Introduction to the equivalence and classification of quadratic sub-manifolds in TR^{2}

Timothée Schmoderer \& Witold Respondek

INSA Rouen Normandie
timothee.schmoderer@insa-rouen.fr
November 7, 2020

Overview

(1) Definitions and Motivations
(2) Equivalence of quadratic sub-manifolds
(3) Classification of quadratic sub-manifolds

4 Conclusion and perspectives

Definitions

(1) smooth: means C^{∞} smooth,
(3) We consider a smooth manifold \mathcal{X} of dimension 2, since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) $T \mathcal{X}$: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),

- Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\operatorname{ad}_{f} g:=[f, g]=\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g \in V^{\infty}(\mathcal{X})$
We consider a smooth sub-manifold $\mathcal{F} \subset T \mathcal{X}$, locally given by:

$$
\begin{equation*}
F(x, \dot{x})=0 \tag{F}
\end{equation*}
$$

We assume that F is smooth and that $\frac{\partial F}{\partial \dot{x}} \neq 0$.

Definitions

(1) smooth: means C^{∞} smooth,
(2) We consider a smooth manifold \mathcal{X} of dimension 2 , since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) TX: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),
(1) Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in
coordinates) by $\operatorname{ad}_{f} g:=[f, g]=\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g \in V^{\infty}(\mathcal{X})$
We consider a smooth sub-manifold $\mathcal{F} \subset T \mathcal{X}$, locally given by:

$$
F(x, \dot{x})=0
$$

We assume that F is smooth and that $\frac{\partial F}{\partial \dot{x}} \neq 0$.

Definitions

(1) smooth: means C^{∞} smooth,
(2) We consider a smooth manifold \mathcal{X} of dimension 2 , since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) $T \mathcal{X}$: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),

- Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\operatorname{ad}_{f} g:=[f, g]=\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g \in V^{\infty}(\mathcal{X})$
We consider a smooth sub-manifold $\mathcal{F} \subset \mathrm{T} \mathcal{X}$, locally given by:

$$
\begin{equation*}
F(x, \dot{x})=0 \tag{F}
\end{equation*}
$$

We assume that F is smooth and that $\frac{\partial F}{\partial \dot{x}} \neq 0$.

Definitions

(1) smooth: means C^{∞} smooth,
(2) We consider a smooth manifold \mathcal{X} of dimension 2 , since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) $T \mathcal{X}$: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),
(9) Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\operatorname{ad}_{f} g:=[f, g]=\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g \in V^{\infty}(\mathcal{X})$
We consider a smooth sub-manifold $\mathcal{F} \subset T \mathcal{X}$, locally given by:
$F(x, \dot{x})=0$.
We assume that F is smooth and that $\frac{\partial F}{\partial \dot{x}} \neq 0$.

Definitions

(1) smooth: means C^{∞} smooth,
(2) We consider a smooth manifold \mathcal{X} of dimension 2 , since all results are local, we can imagine \mathcal{X} an open subset of \mathbb{R}^{2}, equipped with coordinates $x=(z, y)$,
(3) $T \mathcal{X}$: the tangent bundle of \mathcal{X}, with coordinates (x, \dot{x}),
(9) Given two vector fields f and g on \mathcal{X} we define their Lie bracket (in coordinates) by $\operatorname{ad}_{f} g:=[f, g]=\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g \in V^{\infty}(\mathcal{X})$
We consider a smooth sub-manifold $\mathcal{F} \subset \mathrm{T} \mathcal{X}$, locally given by:

$$
\begin{equation*}
F(x, \dot{x})=0 \tag{F}
\end{equation*}
$$

We assume that F is smooth and that $\frac{\partial F}{\partial \dot{x}} \neq 0$.

What is it?

Motivations - 1

Quadratic sub-manifolds in Physics are common

From [B, 1991]. Consider the attitude control problem for a rigid spacecraft governed by gas jets. Let $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \in \mathbb{R}^{3}$ be the orientation of the satellite and $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \mathbb{R}^{3}$ be the angular velocity measured in a specific frame attached to the satellite. The control problem is,

$$
\begin{cases}\dot{\theta}_{1}=\omega_{1} & \dot{\omega}_{1}=a_{1} \omega_{2} \omega_{3} \\ \dot{\theta}_{2}=\omega_{2} & \dot{\omega}_{2}=u_{2} \\ \dot{\theta}_{3}=\omega_{3} & \dot{\omega}_{3}=u_{3}\end{cases}
$$

which is the quadratic sub-manifold (in $T \mathbb{R}^{3}$) given by $\dot{\omega}_{1}=a_{1} \dot{\theta}_{2} \dot{\theta}_{3}$

Motivations - 2

From the mathematical point of view-1

Also in [B, 1991], Bonnard started a classification of quadratic control systems (not of sub-manifolds), he left very interesting questions to answer.

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal realisation of the simple Lie Algebra $\mathfrak{s o}(r+2, s+2)$ (where (r, s) is the signature of k)

Motivations - 2

From the mathematical point of view-1

Also in 「B, 19911. Bonnard started a classification of quadratic control systems (not of sub-manifolds), he left very interesting questions to answer

From the mathematical point of view-2

The following sub-manifold appear in [A-N-N, 2015] as infinitesimal realisation of the simple Lie Algebra $\mathfrak{s o}(r+2, s+2)$ (where (r, s) is the signature of k).

$$
\dot{z}=\frac{1}{2} \sum_{i j}^{m} k_{i j} \dot{y}^{i} \dot{y}^{j}
$$

Equivalence of sub-manifolds

We act on sub-manifolds by smooth diffeomorphisms, $\tilde{x}=\phi(x)$ and we say that two sub-manifold \mathcal{F} and $\tilde{\mathcal{F}}$, given by F and \tilde{F}, are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x}=\phi(x)$ such that $F(x, \dot{x})=\tilde{F}(\phi(x), D \phi(x) \dot{x})$.

The Question

When is a given sub-manifolds equivalent to a linear sub-manifold? Does coordinates x exist such that \mathcal{F} can be written,

This question is immediately generalised by: when is a sub-manifold equivalent to an affine sub-manifold: $\omega(\dot{x})+h(x)=0$.

Equivalence of sub-manifolds

We act on sub-manifolds by smooth diffeomorphisms, $\tilde{x}=\phi(x)$ and we say that two sub-manifold \mathcal{F} and $\tilde{\mathcal{F}}$, given by \mathcal{F} and \tilde{F}, are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x}=\phi(x)$ such that $F(x, \dot{x})=\tilde{F}(\phi(x), D \phi(x) \dot{x})$.

The Question

When is a given sub-manifolds equivalent to a linear sub-manifold? Does coordinates x exist such that \mathcal{F} can be written,

$$
\begin{aligned}
\omega(\dot{x}) & =0, \quad \omega \in \Lambda^{1}\left(\mathbb{R}^{2}\right) \\
a(x) \dot{z}+b(x) \dot{y} & =0
\end{aligned}
$$

This question is immediately generalised by: when is a sub-manifold equivalent to an affine sub-manifold: $\omega(\dot{x})+h(x)=0$.

Equivalence of sub-manifolds

We act on sub-manifolds by smooth diffeomorphisms, $\tilde{x}=\phi(x)$ and we say that two sub-manifold \mathcal{F} and $\tilde{\mathcal{F}}$, given by \mathcal{F} and \tilde{F}, are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x}=\phi(x)$ such that $F(x, \dot{x})=\tilde{F}(\phi(x), D \phi(x) \dot{x})$.

The Question

When is a given sub-manifolds equivalent to a linear sub-manifold? Does coordinates x exist such that \mathcal{F} can be written,

$$
\begin{aligned}
\omega(\dot{x}) & =0, \quad \omega \in \Lambda^{1}\left(\mathbb{R}^{2}\right) \\
a(x) \dot{z}+b(x) \dot{y} & =0
\end{aligned}
$$

This question is immediately generalised by: when is a sub-manifold equivalent to an affine sub-manifold: $\omega(\dot{x})+h(x)=0$.

Quadratic sub-manifolds

The problem we address today is the equivalence with a so-called quadratic sub-manifold:

$$
\begin{equation*}
F(x, \dot{x})=\dot{x}^{\top} g(x) \dot{x}+\omega(\dot{x})+h(x) \tag{q}
\end{equation*}
$$

with $g(x)$ a smooth 2 by 2 symmetric matrix with $\mathrm{rk}(g(x)) \geq 1$.
Assumptions: We consider the degenerate case $\mathrm{rk}(g(x))=1$ in a neighbourhood. Let $A \in V^{\infty}(\mathcal{X})$ such that $\operatorname{ker} g=\operatorname{sp}\{A\}$. We assume $\omega(A) \neq 0$ (the most general assumption in our degenerate case)

in suitable coordinates.
We say that a suh-manifold is quadratizable if it is equivalent to \mathcal{F}^{1}

Quadratic sub-manifolds

The problem we address today is the equivalence with a so-called quadratic sub-manifold:

$$
\begin{equation*}
F(x, \dot{x})=\dot{x}^{\top} g(x) \dot{x}+\omega(\dot{x})+h(x) \tag{q}
\end{equation*}
$$

with $g(x)$ a smooth 2 by 2 symmetric matrix with $\mathrm{rk}(g(x)) \geq 1$. Assumptions: We consider the degenerate case $\mathrm{rk}(g(x))=1$ in a neighbourhood. Let $A \in V^{\infty}(\mathcal{X})$ such that $\operatorname{ker} g=\operatorname{sp}\{A\}$. We assume $\omega(A) \neq 0$ (the most general assumption in our degenerate case).

in suitable coordinates.
We say that a suh-manifold is quadratizable if it is equivalent to $\mathcal{F}^{1} \frac{1}{q}$

Quadratic sub-manifolds

The problem we address today is the equivalence with a so-called quadratic sub-manifold:

$$
\begin{equation*}
F(x, \dot{x})=\dot{x}^{\top} g(x) \dot{x}+\omega(\dot{x})+h(x) \tag{q}
\end{equation*}
$$

with $g(x)$ a smooth 2 by 2 symmetric matrix with $\mathrm{rk}(g(x)) \geq 1$. Assumptions: We consider the degenerate case $\mathrm{rk}(g(x))=1$ in a neighbourhood. Let $A \in V^{\infty}(\mathcal{X})$ such that $\operatorname{ker} g=\operatorname{sp}\{A\}$. We assume $\omega(A) \neq 0$ (the most general assumption in our degenerate case).

$$
\begin{equation*}
F(x, \dot{x})=-a(x) \dot{y}^{2}+\dot{z}-b(x) \dot{y}-c(x) \tag{q}
\end{equation*}
$$

in suitable coordinates.
We say that a sub-manifold is quadratizable if it is equivalent to \mathcal{F}_{q}^{1}.

The picture

$$
=f_{q}^{\prime}: \dot{z}-a(x) \dot{y}^{2}-b(x) \dot{y}-c(x)=0 .
$$

Solving the equivalence problem by feedback equivalence of affine control systems

The idea: prolong twice the sub-manifold and then see it as an affine control system.

$u \in \mathbb{R}$ is called the control, and $\bar{x}=(z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Solving the equivalence problem by feedback equivalence of affine control systems

The idea: prolong twice the sub-manifold and then see it as an affine control system.

$$
\mathcal{F}_{q}^{1} \Longleftrightarrow\left\{\begin{array}{l}
\dot{z}=a(z, y) w^{2}+b(z, y) w+c(z, y) \\
\dot{y}=w
\end{array}, w \in \mathbb{R}\right.
$$

$u \in \mathbb{R}$ is called the control, and $\bar{x}=(z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Solving the equivalence problem by feedback equivalence of affine control systems

The idea: prolong twice the sub-manifold and then see it as an affine control system.

$$
\begin{align*}
\mathcal{F}_{q}^{1} & \Longleftrightarrow\left\{\begin{array}{ll}
\dot{z}=a(z, y) w^{2}+b(z, y) w+c(z, y) \\
\dot{y}=w
\end{array}, w \in \mathbb{R}\right. \\
& \Longleftrightarrow \begin{cases}\dot{z}=a(z, y) w^{2}+b(z, y) w+c(z, y) \\
\dot{y}=w & u \in \mathbb{R}\end{cases} \tag{q}
\end{align*}
$$

$u \in \mathbb{R}$ is called the control, and $\bar{x}=(z, y, w) \in \mathcal{X} \times \mathbb{R}$ is the extended coordinate system.

Transformations diagram

What is the notion of equivalence for affine systems that make this diagram commute?

$$
\begin{aligned}
& \mathcal{F} \\
& \mathcal{F}_{q}^{1} \\
& \downarrow \downarrow \\
& \left\{\begin{array} { l }
{ \dot { Z } = \xi (Z , Y , W) } \\
{ \dot { Y } = W } \\
{ \dot { W } = U }
\end{array} \quad \longleftrightarrow \quad ? \quad \left\{\begin{array}{l}
\dot{z}=a(x) w^{2}+b(x) w+c(x) \\
\dot{y}=w \\
\dot{w}=u
\end{array}\right.\right.
\end{aligned}
$$

Feedback equivalence

We consider $\Sigma^{i}: \dot{\bar{x}}=f^{i}(\bar{x})+g^{i}(\bar{x}) u^{i}$ with $u^{i} \in \mathbb{R}, i=1,2$.

Definition ((Affine) Feedback Equivalence)

We say that two affine control systems Σ^{1} and Σ^{2} are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x), \beta(\cdot) \neq 0$, and a diffeomorphism ϕ of \mathcal{X} such that:

It is like taking the control $u^{1}=\alpha+\beta u^{2}$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^{2}=\phi_{\star} \mathcal{A}^{1}$ where $\mathcal{A}^{i}=f^{i}+\mathrm{sp}\left\{g^{i}\right\}$

Feedback equivalence

We consider $\Sigma^{i}: \dot{\bar{x}}=f^{i}(\bar{x})+g^{i}(\bar{x}) u^{i}$ with $u^{i} \in \mathbb{R}, i=1,2$.

Definition ((Affine) Feedback Equivalence)

We say that two affine control systems Σ^{1} and Σ^{2} are feedback equivalent if and only if there exist smooth functions $\alpha(x)$ and $\beta(x), \beta(\cdot) \neq 0$, and a diffeomorphism ϕ of \mathcal{X} such that:

$$
\begin{aligned}
f^{2} & =\frac{\partial \phi}{\partial x}\left(f^{1}+\alpha g^{1}\right) \\
g^{2} & =\frac{\partial \phi}{\partial x}\left(g^{1} \beta\right)
\end{aligned}
$$

It is like taking the control $u^{1}=\alpha+\beta u^{2}$. Geometrically, it is the equivalence of affine distributions $\mathcal{A}^{2}=\phi_{\star} \mathcal{A}^{1}$ where $\mathcal{A}^{i}=f^{i}+\mathrm{sp}\left\{g^{i}\right\}$.

Main result

Theorem (Affine feedback quadratization)

Let Σ be an affine control system on a 3-dimensional smooth manifold with 1 control. Σ is locally around \bar{x}_{0} affine feedback equivalent to Σ_{q}^{1} if, and only if,
(1) $g \wedge a d_{f} g \wedge\left[g, a d_{f} g\right]\left(\bar{x}_{0}\right) \neq 0$,
(2) The structure functions a and b in the decomposition

$$
\left[g,\left[g, a d_{f} g\right]\right]=a(\bar{x})\left[g, a d_{f} g\right]+b(\bar{x}) a d_{f} g \bmod s p\{g\} \text { satisfy }
$$

$$
9 b+2 a^{2}-3 L_{g} a=0
$$

These conditions are checkable by algebraic operations and derivations.

Idea behind the proof

If, $g \wedge \operatorname{ad}_{f} g\left(\bar{x}_{0}\right) \neq 0$ then an affine control system is feedback equivalent to,

$$
\left\{\begin{array}{l}
\dot{z}=\xi(x, y, w) \\
\dot{y}=w \\
\dot{w}=u
\end{array} \quad, \quad f=\left(\begin{array}{c}
\xi \\
w \\
0
\end{array}\right), g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right.
$$

Observe that if $\left[g,\left[g, a d_{f} g\right]\right]=0$ (i.e. $\frac{\partial^{3} \xi}{\partial w^{3}}=0$) then the system is quadratic in this coordinate system.
The idea of the proof is to see how $\left[\varepsilon,\left[\mathrm{g}, \operatorname{ad}_{\mathrm{f}} \mathrm{g}\right]\right]=0$ is transformed under the feedback transformations (α, β).

Idea behind the proof

If, $g \wedge \operatorname{ad}_{f} g\left(\bar{x}_{0}\right) \neq 0$ then an affine control system is feedback equivalent to,

$$
\left\{\begin{array}{l}
\dot{z}=\xi(x, y, w) \\
\dot{y}=w \\
\dot{w}=u
\end{array} \quad, \quad f=\left(\begin{array}{c}
\xi \\
w \\
0
\end{array}\right), g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right.
$$

Observe that if $\left[g,\left[g, \operatorname{ad}_{f} g\right]\right]=0$ (i.e. $\frac{\partial^{3} \xi}{\partial w^{3}}=0$) then the system is quadratic in this coordinate system.
The idea of the proof is to see how $\left[g,\left[g, \operatorname{ad}_{f} g\right]\right]=0$ is transformed under the feedback transformations (α, β).

Idea behind the proof

If, $g \wedge \operatorname{ad}_{f} g\left(\bar{x}_{0}\right) \neq 0$ then an affine control system is feedback equivalent to,

$$
\left\{\begin{array}{l}
\dot{z}=\xi(x, y, w) \\
\dot{y}=w \\
\dot{w}=u
\end{array} \quad, \quad f=\left(\begin{array}{c}
\xi \\
w \\
0
\end{array}\right), g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right.
$$

Observe that if $\left[g,\left[g, \operatorname{ad}_{f} g\right]\right]=0$ (i.e. $\frac{\partial^{3} \xi}{\partial w^{3}}=0$) then the system is quadratic in this coordinate system.
The idea of the proof is to see how $\left[g,\left[g, \operatorname{ad}_{f} g\right]\right]=0$ is transformed under the feedback transformations (α, β).

The theorem for sub-manifolds

The theorem is stated for affine control systems. When directly considering the parametrization of a sub-manifold,

$$
\left\{\begin{array}{rl}
\dot{z} & =\xi(x, y, w) \tag{F}\\
\dot{y} & =w \\
\dot{w} & =u
\end{array} \quad g=\frac{\partial}{\partial w}, f=\xi(\bar{x}) \frac{\partial}{\partial z}+w \frac{\partial}{\partial y}\right.
$$

we have the simplification of the conditions,
(2) $a(x)=\frac{\xi^{(3)}}{\xi^{(2)}}, b=0$ and the relation reads,

The theorem for sub-manifolds

The theorem is stated for affine control systems. When directly considering the parametrization of a sub-manifold,

$$
\left\{\begin{array}{rl}
\dot{z} & =\xi(x, y, w) \tag{F}\\
\dot{y} & =w \\
\dot{w} & =u
\end{array} \quad g=\frac{\partial}{\partial w}, f=\xi(\bar{x}) \frac{\partial}{\partial z}+w \frac{\partial}{\partial y}\right.
$$

we have the simplification of the conditions,
(1) $\xi^{(2)}\left(\bar{x}_{0}\right) \neq 0$,
(3) $a(x)=\frac{\xi^{(3)}}{\xi^{(2)}}, b=0$ and the relation reads,

The theorem for sub-manifolds

The theorem is stated for affine control systems. When directly considering the parametrization of a sub-manifold,

$$
\left\{\begin{array}{rl}
\dot{z} & =\xi(x, y, w) \tag{F}\\
\dot{y} & =w \\
\dot{w} & =u
\end{array} \quad g=\frac{\partial}{\partial w}, f=\xi(\bar{x}) \frac{\partial}{\partial z}+w \frac{\partial}{\partial y}\right.
$$

we have the simplification of the conditions,
(1) $\xi^{(2)}\left(\bar{x}_{0}\right) \neq 0$,
(2) $a(x)=\frac{\xi^{(3)}}{\xi^{(2)}}, b=0$ and the relation reads,

$$
\begin{aligned}
2\left(\frac{\xi^{(3)}}{\xi^{(2)}}\right)^{2}-3\left(\frac{\xi^{(3)}}{\xi^{(2)}}\right)^{\prime} & =0 \\
5\left(\xi^{(3)}\right)^{2}-3 \xi^{(4)} \xi^{(2)} & =0
\end{aligned}
$$

Classification of quadratic sub-manifolds

Going back to our sub-manifolds. Once we have distinguished a special class of sub-manifolds, we wan to exhibit normal forms for that class. For example, for a linear sub-manifold $\omega(\dot{x})=0$ the problem of classification is the problem of classification of distributions.
In our case, we have:

With $a\left(x_{0}\right) \neq 0$. In normal forms we will normalise $a=1$ (we can always do that), $b=0$ and study various forms of c.

Classification of quadratic sub-manifolds

Going back to our sub-manifolds. Once we have distinguished a special class of sub-manifolds, we wan to exhibit normal forms for that class. For example, for a linear sub-manifold $\omega(\dot{x})=0$ the problem of classification is the problem of classification of distributions.
In our case, we have:

$$
\begin{equation*}
\dot{z}=a(x) \dot{y}^{2}+b(x) \dot{y}+c(x) \tag{q}
\end{equation*}
$$

With $a\left(x_{0}\right) \neq 0$. In normal forms we will normalise $a=1$ (we can always do that), $b=0$ and study various forms of c.

Parametrization and equivalence

To deal with this problem, we consider the parametrization of \mathcal{F}_{q}^{1} given by

$$
\left\{\begin{array}{llc}
\dot{z}=a(x) w^{2}+ & b(x) w+c(x) \tag{q}\\
\dot{y}= & w
\end{array}\right.
$$

here, w play the role of control and Ξ_{q}^{1} can be seen as a nonlinear control system.
(they are nonlinear feedback) $\tilde{w}=\psi(z, y, w)\left(\right.$ with $\left.\frac{\partial \psi}{\partial w} \neq 0\right)$
Since we have to preserve the quadratic structure, we allow
reparametrizations of the shape $\tilde{w}=\beta(z, y) w$ only. We identify the vector fields $A=a(x) \frac{\partial}{\partial z}$ and $B=b(x) \frac{\partial}{\partial z}+\frac{\partial}{\partial y}$.

Parametrization and equivalence

To deal with this problem, we consider the parametrization of \mathcal{F}_{q}^{1} given by

$$
\left\{\begin{array}{llc}
\dot{z}=a(x) w^{2}+ & b(x) w+c(x) \tag{q}\\
\dot{y}= & w
\end{array}\right.
$$

here, w play the role of control and Ξ_{q}^{1} can be seen as a nonlinear control system. We act on Ξ_{q}^{1} by diffeomorphisms $\tilde{x}=\phi(x)$ and reparametrization (they are nonlinear feedback) $\tilde{w}=\psi(z, y, w)\left(\right.$ with $\left.\frac{\partial \psi}{\partial w} \neq 0\right)$.
Since we have to preserve the quadratic structure, we allow
reparametrizations of the shape $\tilde{w}=\beta(z, y) w$ only. We identify the
vector fields $A=a(x) \frac{\partial}{\partial z}$ and $B=b(x) \frac{\partial}{\partial z}+\frac{\partial}{\partial y}$.

Parametrization and equivalence

To deal with this problem, we consider the parametrization of \mathcal{F}_{q}^{1} given by

$$
\left\{\begin{array}{ccc}
\dot{z}=a(x) w^{2}+ & b(x) w+c(x) \tag{q}\\
\dot{y}= & w
\end{array}\right.
$$

here, w play the role of control and Ξ_{q}^{1} can be seen as a nonlinear control system. We act on Ξ_{q}^{1} by diffeomorphisms $\tilde{x}=\phi(x)$ and reparametrization (they are nonlinear feedback) $\tilde{w}=\psi(z, y, w)\left(\right.$ with $\left.\frac{\partial \psi}{\partial w} \neq 0\right)$. Since we have to preserve the quadratic structure, we allow reparametrizations of the shape $\tilde{w}=\beta(z, y) w$ only.

Parametrization and equivalence

To deal with this problem, we consider the parametrization of \mathcal{F}_{q}^{1} given by

$$
\left\{\begin{array}{llc}
\dot{z}=a(x) w^{2}+ & b(x) w+c(x) \tag{q}\\
\dot{y}= & w
\end{array}\right.
$$

here, w play the role of control and Ξ_{q}^{1} can be seen as a nonlinear control system. We act on Ξ_{q}^{1} by diffeomorphisms $\tilde{x}=\phi(x)$ and reparametrization (they are nonlinear feedback) $\tilde{w}=\psi(z, y, w)\left(\right.$ with $\left.\frac{\partial \psi}{\partial w} \neq 0\right)$. Since we have to preserve the quadratic structure, we allow reparametrizations of the shape $\tilde{w}=\beta(z, y) w$ only. We identify the vector fields $A=a(x) \frac{\partial}{\partial z}$ and $B=b(x) \frac{\partial}{\partial z}+\frac{\partial}{\partial y}$.

Parametrization and equivalence

Notice that since $a\left(x_{0}\right) \neq 0$ we have $A \wedge B \neq 0$. We call (A, B) a frame.

Structure of the transformations

On (A, B) the reparametrization, $\tilde{w}=\beta w$, acts by

$$
\tilde{A}=\beta^{2} A, \quad \tilde{B}=\beta B
$$

Observe that if $a=1$ and $b=0$ then $[A, B]=0$.
The question is then when does a reparametrization exist such that $[\tilde{A}, \tilde{B}]=0$?

Main result

Theorem

There exists a diffeomorphism and a reparametrization such that $\tilde{a}=1$ and $\tilde{b}=0$ if, and only if,

$$
[A,[A, B]]=0, \Longleftrightarrow \frac{\partial}{\partial z}\left(a \frac{\partial}{\partial z}\left(\frac{b}{a}\right)\right)=0
$$

Moreover, c is an invariant of the sub-manifold.
Then we have:

Main result

Theorem

There exists a diffeomorphism and a reparametrization such that $\tilde{a}=1$ and $\tilde{b}=0$ if, and only if,

$$
[A,[A, B]]=0, \Longleftrightarrow \frac{\partial}{\partial z}\left(a \frac{\partial}{\partial z}\left(\frac{b}{a}\right)\right)=0
$$

Moreover, c is an invariant of the sub-manifold.
Then we have:

$$
\begin{aligned}
& c=0 \Longleftrightarrow \tilde{c}=0 \\
& \mathrm{~L}_{A} c=0 \Longleftrightarrow \mathrm{~L}_{\tilde{A}} \tilde{c}=0 \\
& \mathrm{~L}_{B} c=0 \Longleftrightarrow \mathrm{~L}_{\tilde{B}} \tilde{c}=0 \Longleftrightarrow \tilde{c}(\tilde{z}, \tilde{y})=\gamma(\tilde{y}) \\
&
\end{aligned}
$$

Conclusion and perspectives

We presented an introduction to the equivalence and classification problem of quadratic sub-manifolds in $\mathrm{T} \mathbb{R}^{2}$.

There is a way that directly gives necessary and sufficient conditions for the equivalence of Σ with $\dot{z}=w^{2}$. This is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable in higher dimension (however when $m>2$, checkablity of the conditions is hard)

We have results for the equivalence and classification of quadratic sub-manifolds in $T \mathbb{R}^{3}$:

The case when $\epsilon=-1$ is called hyperbolic and is easy to solve (the geometry is nice). The case when $\epsilon=1$ is called elliptic, and is a bit more trickier to deal with
The case when $\epsilon=0$ (i.e parabolic) is still resisting to us.

Conclusion and perspectives

We presented an introduction to the equivalence and classification problem of quadratic sub-manifolds in TR^{2}.

There is a way that directly gives necessary and sufficient conditions for the equivalence of Σ with $\dot{z}=w^{2}$. This is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable in higher dimension (however when $m>2$, checkablity of the conditions is hard).

Conclusion and perspectives

We presented an introduction to the equivalence and classification problem of quadratic sub-manifolds in TR^{2}.

There is a way that directly gives necessary and sufficient conditions for the equivalence of Σ with $\dot{z}=w^{2}$. This is done by the study of the Lie algebra of infinitesimal symmetries, and is easily generalisable in higher dimension (however when $m>2$, checkablity of the conditions is hard).

We have results for the equivalence and classification of quadratic sub-manifolds in TR^{3} :

$$
\dot{z}=a(x)\left(\dot{y}_{0}^{2}+\epsilon \dot{y}_{1}^{2}\right)+b_{0}(x) \dot{y}_{0}+b_{1}(x) \dot{y}_{1}+c(x) .
$$

The case when $\epsilon=-1$ is called hyperbolic and is easy to solve (the geometry is nice). The case when $\epsilon=1$ is called elliptic, and is a bit more trickier to deal with.
The case when $\epsilon=0$ (i.e parabolic) is still resisting to us.

References

B. Bonnard (1991)

Quadratic control systems
Mathematics of Control, Signals and Systems 4(2), 139 - 160.
웅
I. Anderson, Z. Nie and P. Nurowski (2015)

Non-rigid parabolic geometries of Monge type
Advances in Mathematics 277, 44 - 55.

