $\mathbb R^2$, equipped with coordinates x=(z,y),
- **1** TX: the tangent bundle of X, with coordinates (x, \dot{x}) ,
- **③** Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\mathrm{ad}_f g := [f,g] = \frac{\partial g}{\partial x} f \frac{\partial f}{\partial x} g \in V^\infty(\mathcal{X})$

We consider a smooth sub-manifold $\mathcal{F} \subset T\mathcal{X}$, locally given by:

$$F(x,\dot{x}) = 0. (\mathcal{F})$$

What is it?

Motivations - 1

Quadratic sub-manifolds in Physics are common

From [B, 1991]. Consider the attitude control problem for a rigid spacecraft governed by gas jets. Let $\theta=(\theta_1,\theta_2,\theta_3)\in\mathbb{R}^3$ be the orientation of the satellite and $\omega=(\omega_1,\omega_2,\omega_3)\in\mathbb{R}^3$ be the angular velocity measured in a specific frame attached to the satellite. The control problem is,

$$\begin{cases} \dot{\theta}_1 &= \omega_1 & \dot{\omega}_1 &= a_1 \omega_2 \omega_3 \\ \dot{\theta}_2 &= \omega_2 & \dot{\omega}_2 &= u_2 \\ \dot{\theta}_3 &= \omega_3 & \dot{\omega}_3 &= u_3 \end{cases}$$

which is the quadratic sub-manifold (in $\mathsf{T}\mathbb{R}^3$) given by $\dot{\omega}_1=a_1\dot{ heta}_2\dot{ heta}_3$

Motivations - 2

From the mathematical point of view-1

Also in [B, 1991], Bonnard started a classification of quadratic control systems (not of sub-manifolds), he left very interesting questions to answer.

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal realisation of the simple Lie Algebra $\mathfrak{so}(r+2,s+2)$ (where (r,s) is the signature of k).

$$\dot{z} = \frac{1}{2} \sum_{ij}^{m} k_{ij} \dot{y}^i \dot{y}^j.$$

Motivations - 2

From the mathematical point of view-1

Also in [B, 1991], Bonnard started a classification of quadratic control systems (not of sub-manifolds), he left very interesting questions to answer.

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal realisation of the simple Lie Algebra $\mathfrak{so}(r+2,s+2)$ (where (r,s) is the signature of k).

$$\dot{z} = \frac{1}{2} \sum_{ii}^{m} k_{ij} \dot{y}^{i} \dot{y}^{j}.$$

Equivalence of sub-manifolds

We act on sub-manifolds by smooth diffeomorphisms, $\tilde{x} = \phi(x)$ and we say that two sub-manifold \mathcal{F} and $\tilde{\mathcal{F}}$, given by F and \tilde{F} , are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x} = \phi(x)$ such that $F(x,\dot{x}) = \tilde{F}(\phi(x),D\phi(x)\dot{x})$.

The Question

When is a given sub-manifolds equivalent to a linear sub-manifold? Does coordinates x exist such that \mathcal{F} can be written,

$$\omega(\dot{x}) = 0, \quad \omega \in \Lambda^{1}(\mathbb{R}^{2})$$

 $a(x)\dot{z} + b(x)\dot{y} = 0$

This question is immediately generalised by: when is a sub-manifold equivalent to an affine sub-manifold: $\omega(\dot{x}) + h(x) = 0$.

Equivalence of sub-manifolds

We act on sub-manifolds by smooth diffeomorphisms, $\tilde{x} = \phi(x)$ and we say that two sub-manifold \mathcal{F} and $\tilde{\mathcal{F}}$, given by F and \tilde{F} , are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x} = \phi(x)$ such that $F(x,\dot{x}) = \tilde{F}(\phi(x),D\phi(x)\dot{x})$.

The Question

When is a given sub-manifolds equivalent to a linear sub-manifold? Does coordinates x exist such that \mathcal{F} can be written,

$$\omega(\dot{x}) = 0, \quad \omega \in \Lambda^1(\mathbb{R}^2)$$

 $a(x)\dot{z} + b(x)\dot{y} = 0$

This question is immediately generalised by: when is a sub-manifold equivalent to an affine sub-manifold: $\omega(\dot{x}) + h(x) = 0$.

Equivalence of sub-manifolds

We act on sub-manifolds by smooth diffeomorphisms, $\tilde{x} = \phi(x)$ and we say that two sub-manifold \mathcal{F} and $\tilde{\mathcal{F}}$, given by F and \tilde{F} , are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x} = \phi(x)$ such that $F(x,\dot{x}) = \tilde{F}(\phi(x),D\phi(x)\dot{x})$.

The Question

When is a given sub-manifolds equivalent to a linear sub-manifold? Does coordinates x exist such that \mathcal{F} can be written,

$$\omega(\dot{x}) = 0, \quad \omega \in \Lambda^1(\mathbb{R}^2)$$

 $a(x)\dot{z} + b(x)\dot{y} = 0$

This question is immediately generalised by: when is a sub-manifold equivalent to an affine sub-manifold: $\omega(\dot{x}) + h(x) = 0$.

Quadratic sub-manifolds

The problem we address today is the equivalence with a so-called *quadratic* sub-manifold:

$$F(x, \dot{x}) = \dot{x}^{\mathsf{T}} g(x) \dot{x} + \omega(\dot{x}) + h(x) \tag{\mathcal{F}_q}$$

with g(x) a smooth 2 by 2 symmetric matrix with $\operatorname{rk}(g(x)) \geq 1$.

Assumptions: We consider the degenerate case $\operatorname{rk}(g(x))=1$ in a neighbourhood. Let $A\in V^\infty(\mathcal{X})$ such that $\ker g=\operatorname{sp}\{A\}$. We assume $\omega(A)\neq 0$ (the most general assumption in our degenerate case).

$$F(x, \dot{x}) = -a(x)\dot{y}^{2} + \dot{z} - b(x)\dot{y} - c(x)$$
 (\mathcal{F}_{q}^{1})

in suitable coordinates.

We say that a sub-manifold is *quadratizable* if it is equivalent to \mathcal{F}_q^1

Quadratic sub-manifolds

The problem we address today is the equivalence with a so-called *quadratic* sub-manifold:

$$F(x, \dot{x}) = \dot{x}^{\mathsf{T}} g(x) \dot{x} + \omega(\dot{x}) + h(x) \tag{\mathcal{F}_q}$$

with g(x) a smooth 2 by 2 symmetric matrix with $\operatorname{rk}(g(x)) \geq 1$. **Assumptions:** We consider the degenerate case $\operatorname{rk}(g(x)) = 1$ in a neighbourhood. Let $A \in V^{\infty}(\mathcal{X})$ such that $\ker g = \operatorname{sp}\{A\}$. We assume $\omega(A) \neq 0$ (the most general assumption in our degenerate case).

$$F(x, \dot{x}) = -a(x)\dot{y}^2 + \dot{z} - b(x)\dot{y} - c(x)$$
 (\mathcal{F}_q^1)

in suitable coordinates.

We say that a sub-manifold is *quadratizable* if it is equivalent to \mathcal{F}_q^1 .

Quadratic sub-manifolds

The problem we address today is the equivalence with a so-called *quadratic* sub-manifold:

$$F(x, \dot{x}) = \dot{x}^T g(x) \dot{x} + \omega(\dot{x}) + h(x)$$
 (\mathcal{F}_q)

with g(x) a smooth 2 by 2 symmetric matrix with $\operatorname{rk}(g(x)) \geq 1$. **Assumptions:** We consider the degenerate case $\operatorname{rk}(g(x)) = 1$ in a neighbourhood. Let $A \in V^{\infty}(\mathcal{X})$ such that $\ker g = \operatorname{sp}\{A\}$. We assume $\omega(A) \neq 0$ (the most general assumption in our degenerate case).

$$F(x, \dot{x}) = -a(x)\dot{y}^{2} + \dot{z} - b(x)\dot{y} - c(x)$$
 (\mathcal{F}_{q}^{1})

in suitable coordinates.

We say that a sub-manifold is *quadratizable* if it is equivalent to \mathcal{F}_q^1 .

The picture

Solving the equivalence problem by feedback equivalence of affine control systems

The idea: prolong twice the sub-manifold and then see it as an affine control system.

$$\mathcal{F}_{q}^{1} \iff \begin{cases} \dot{z} = a(z, y)w^{2} + b(z, y)w + c(z, y) \\ \dot{y} = w \end{cases}, w \in \mathbb{R}$$

$$\iff \begin{cases} \dot{z} = a(z, y)w^{2} + b(z, y)w + c(z, y) \\ \dot{y} = w \\ \dot{w} = u \end{cases} \qquad u \in \mathbb{R} \qquad (\Sigma_{q}^{1})$$

 $u \in \mathbb{R}$ is called the *control*, and $\bar{x} = (z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Solving the equivalence problem by feedback equivalence of affine control systems

The idea: prolong twice the sub-manifold and then see it as an affine control system.

$$\mathcal{F}_{q}^{1} \iff \begin{cases}
\dot{z} = a(z,y)w^{2} + b(z,y)w + c(z,y) \\
\dot{y} = w
\end{cases}, w \in \mathbb{R}$$

$$\iff \begin{cases}
\dot{z} = a(z,y)w^{2} + b(z,y)w + c(z,y) \\
\dot{y} = w \\
\dot{w} = u
\end{cases}$$

$$(\Sigma_{q}^{1})$$

 $u \in \mathbb{R}$ is called the *control*, and $\bar{x} = (z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Solving the equivalence problem by feedback equivalence of affine control systems

The idea: prolong twice the sub-manifold and then see it as an affine control system.

$$\mathcal{F}_{q}^{1} \iff \begin{cases}
\dot{z} = a(z, y)w^{2} + b(z, y)w + c(z, y) \\
\dot{y} = w
\end{cases}, w \in \mathbb{R}$$

$$\iff \begin{cases}
\dot{z} = a(z, y)w^{2} + b(z, y)w + c(z, y) \\
\dot{y} = w
\end{cases}
\qquad u \in \mathbb{R}$$

$$(\Sigma_{q}^{1})$$

 $u \in \mathbb{R}$ is called the *control*, and $\bar{x} = (z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Transformations diagram

What is the notion of equivalence for affine systems that make this diagram commute ?

$$\mathcal{F}$$
 \longleftrightarrow \mathcal{F}_{0}

$$\begin{cases}
\dot{Z} = \xi(Z, Y, W) \\
\dot{Y} = W \\
\dot{W} = U
\end{cases} \qquad \stackrel{?}{\longleftarrow} \qquad \begin{cases}
\dot{z} = a(x)w^2 + b(x)w + c(x) \\
\dot{y} = w \\
\dot{w} = u
\end{cases}$$

Feedback equivalence

We consider Σ^i : $\dot{\bar{x}} = f^i(\bar{x}) + g^i(\bar{x})u^i$ with $u^i \in \mathbb{R}$, i = 1, 2.

Definition ((Affine) Feedback Equivalence

We say that two affine control systems Σ^1 and Σ^2 are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x)$, $\beta(\cdot) \neq 0$, and a diffeomorphism ϕ of $\mathcal X$ such that:

$$f^{2} = \frac{\partial \phi}{\partial x} (f^{1} + \alpha g^{1}),$$
$$g^{2} = \frac{\partial \phi}{\partial x} (g^{1} \beta).$$

It is like taking the control $u^1 = \alpha + \beta u^2$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^2 = \phi_{\star} \mathcal{A}^1$ where $\mathcal{A}^i = f^i + \operatorname{sp} \left\{ g^i \right\}$.

Feedback equivalence

We consider Σ^i : $\dot{\bar{x}} = f^i(\bar{x}) + g^i(\bar{x})u^i$ with $u^i \in \mathbb{R}$, i = 1, 2.

Definition ((Affine) Feedback Equivalence)

We say that two affine control systems Σ^1 and Σ^2 are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x)$, $\beta(\cdot) \neq 0$, and a diffeomorphism ϕ of $\mathcal X$ such that:

$$f^{2} = \frac{\partial \phi}{\partial x} (f^{1} + \alpha g^{1}),$$

$$g^{2} = \frac{\partial \phi}{\partial x} (g^{1} \beta).$$

It is like taking the control $u^1 = \alpha + \beta u^2$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^2 = \phi_{\star} \mathcal{A}^1$ where $\mathcal{A}^i = f^i + \operatorname{sp} \left\{ g^i \right\}$.

Main result

Theorem (Affine feedback quadratization)

Let Σ be an affine control system on a 3-dimensional smooth manifold with 1 control. Σ is locally around \bar{x}_0 affine feedback equivalent to Σ_q^1 if, and only if,

- ② The structure functions a and b in the decomposition $[g, [g, ad_f g]] = a(\bar{x})[g, ad_f g] + b(\bar{x})ad_f g \mod sp\{g\}$ satisfy

$$9b + 2a^2 - 3L_g a = 0.$$

These conditions are checkable by algebraic operations and derivations.

Idea behind the proof

If, $g \wedge \mathsf{ad}_f g(\bar{x}_0) \neq 0$ then an affine control system is feedback equivalent to,

$$\begin{cases} \dot{z} &= \xi(x,y,w) \\ \dot{y} &= w \\ \dot{w} &= u \end{cases}, \quad f = \begin{pmatrix} \xi \\ w \\ 0 \end{pmatrix}, \ g = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Observe that if $[g,[g,ad_fg]]=0$ (i.e. $\frac{\partial^3 \xi}{\partial w^3}=0$) then the system is quadratic in this coordinate system.

The idea of the proof is to see how $[g, [g, ad_f g]] = 0$ is transformed under the feedback transformations (α, β) .

Idea behind the proof

If, $g \wedge \mathsf{ad}_f g(\bar{x}_0) \neq 0$ then an affine control system is feedback equivalent to,

$$\begin{cases} \dot{z} &= \xi(x, y, w) \\ \dot{y} &= w \\ \dot{w} &= u \end{cases}, \quad f = \begin{pmatrix} \xi \\ w \\ 0 \end{pmatrix}, \ g = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Observe that if $[g, [g, ad_f g]] = 0$ (i.e. $\frac{\partial^3 \xi}{\partial w^3} = 0$) then the system is quadratic in this coordinate system.

The idea of the proof is to see how $[g,[g,ad_fg]]=0$ is transformed under the feedback transformations (α,β) .

Idea behind the proof

If, $g \wedge \mathsf{ad}_f g(\bar{x}_0) \neq 0$ then an affine control system is feedback equivalent to,

$$\begin{cases} \dot{z} &= \xi(x, y, w) \\ \dot{y} &= w \\ \dot{w} &= u \end{cases}, \quad f = \begin{pmatrix} \xi \\ w \\ 0 \end{pmatrix}, \ g = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Observe that if $[g,[g,ad_fg]]=0$ (i.e. $\frac{\partial^3 \xi}{\partial w^3}=0$) then the system is quadratic in this coordinate system.

The idea of the proof is to see how $[g, [g, ad_f g]] = 0$ is transformed under the feedback transformations (α, β) .

The theorem for sub-manifolds

The theorem is stated for affine control systems. When directly considering the parametrization of a sub-manifold,

$$\begin{cases} \dot{z} = \xi(x, y, w) \\ \dot{y} = w \\ \dot{w} = u \end{cases} g = \frac{\partial}{\partial w}, f = \xi(\bar{x})\frac{\partial}{\partial z} + w\frac{\partial}{\partial y}$$
 (F)

we have the simplification of the conditions,

- ② $a(x) = \frac{\xi^{(3)}}{\xi^{(2)}}$, b = 0 and the relation reads,

$$2\left(\frac{\xi^{(3)}}{\xi^{(2)}}\right)^2 - 3\left(\frac{\xi^{(3)}}{\xi^{(2)}}\right)' = 0$$
$$5\left(\xi^{(3)}\right)^2 - 3\xi^{(4)}\xi^{(2)} = 0$$

The theorem for sub-manifolds

The theorem is stated for affine control systems. When directly considering the parametrization of a sub-manifold,

$$\begin{cases} \dot{z} = \xi(x, y, w) \\ \dot{y} = w \\ \dot{w} = u \end{cases} g = \frac{\partial}{\partial w}, f = \xi(\bar{x}) \frac{\partial}{\partial z} + w \frac{\partial}{\partial y}$$
 (F)

we have the simplification of the conditions,

- $\xi^{(2)}(\bar{x}_0) \neq 0$,
- ② $a(x) = \frac{\xi^{(3)}}{\xi^{(2)}}$, b = 0 and the relation reads,

$$2\left(\frac{\xi^{(3)}}{\xi^{(2)}}\right)^2 - 3\left(\frac{\xi^{(3)}}{\xi^{(2)}}\right)' = 0$$
$$5\left(\xi^{(3)}\right)^2 - 3\xi^{(4)}\xi^{(2)} = 0$$

The theorem for sub-manifolds

The theorem is stated for affine control systems. When directly considering the parametrization of a sub-manifold,

$$\begin{cases} \dot{z} = \xi(x, y, w) \\ \dot{y} = w \\ \dot{w} = u \end{cases} g = \frac{\partial}{\partial w}, f = \xi(\bar{x}) \frac{\partial}{\partial z} + w \frac{\partial}{\partial y}$$
 (F)

we have the simplification of the conditions,

- $\xi^{(2)}(\bar{x}_0) \neq 0$,
- ② $a(x) = \frac{\xi^{(3)}}{\xi^{(2)}}$, b = 0 and the relation reads,

$$2\left(\frac{\xi^{(3)}}{\xi^{(2)}}\right)^2 - 3\left(\frac{\xi^{(3)}}{\xi^{(2)}}\right)' = 0$$
$$5\left(\xi^{(3)}\right)^2 - 3\xi^{(4)}\xi^{(2)} = 0$$

Classification of quadratic sub-manifolds

Going back to our sub-manifolds. Once we have distinguished a special class of sub-manifolds, we wan to exhibit normal forms for that class. For example, for a linear sub-manifold $\omega(\dot{x})=0$ the problem of classification is the problem of classification of distributions.

In our case, we have:

$$\dot{z} = a(x)\dot{y}^2 + b(x)\dot{y} + c(x). \tag{F_q}$$

With $a(x_0) \neq 0$. In normal forms we will normalise a=1 (we can always do that), b=0 and study various forms of c.

Classification of quadratic sub-manifolds

Going back to our sub-manifolds. Once we have distinguished a special class of sub-manifolds, we wan to exhibit normal forms for that class. For example, for a linear sub-manifold $\omega(\dot{x})=0$ the problem of classification is the problem of classification of distributions.

In our case, we have:

$$\dot{z} = a(x)\dot{y}^2 + b(x)\dot{y} + c(x). \tag{F_q}$$

With $a(x_0) \neq 0$. In normal forms we will normalise a = 1 (we can always do that), b = 0 and study various forms of c.

To deal with this problem, we consider the parametrization of \mathcal{F}_q^1 given by

$$\begin{cases} \dot{z} = a(x)w^2 + b(x)w + c(x) \\ \dot{y} = w \end{cases} (\Xi_q^1)$$

here, w play the role of control and Ξ_q^1 can be seen as a nonlinear control system. We act on Ξ_q^1 by diffeomorphisms $\tilde{x}=\phi(x)$ and reparametrization (they are nonlinear feedback) $\tilde{w}=\psi(z,y,w)$ (with $\frac{\partial \psi}{\partial w}\neq 0$). Since we have to preserve the quadratic structure, we allow reparametrizations of the shape $\tilde{w}=\beta(z,y)w$ only. We identify the vector fields $A=a(x)\frac{\partial}{\partial z}$ and $B=b(x)\frac{\partial}{\partial z}+\frac{\partial}{\partial y}$.

To deal with this problem, we consider the parametrization of \mathcal{F}_q^1 given by

$$\begin{cases} \dot{z} = a(x)w^2 + b(x)w + c(x) \\ \dot{y} = w \end{cases} (\Xi_q^1)$$

here, w play the role of control and Ξ_q^1 can be seen as a nonlinear control system. We act on Ξ_q^1 by diffeomorphisms $\tilde{x}=\phi(x)$ and reparametrization (they are nonlinear feedback) $\tilde{w}=\psi(z,y,w)$ (with $\frac{\partial \psi}{\partial w}\neq 0$).

Since we have to preserve the quadratic structure, we allow reparametrizations of the shape $\tilde{w}=\beta(z,y)w$ only. We identify the vector fields $A=a(x)\frac{\partial}{\partial z}$ and $B=b(x)\frac{\partial}{\partial z}+\frac{\partial}{\partial y}$.

To deal with this problem, we consider the parametrization of \mathcal{F}_q^1 given by

$$\begin{cases} \dot{z} = a(x)w^2 + b(x)w + c(x) \\ \dot{y} = w \end{cases} (\Xi_q^1)$$

here, w play the role of control and Ξ_q^1 can be seen as a nonlinear control system. We act on Ξ_q^1 by diffeomorphisms $\tilde{x}=\phi(x)$ and reparametrization (they are nonlinear feedback) $\tilde{w}=\psi(z,y,w)$ (with $\frac{\partial \psi}{\partial w}\neq 0$). Since we have to preserve the quadratic structure, we allow reparametrizations of the shape $\tilde{w}=\beta(z,y)w$ only. We identify the vector fields $A=a(x)\frac{\partial}{\partial z}$ and $B=b(x)\frac{\partial}{\partial z}+\frac{\partial}{\partial y}$.

To deal with this problem, we consider the parametrization of \mathcal{F}_q^1 given by

$$\begin{cases} \dot{z} = a(x)w^2 + b(x)w + c(x) \\ \dot{y} = w \end{cases} (\Xi_q^1)$$

here, w play the role of control and Ξ_q^1 can be seen as a nonlinear control system. We act on Ξ_q^1 by diffeomorphisms $\tilde{x}=\phi(x)$ and reparametrization (they are nonlinear feedback) $\tilde{w}=\psi(z,y,w)$ (with $\frac{\partial \psi}{\partial w}\neq 0$). Since we have to preserve the quadratic structure, we allow reparametrizations of the shape $\tilde{w}=\beta(z,y)w$ only. We identify the vector fields $A=a(x)\frac{\partial}{\partial z}$ and $B=b(x)\frac{\partial}{\partial z}+\frac{\partial}{\partial y}$.

Notice that since $a(x_0) \neq 0$ we have $A \wedge B \neq 0$. We call (A, B) a frame.

Structure of the transformations

On (A,B) the reparametrization, $\tilde{w}=\beta w$, acts by

$$\tilde{A} = \beta^2 A, \quad \tilde{B} = \beta B.$$

Observe that if a = 1 and b = 0 then [A, B] = 0.

The **question** is then when does a reparametrization exist such that $\left[\tilde{A}, \tilde{B} \right] = 0$?

Main result

Theorem

There exists a diffeomorphism and a reparametrization such that $\tilde{a}=1$ and $\tilde{b}=0$ if, and only if,

$$[A, [A, B]] = 0, \Longleftrightarrow \frac{\partial}{\partial z} \left(a \frac{\partial}{\partial z} \left(\frac{b}{a} \right) \right) = 0.$$

Moreover, c is an invariant of the sub-manifold.

Then we have

$$\begin{array}{cccc} c = 0 & \Longleftrightarrow & \tilde{c} = 0 \\ \mathsf{L}_{\mathcal{A}}c = 0 & \Longleftrightarrow & \mathsf{L}_{\tilde{\mathcal{A}}}\tilde{c} = 0 & \Longleftrightarrow & \tilde{c}(\tilde{z},\tilde{y}) = \gamma(\tilde{y}) \\ \mathsf{L}_{\mathcal{B}}c = 0 & \Longleftrightarrow & \mathsf{L}_{\tilde{\mathcal{B}}}\tilde{c} = 0 & \Longleftrightarrow & \tilde{c}(\tilde{z},\tilde{y}) = \gamma(\tilde{z}) \end{array}$$

Main result

Theorem

There exists a diffeomorphism and a reparametrization such that $\tilde{a}=1$ and $\tilde{b}=0$ if, and only if,

$$[A, [A, B]] = 0, \Longleftrightarrow \frac{\partial}{\partial z} \left(a \frac{\partial}{\partial z} \left(\frac{b}{a} \right) \right) = 0.$$

Moreover, c is an invariant of the sub-manifold.

Then we have:

$$\begin{array}{lll} c = 0 & \Longleftrightarrow & \tilde{c} = 0 \\ \mathsf{L}_{\mathcal{A}} c = 0 & \Longleftrightarrow & \mathsf{L}_{\tilde{\mathcal{A}}} \tilde{c} = 0 & \Longleftrightarrow & \tilde{c}(\tilde{z}, \tilde{y}) = \gamma(\tilde{y}) \\ \mathsf{L}_{\mathcal{B}} c = 0 & \Longleftrightarrow & \mathsf{L}_{\tilde{\mathcal{B}}} \tilde{c} = 0 & \Longleftrightarrow & \tilde{c}(\tilde{z}, \tilde{y}) = \gamma(\tilde{z}) \end{array}$$

Conclusion and perspectives

We presented an introduction to the equivalence and classification problem of *quadratic* sub-manifolds in $T\mathbb{R}^2$.

There is a way that directly gives necessary and sufficient conditions for the equivalence of Σ with $\dot{z}=w^2$. This is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable in higher dimension (however when m>2, checkablity of the conditions is hard).

We have results for the equivalence and classification of quadratic sub-manifolds in $T\mathbb{R}^3$:

$$\dot{z} = a(x)(\dot{y}_0^2 + \epsilon \dot{y}_1^2) + b_0(x)\dot{y}_0 + b_1(x)\dot{y}_1 + c(x).$$

The case when $\epsilon=-1$ is called hyperbolic and is *easy* to solve (the geometry is nice). The case when $\epsilon=1$ is called elliptic, and is a bit more trickier to deal with.

The case when $\epsilon = 0$ (i.e parabolic) is still resisting to us.

Conclusion and perspectives

We presented an introduction to the equivalence and classification problem of *quadratic* sub-manifolds in $T\mathbb{R}^2$.

There is a way that directly gives necessary and sufficient conditions for the equivalence of Σ with $\dot{z}=w^2$. This is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable in higher dimension (however when m>2, checkablity of the conditions is hard).

We have results for the equivalence and classification of quadratic sub-manifolds in $T\mathbb{R}^3$:

$$\dot{z} = a(x)(\dot{y}_0^2 + \epsilon \dot{y}_1^2) + b_0(x)\dot{y}_0 + b_1(x)\dot{y}_1 + c(x).$$

The case when $\epsilon=-1$ is called hyperbolic and is *easy* to solve (the geometry is nice). The case when $\epsilon=1$ is called elliptic, and is a bit more trickier to deal with.

The case when $\epsilon=0$ (i.e parabolic) is still resisting to us.

Conclusion and perspectives

We presented an introduction to the equivalence and classification problem of *quadratic* sub-manifolds in $T\mathbb{R}^2$.

There is a way that directly gives necessary and sufficient conditions for the equivalence of Σ with $\dot{z}=w^2$. This is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable in higher dimension (however when m>2, checkablity of the conditions is hard).

We have results for the equivalence and classification of quadratic sub-manifolds in $T\mathbb{R}^3$:

$$\dot{z} = a(x)(\dot{y}_0^2 + \epsilon \dot{y}_1^2) + b_0(x)\dot{y}_0 + b_1(x)\dot{y}_1 + c(x).$$

The case when $\epsilon=-1$ is called hyperbolic and is *easy* to solve (the geometry is nice). The case when $\epsilon=1$ is called elliptic, and is a bit more trickier to deal with.

The case when $\epsilon = 0$ (i.e parabolic) is still resisting to us.

References

B. Bonnard (1991)

Quadratic control systems

Mathematics of Control, Signals and Systems 4(2), 139 – 160.

I. Anderson, Z. Nie and P. Nurowski (2015)

Non-rigid parabolic geometries of Monge type

Advances in Mathematics 277, 44 – 55.