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Abstract 

Purpose Root system architectures are complex and challenging to characterize effectively for agronomic and eco-
logical discovery.

Methods We propose a new method, Spatial and Texture Analysis of Root SystEm distribution with Earth mover’s 
Distance (STARSEED), for comparing root system distributions that incorporates spatial information through a novel 
application of the Earth Mover’s Distance (EMD).

Results We illustrate that the approach captures the response of sesame root systems for different genotypes and 
soil moisture levels. STARSEED provides quantitative and visual insights into changes that occur in root architectures 
across experimental treatments.

Conclusion STARSEED can be generalized to other plants and provides insight into root system architecture devel-
opment and response to varying growth conditions not captured by existing root architecture metrics and models. 
The code and data for our experiments are publicly available: https:// github. com/ Gator Sense/ STARS EED.

Keywords Root architecture, Earth Mover’s Distance, Image analysis, Sesamum indicum, Artificial Intelligence

Introduction
Studying plant roots is one of the keys to achieving the 
second Green Revolution [1]. The study of plant roots 
requires, among other things, effective characteriza-
tion and development of comparative methods for root 

development, architecture, and spatial distribution, 
including early in the root system’s development. Current 
methods, such as the widely used WinRHIZOTM and 
WinRHIZOTM Tron software suite (Regent Instruments 
Inc., Quebec, Canada) use 2D images of roots to measure 
individual parameters related to morphology and topol-
ogy. These standard software packages have also been 
developed to further make accessible the analysis of indi-
vidual root traits [2, 3]. These tools capture information 
relevant to characterize root spatial distribution (RSD). 
However, standard software packages typically provide 
parameters that are only capturing one or a few specific 
aspects of a root system such as total root length, surface 
area, branching angle and root order. These packages are 
less effective at holistically quantifying intact root sys-
tems and how they change in response to edaphic con-
ditions. To address this shortcoming, machine learning 
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can be used in tandem with these biological features to 
automate and improve understanding of root systems [4].

A subarea of machine learning, deep learning, has been 
widely used for automating root detection and segmenta-
tion from 2D images of root systems [5–9]. Deep learn-
ing methods can require high computational power and 
large amounts of annotated data however, as well as lack 
explainability [10, 11]. Yet these techniques have shown 
promise for localizing and identifying unique 2D texture 
features useful for root phenotyping [6]. Texture, mean-
ing the spatial arrangement of the pixel values in a raster 
grid [12], is a powerful cue that can be used to identify 
patterns tied to RSD characterization. A straightfor-
ward approach to compute texture from an image is to 
use counts (i.e., histograms) of local pixel intensities [13]. 
This representation of texture can be defined as counting 
the percentage of root pixels in an area of the image. By 
counting the number of root pixels in each cell of a ras-
ter grid, this allows for quantification of localized pixel 
intensity depending on the cell size of the grid. In addi-
tion to this baseline approach, one can compute more 
complex texture features such as fractal dimension and 
lacunarity.

Root systems can be described as approximate frac-
tal objects over a finite range of scale. A fractal object is 
defined by two fundamental characteristics: self-simi-
larity (i.e. shape variations of the object on one scale are 
repeated at another) [14] and the possession of a fractal 
dimension that is expressed as a non-integer dimension, 
as opposed to the more familiar integer Euclidean dimen-
sions [15]. This fractal dimension value can be calculated 
for root systems using a specific approach called the box-
counting method [16, 17] and has been used successfully 
to capture root system architecture [16, 18, 19].

A related feature to fractal dimension is lacunarity. 
Lacunarity captures the distribution and size of “gaps” 
in an object [15, 20]. An object, in our case the image of 
a root system, will be highly lacunar if it contains many 
gaps distributed over a greater range. Lacunarity will 
thus be smaller in value when root systems are dense and 
increase with the presence of gaps (i.e., areas of the image 
where roots are not located or areas of the growth media 
matrix where roots are not located) and a coarse spatial 
arrangement of roots [15, 21]. Since some visually dis-
tinct images can have the same fractal dimension, lacu-
narity provides a feature that can aid in discriminating 
between these distinct textures [21–23].

The aforementioned texture features are promis-
ing candidates in building a new tool to accurately and 
precisely describe RSD. Therefore, a novel algorithm is 
needed that would allow for the calculation of these tex-
ture features from 2D root images and spatially explicit 
comparisons between root systems based on the feature 

values. For these aims, Earth Mover’s Distance (EMD) 
appears to be a promising candidate approach [24]. 
EMD, also known as the Wasserstein-1 distance [25], is 
used to determine quantitative differences between two 
distributions [24]. EMD has several advantages such as 
allowing for partial matching (i.e., comparisons can be 
made between representations of different sizes such as 
comparing smaller and larger root systems) and matches 
our human visual perception when the chosen ground 
distances (i.e., distance between feature vectors) is mean-
ingful [24]. Essentially, we want to use EMD to find the 
minimal distance or amount of “work” to transform one 
root spatial distribution to another.

In this study, we developed the Spatial and Texture Analy-
sis of Root SystEm distribution with Earth mover’s Distance 
(STARSEED) approach, to better characterize RSD and over-
all root soil exploration. Our approach used EMD to quan-
tify the heterogeneity among root structures. The proposed 
STARSEED approach allowed us to establish meaningful 
biological connections between the treatments such as cul-
tivar and moisture level, and the observed RSD as well as 
provide detailed qualitative and quantitative analysis. The 
aims and contributions of STARSEED are the following: (1) 
characterize the spatial arrangements of roots in local (i.e., 
smaller regions of the image) and global (i.e., whole image) 
contexts, (2) extract useful information to describe the distri-
bution of roots in the image, and (3) give precise insight for 
biological interpretation.

Materials and methods
Greenhouse setup and data collection
Data presented and used in this work is coming from a 
previous study that has been published [26]. A summary 
of the greenhouse setup and data collection of the mate-
rials and methods are presented here. Sesame was grown 
in 64 custom-made rhizoboxes. Each rhizobox was filled 
with 1550g of inert calcine clay (Turface Athletics, Buf-
falo Grove, IL, USA), henceforth referred to as soil. A sin-
gle seed from one of four non-dehiscent sesame cultivars, 
all provided by Sesaco Inc. (Sesaco32, Sesaco35, Sesaco38 
and Sesaco40, referred to as S32, S35, S38 and S40 there-
after), was planted per box. Four soil water content treat-
ments were implemented: 60, 80, 100 and 120% of the soil 
water holding capacity, corresponding to 688, 918, 1147 
and 1376 mL of water per rhizobox, respectively. The soil 
and water were mixed thoroughly together before fill-
ing the rhizoboxes to promote homogeneity of the soil 
water content throughout. The top of each rhizobox was 
covered with Press’N Seal Cling Wrap (Glad, Oakland, 
CA, USA) to minimize water evaporation. No water was 
added afterwards throughout the experiment with the 
assumption that soil water content, in the absence of 



Page 3 of 15Peeples et al. Plant Methods            (2023) 19:2  

evaporation, stayed relatively constant throughout the 
16–21 days of each run experiment. A small hole was 
pierced in the plastic wrap upon seedling emergence 
to allow for leaf and stem growth. The two factors were 
arranged in a complete randomized design with 4 repli-
cations in a greenhouse where the daily temperature was 
maintained between 25 and 35 degrees Celsius.

Four runs of 64 rhizoboxes were completed. Run 1 
and 2 were prepared with soil and water only, while run 
3 and 4 were fertilized with 1.51mg of 15-5-15 + Ca + 
Mg Peters Excel mix fertilizer (ICL Specialty Fertilizers, 
Summerville SC) and 0.29g of ammonium sulfate were 
dissolved in the water applied to each rhizobox prior to 
mixing with the soil. Baking soda was added as needed to 
neutralize the fertilizer solution to a pH of 6. Plants were 
grown for a duration of 21 days after planting (DAP) for 
the runs without fertilizer and 16 DAP for the runs with 
added fertilizer due to their fast growth.

On the last day of the experiment, all rhizoboxes were 
scanned with a Plustek OpticSlim 1180 A3 flatbed scan-
ner (Plustek Inc., Santa Fe, CA, USA) to generate the 
raw images with the size 6800× 4676 at a resolution of 
400 Dots Per Inch (DPI). Rhizoboxes were all set on the 
scanner the same way using a physical guide so that all 
rhizoboxes had the same position in the scanned images. 
For each run, images from seeds that did not germinate 
or seedlings that died during the experiment were not 
considered in the analysis; 11 images were thus removed 
from Run 1, 10 from Run 2, 11 from Run 3 and 5 from 

Run 4. The total number of analyzed images was 107 
Runs 1 and 2, and 113 for Run 3 and 4. Representative 
RGB image samples for each cultivar and water level 
are shown in Additional file 3: Figure S3 and Additional 
file 4: Figure S4. The roots from all analyzed images were 
hand-traced with WinRHIZOTronTM (Regent Instru-
ments Inc., Quebec, Canada) and total root length (TRL) 
was obtained.

Spatial and Texture Analysis of Root SystEm distribution 
with Earth mover’s Distance (STARSEED)
The overall pipeline of our proposed method is illustrated in 
Fig. 1 and explained in more detail in Algorithm 1. STAR-
SEED consisted of five major steps. The first step was to take 
the input images and perform preprocessing to isolate the 
roots pixels from the background to focus on the architec-
ture. For step 2, we divided the image into equal-sized bins 
by generating local regions of the image to improve compu-
tational efficiency and incorporate spatial information. Step 
3 involved extracting texture features to describe the root 
pixels within each bin and generate a compact representa-
tion of the image (i.e., signature). The fourth step used EMD 
to measure the magnitude and direction of changes between 
each root signature. Lastly, we projected the pairwise dis-
tance matrix to perform qualitative and quantitative analy-
sis of the root images and their corresponding treatment. 
Details and rationale behind each step of this algorithm are 
provided in the following subsections.

Algorithm 1 STARSEED Overall Process
Require: N input images X ∈ RH×W , N corresponding treatment labels y ∈ R1, B number of

spatial bins, gθ(·) preprocessing function, fθ(·) texture feature extraction, d embedding dimension
1: Preprocess images, Xprocessed ← gθ(X)
2: Partition each image into B regions
3: Compute feature and centroid location, Xfeatures ← fθ(Xprocessed) for each region to get

a signature, P ∈ RB×3, for each image
4: Compute EMD score and flow matrix between each image signature using Equation 2 to gen-

erate pairwise distance matrix, D ∈ RN×N

5: Project D using MDS [27] into d-dimensional feature space to compute embedding, E ∈ RN×d

6: Compute Calinski-Harabasz (CH) score using E and y
7: return EMD Scores, CH Index, Flow Matrices 

Fig. 1 Overview of the proposed STARSEED method step by step
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Image Preprocessing—Step 1 The initial step of the pro-
posed approach was to perform preprocessing of the 
images to isolate the root pixels from the background. 
Raw images were manually traced using WinRHIZOTM 
Tron software to generate the labels for root pixels in 
each image. The black and white binary images were 
reconstructed based on these labels, in which pixels that 
corresponded to roots were assigned a value of 1 in the 
mask and the non-root pixels were assigned a value of 0. 
The binary images were then cropped and calibrated, and 
downsampled by a factor of eight through average pool-
ing and smoothed by a Gaussian filter ( σ = 1 ) to mitigate 
noise before extracting texture features.

Sub-region Generation and Feature/Signature Extrac-
tion—Steps 2 & 3 In order to apply EMD to characterize 
and compare RSDs using STARSEED, we constructed a 
signature representation, a composition of texture fea-
tures computed spatially, for each image. Since texture 
is undefined at a single point [28], a local neighborhood 
needed to be identified to compute the texture features 
comprising the signature. In our approach, we divided 
each image into bins of equal sizes using a grid, each 
bin serving as the local neighborhood. Within each bin, 
texture features were computed to locally characterize 
the RSD. The size of the grid/bins provides trade-offs 
between computational efficiency and localization. For 
example, a larger grid yielding large bins corresponds to 
less computation cost, but each texture feature is com-
puted over a larger area, resulting in a loss of localiza-
tion. The computational time for the method scaled 
linearly with the number of bins used (e.g., more bins 
corresponded to increased computational time) and this 
information is captured in Additional file 1: Figure S1 and 
Additional file 2: Figure S2. For the proposed method, the 

grid size that corresponded to the maximum CH score 
was used to further analyze STARSEED as discussed in 
the following Experiments and Results section.

Each bin of the image was represented through a clus-
ter representative. The cluster representative consisted 
of spatial coordinates (i.e., horizontal and vertical posi-
tion of the bin center) and a weight to create a R3 vector 
to represent a local spatial bin of the image. The weight 
given to each bin was computed by the texture fea-
ture extracted from the pixels in the bin. An example of 
steps 2 and 3 is shown in Fig. 2. We calculated three fea-
ture values in each bin: percentage of root pixels, fractal 
dimension, and lacunarity. To calculate the percentage of 
root pixels, we computed the total number of root pixels 
present in each bin divided by the area (i.e., total number 
of pixels) of that same bin. The percentage of root pix-
els provides direct insight into the distribution of roots 
in the image. If a region of the image has denser roots, 
the percentage of root pixels in the bins present in that 
region will be higher. The final representation of the 
image was a signature, which was the set of clusters from 
the image. By constructing our signature in this manner, 
we incorporated spatial (locally at the bin level and glob-
ally over the whole image) and texture information, to 
represent the root distributions.

Novel Earth Mover’s Distance Application—Step 4 
EMD can be used to effectively evaluate certain charac-
teristics between different distributions, including images 
[24]. Images are comprised of pixels and these pixels can 
be clustered or assigned to meaningful groups based on 
shared characteristics such as spatial location. The set 
of these clusters are used to form a signature, a more 
compact representation of the image to increase compu-
tational efficiency [24]. Given an image with C clusters, 

Fig. 2 For step 2, the image is divided into B equally-sized bins after preprocessing. Next, the feature/signature extraction for step 3 is completed by 
representing each bin as a R3 vector that consist of the bin center location (x and y) and the texture feature (f) describing the pixels in the bin. The 
set of these B vectors is the final signature representation. The signature can also be represented as a heatmap that shows the feature value for the 
pixels in a region. In this example, the percentage of root pixels is used as the texture feature
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the signature representation, P, is given by Eq. 1 where pi 
is the cluster representative and wpi is the weight of the 
cluster:

Typically, the cluster representative is a feature vector 
and the weight is the percentage of pixels in a cluster 
expressing that feature [24]. While the selection of the 
cluster representative is application dependent, defining 
the cluster representative as the information/descrip-
tor (i.e., features) and importance (i.e., weight) provides 
a clear interpretation for EMD within disparate areas of 
an image. In our proposed STARSEED method, the sig-
nature representations were generated as mentioned in 
Step 3.

Once the signature representations are constructed, 
we used EMD to generate a pairwise distance matrix D 
between each pair of RSD signatures, choosing one RSD 
signature as the reference within each pair. After deter-
mining the magnitude of changes between two clusters, 
the minimal flow matrix, F , is used to compute EMD 
[24]. Given two image signatures, P and Q, with S and T 
representatives respectively, EMD is formulated in Eq. 2 
where dij is the ground distance between the centroid of 
regions pi and qj and fij is the optimal flow between pi 
and qj:

EMD captures the dissimilarity between spatial distribu-
tions: larger values indicate more dissimilarity or “work” 
to move the defined “earth” feature to the cluster repre-
sentative. EMD allows one to measure the global change 
between two spatial distributions (i.e., distance measure) 
as well as local changes between the two sources of infor-
mation through the flow matrix, F  . If we can translate a 
2D root image into a spatial distribution of the values for 
a given texture feature calculated from this image, EMD 
would then be able to measure the changes in this dis-
tribution from one root system image to the next. Con-
sequently, EMD would provide a two-level comparison 
between these distributions: one at the global scale (i.e., 
the whole distribution or the whole image) that we can 
term “holistic” through the EMD measure, and one at the 
local scale through the flow matrix that shows the dis-
tinct magnitude and direction of changes between each 
image.

In our experiments, we first computed EMD between 
each pair of images, separately between Runs 1–2 and 
Runs 3–4. Regions containing no roots were removed 

(1)P = {(p1,wp1), ..., (pC ,wpC )}.

(2)EMD(P,Q) =

∑S
i=1

∑T
j=1 dijfij

∑S
i=1

∑T
j=1 fij

from our calculations to mitigate the impact of back-
ground on our results. Therefore, we were comparing 
root signatures of different sizes. In order to not favor 
smaller signatures, the normalization factor was added 
to the EMD calculation as shown in Eq. 2. Any distance 
can be used to define the ground distance, dij [24]. To 
consider the root spatial distribution, we compared the 
center location of each spatial bin by selecting the Euclid-
ean distance as our ground distance to compute dij.

Projection Using MDS—Step 5 Once the distances 
between each image signature representation were 
computed to generate the pairwise distance matrix, we 
can use a dimensionality reduction approach to project 
the matrix into two dimensions. We projected the data 
into two dimensions to qualitatively and quantitatively 
evaluate the pairwise distance matrix. We used multi-
dimensional scaling (MDS) [27] as this method had been 
shown to work well with EMD to identify patterns among 
images that share some characteristics [24, 29].

To illustrate step 5 in the algorithm, Fig.  3 provides a 
visualization of the EMD matrix projection in a 2D space 
through MDS for Run 3 and Run 4 with the percentage of 
root pixels as the feature calculated for the highest num-
ber of spatial bins (2000 in each image). The output from 
the MDS method is an RN×2 embedding matrix, E, that is 
a projection of the pairwise distance matrix in the Euclid-
ean space. Once E is computed, the embedding is then 
used in Step 6 to calculate Calinski-Harabasz (CH) index 
[30] to quantitatively assess relationships among the root 
images when considering the treatment values (cultivar 
and water levels).

Assessment of Relationships for RSD - Steps 6 Lastly, we 
calculated the CH [30] index to measure the intra-cluster 
similarity (i.e., RSD representatives of the same cultivar 
or water level) and inter-cluster dissimilarity (i.e., RSD 
representatives of different cultivar or water level) across 
treatment levels in each pair of runs. By using the EMD 
approach, we were able to score the differences between 
each treatment level, highlighting: (a) the magnitude and 
(b) the location of the RSD dissimilarities. Ideally, sam-
ples that belong to the same cluster should be “close” (i.e., 
smaller EMD distances or intra-cluster variance) while 
samples from different clusters should be “well-sepa-
rated” (i.e., larger EMD distances or inter-cluster vari-
ance). When the clusters are dense and well-separated, 
the CH index is larger. Finally, a non-parametric Kruskal-
Wallis test was performed on the CH scores within each 
treatment for each pair of runs across features, and then 
separately for each feature across cultivars or across 
water levels. When the test was rejected ( p < .05 ), Dun-
nett’s test with Bonferroni’s adjustment was used to com-
pare treatment levels with one another.
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Experiments and results
Our dataset consisted of 220 images across four different 
runs. To select the best bin size of for the experiments, 
we investigated the impact of coarser (i.e., small number 
of spatial bins—large grid) and finer (i.e., large number 
of spatial bins—small grid) scales. The number of spatial 
bins per image varied from 100 to 2000 in steps of 100 
for a total of 20 values. Then, we performed quantitative 
and qualitative analysis for local and global RSD sup-
ported by the STARSEED method. For our local analysis, 

we calculated the CH index using different features to 
evaluate the effectiveness of these extracted features 
at capturing RSD differences between different grow-
ing conditions and cultivars. For our global analysis, we 
aggregated each centered root image to create a repre-
sentative for each treatment to elucidate the RSD spatial 
differences between these representative images. We dis-
cuss the results of the local and global analysis of STAR-
SEED in the following sections.

Fig. 3 Example of qualitative results produced by projecting EMD matrix through MDS for the percentage of root pixels as the feature and 2000 
spatial bins for images from Runs 3 and 4. MDS served as a visualization approach to show the relationships in the pairwise distance matrix, D. 
The RSD images are arranged in the 2D space such that images with similar RSD are near one another (i.e., similar MDS coordinates). Additional 
analysis can be completed by incorporating the moisture or cultivar information. The CH index (step 6) is computed to assess the MDS projection. 
The different colored frames represent the different moisture levels. The CH indices for 60%, 80%, 100%, and 120% are 8.67, 9.59, 0.23, and 55.68 
respectively. The overall CH index for this projection is 15.57. The 120% water level is the most different from the other architectures and the 120% 
water level is the most compact and separated class visually as well as quantitatively through the CH index

Table 1 Average CH Indices and their associated standard deviation for each feature by cultivar and water level for Runs 1 and 2 
across all sizes of spatial bins

Error values are reported with ±1 standard deviation. Bold uppercase letters indicate differences in CH score between levels for either cultivar or water level across all 
three texture features ( p < .05 ). Bold lowercase letters indicate differences in CH score between the three features across all treatment levels for cultivar and water 
level separately ( p < .05)

Feature Cultivar Water Level

S32 A S35 C S38 D S40 B All 60% C 80% A 100% B 120% B All

% Root Pixels 11.07±0.43 0.64±0.08 0.62±0.07 2.79±0.16 3.41±0.08 b 1.08±0.16 3.70±0.27 0.95±0.17 0.65±0.15 1.88±0.08 a
Fractal 11.76±1.57 1.09±0.41 0.38±0.25 3.18±0.80 3.74±0.47 a 0.21±0.21 3.02±0.38 0.86±0.39 1.64±0.61 1.57±0.17 b
Lacunarity 11.37±1.58 1.04±0.35 0.31±0.23 3.30±0.82 3.67±0.47 a 0.22±0.19 3.23±0.47 0.77±0.37 1.74±0.62 1.65±0.21 b
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Local analysis: relationships to treatment level 
representatives
The average scores and standard deviations of the CH 
indices across all number of spatial bins for Runs 1 and 
2 are shown in Table  1 while the scores for Runs 3 and 
4 are shown in Table  2. The small standard deviations 
indicate that our method was robust across the sizes of 
spatial bins (i.e., the scale) used for our analysis. The sta-
tistical analysis of the CH scores showed that % root pix-
els tended to be the feature with the most discriminating 
power as evidenced by the highest CH score out of the 
three features considered, except for both fractal dimen-
sion and lacunarity on cultivar in Runs 1 and 2. For the 
rest of this study, we displayed the EMD results for the 
% root pixels feature, except when presenting results for 
the cultivar differences in Runs 1 and 2 where we will use 
the fractal dimension feature. The number of spatial bins 
that corresponded to the highest CH score is shown in 
Table  3. In Runs 1 and 2, the CH indices for water lev-
els (1.50 overall average) were not as high ( p < .05 ) as for 
cultivars (3.96 overall average), indicating more overall 
variability of RSD without added nutrients between culti-
vars than between moisture levels (Table 1). When look-
ing specifically at each treatment level’s score, both the 
S32 cultivar and the 80% water level had the largest CH 
indices within cultivar and water level treatments respec-
tively, indicating these treatments had the most distinct 
RSD. For Runs 3 and 4 with added nutrients, the trends 
were inverse in that the average CH indices were higher 

across all three features and spatial bins for water level 
(14.70 overall average) than for cultivar (1.62 overall aver-
age). The highest average CH score was observed for the 
120% soil water level, indicating a distinct RSD for this 
treatment compared to the three other soil water treat-
ments (Table 2).

Global analysis: EMD between treatments
To identify global trends in RSD for each treatment, we 
aggregated each centered root image to create a repre-
sentative for each treatment. For each representative 
root image, we computed the feature representation as 
shown in Fig. 1 from the average feature values within 
each spatial bin for images with the same cultivar or 
water level. After we obtained these representatives, 
the EMD was computed between each cultivar or water 
level. By using the EMD approach, we highlighted the 
differences between each treatment level by displaying 
(a) the magnitude and (b) the location of the RSD dis-
similarities, as shown in Figs. 4 through 8.

The EMD calculation captured the variability of the 
RSDs between cultivar and soil water levels within each 
pairs of runs, as illustrated by Fig. 4. The white arrows 
(Figs. 4, 5, 6, 7, 8f, g, h) represent the 20% largest value 
changes between the reference treatment level (Figs. 4–
8a) and the other levels (Figs. 4, 5, 6, 7, 8b–d). The EMD 
scores between the reference treatment level and the 
other levels are shown in Figs.  4, 5, 6, 7, 8e. Smaller 
EMD scores indicated higher similarity between the 
two RSDs.

Differences between cultivars Figure 4 shows the pro-
cessed RSD images for each cultivar and three EMD 
results when these cultivars are compared with S32 
as the reference cultivar. The EMD score (Fig.  4e) was 
smallest between S32 and S35, indicating that the two 
RSDs were most similar. This is confirmed by compar-
ing Fig.  4f, g and h: Fig.  4f comparing S32 to S35 has 
the shortest and fewest arrows. Arrow abundance and 
length is a direct representation of the magnitude of 

Table 2 Average CH Indices and their associated standard deviation for each feature by cultivar and water level for Runs 3 and 4 
across all sizes of spatial bins

Error values are reported with ±1 standard deviation. Bold uppercase letters indicate differences in CH score between levels for either cultivar or water level across all 
three texture features ( p < .05 ). Bold lowercase letters indicate differences in CH score between the three features across all treatment levels for cultivar and water 
level separately ( p < .05)

Feature Cultivar Water Level

S32 B S35 A S38 C S40 A All 60% B 80% B 100% C 120% A All

% Root Pixels 1.46±0.07 2.57±0.16 1.40±0.03 1.98±0.11 1.79±0.06 a 8.62±0.15 9.66±0.20 0.19±0.04 54.72±0.58 15.40±0.09 a
Fractal 1.71±0.42 1.79±0.94 0.76±0.25 1.93±0.35 1.48±0.29 b 6.00±0.67 6.31±1.15 2.40±1.03 38.13±7.58 12.70±1.78 b
Lacunarity 1.61±0.49 1.77±0.8 0.66±0.29 1.80±0.36 1.38±0.31 b 5.72±1.05 5.82±1.37 2.39±1.37 36.40±8.62 12.07±2.24 b

Table 3 Number of spatial bins that scored the maximum CH 
index for each feature, cultivar, water level in each pair of runs

Features Run 1 and 2 Run 3 and 4

Cultivar Water Level Cultivar Water Level

%Root Pixels 100 900 200 2000

Fractal 700 700 900 200

Lacunarity 700 1000 1300 600
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the value changes between the two RSD. Lengthier 
and/or more numerous arrows are therefore indicative 
of more dissimilar RSDs compared with EMD results 
showing fewer and/or smaller arrows. Figure  4 shows 
that the changes in RSDs between S32 and S35 are rela-
tively small, and for the most part are concentrated in 
the deeper section of the root system. Specifically, S35 
seemed to have a more laterally spread out root dis-
tribution towards the deepest portion of the image, 
and a more concentrated root mass along the tap root 
right above that. Out of the three other cultivars, S32 
was most different from S38, and Fig.  4g shows that 
the majority of the 20% highest value changes in RSD 
between these cultivars were recorded toward the mid-
dle region of the image. S38 also appears to spread out 
more laterally in the mid-section of the image com-
pared to S32.

The differences between S32 and S40 were located in 
the upper part of the root system, as shown by the loca-
tion of the top 20% value change between the two RSD 
in Fig.  4h. S32 tended to have a more spread out root 
distribution towards the top of the soil surface com-
pared to S40. According to Table 1, the RSD for S40 was 
different from all three other cultivars’ RSD. The EMD 

score (Fig. 5) yet showed that the S40 RSD was further 
from the S32 RSD than the S35 and S38 RSD (Fig. 5e).

All cultivars appeared to expand laterally with the addi-
tion of nutrients as shown in Fig. 6. S40 and S35 were the 
cultivars with the most distinct RSD as indicated by the 
highest CH score in Table 2. Figure 6 shows specifically 
that for S40, the differences between this RSD and the 
three others remained mostly marginal: the EMD score 
remained low (< 3.5, Fig.  6e) and the 20% largest value 
changes between the S40 RSD and the others only repre-
sented a few number of changes (Fig. 6f–h). Interestingly, 
the RSD for S40 was most dissimilar to the RSD for S32 
both with or without added nutrients.

Differences between moisture levels For Runs 1 and 
2, when considering soil water levels, the RSD were 
overall very similar as shown in Table 1. The RSD that 
was most distinct from the others was that of the 80% 
moisture treatment (Fig.  7). The 80% moisture treat-
ment was overall most different from 100%, and was 
the most similar to 120% and the 60% treatment RSD 
(Fig.  7e). Specifically, the 80% treatment had a visibly 
denser central region than the three other moisture 
levels (Fig.  7a through Fig.  7d). This is reflected more 
clearly in Fig. 7f through h: the 80% treatment showed a 

Fig. 4 RSD, EMD score, and value changes between S32 (a) and S35, S38 and S40 (b–d respectively) for Run 1 and 2. The color scale for a–d 
represents the fractal dimension value of each spatial bin. e shows the overall EMD score. f–h Represent the 20% largest value changes between 
S32 and the three other cultivars; red spatial bins are unique to S32, green spatial bins are unique to S35, S38 or S40, and yellow spatial bins are 
common to both cultivars
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more concentrated root distribution closer to the top of 
the root system compared to the other treatments, and 
so the arrows tend to point toward the upper center of 
the root system.

The RSD for the 120% moisture level appeared 
extremely different from the other moisture levels 
(Table  2, Figure  8). The roots did not grow very deep 
inside the rhizoboxes, but tended to spread out laterally 
to a greater extent than in the other soil water condi-
tions. Our STARSEED approach captured this distinct 
difference between the root images, as most changes 
between the RSDs are shown through the arrows point-
ing down from the lateral roots of the 120% moisture 
level representative RSD. The root system for 120% also 
tended to be denser, as evidenced by the amount of 
high color value bins that indicate a higher percentage 
of root pixels in Fig. 8a.

Discussion
Avoidance vs tolerance in waterlogged soil conditions
One interesting observation is that the three features 
that were considered (% root pixels, fractal dimension 
and lacunarity) had very similar discriminating power 
between cultivars and between moisture levels (Tables 1 
and 2). Both fractal dimension and lacunarity have been 

used successfully in RSD and root architecture analysis 
[18, 31]. However, the main differences between these 
previous studies and the current one is that in this work 
these features were not calculated across the entire image 
but for each spatial bin. By using these texture features to 
describe the individual regions of an image, we improved 
the RSD characterization and comparisons for each 
treatment. While we calculated the fractal dimension and 
lacunarity values for the whole images, we observed lim-
ited differences among treatments for the CH index (e.g., 
S32 = 0.06 and S38 = 0.03 for Runs 3 and 4 with fractal 
dimension). The Kruskal-Wallis/Dunnett’s test with Bon-
ferroni’s adjustment showed that % root pixels appeared 
to be a better feature than fractal dimension and lacu-
narity, as % root pixels led to the highest CH score for 
images from Runs 3 and 4 across treatments. For Runs 1 
and 2, fractal dimension was the highest ranked feature 
for cultivar, while % root pixels was better for water lev-
els. Therefore, for future similar work, % root pixels, an 
easily calculated parameter, may be preferential to frac-
tal dimension and lacunarity for distinguishing between 
sesame RSDs.

When looking at these results more specifically, we 
saw that without fertilizer, cultivar appears to be the 
dominant driver of RSD, and that soil water only plays 

Fig. 5 RSD, EMD score and largest value changes between S40 (a) and S32, S35 and S38 (b–d respectively) for Run 1 and 2. The color scale for 
Figure 5b–d represents the fractal dimension value of each spatial bin. e shows the EMD score overall. f–h represent the top 20% value changes 
between S40 and the three other cultivars; red spatial bins are unique to S40, green spatial bins are unique to S32, S35 or S38, and yellow spatial 
bins are common to both cultivars
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a minimal role (Tables 1 and 2). This can be seen in the 
highest CH index score on average across all cultivars 
compared with the averages for water level (Table  1). 
S32 was the cultivar with the most distinct RSD, and in 
Fig. 4, we could hypothesize what made this RSD differ-
ent from the others. Specifically, the arrows representing 
the 20% highest value changes show that the main differ-
ences between the S32 and S35 RSDs were located mostly 
in the lower (deeper) section of the root system (Fig. 4f ), 
and that on the contrary the main differences between 
the S32 and S40 RSDs were situated in the top (shal-
lower) section of their root systems.

The situation is reversed when fertilizer is added, 
and soil water level becomes the factor with the biggest 
impact on RSD, as evidenced by the much higher CH 
index value for the soil water level treatment. This high 
score is actually driven by a single treatment, 120% soil 
water level, which had a very different RSD compared 
to the other soil water treatment (Fig.  8). The roots 
appeared to not grow as deep and had an increased lat-
eral growth compared to the RSD for the three other 
water levels. This can be seen through the location of 
the white arrows, all pointing at changes between the 
RSD at 120% and the three other RSDs. This very distinct 

RSD in flooded conditions when fertility is adequate in 
Runs 3 and 4 contrasts strongly with that of Run 1 and 
2. Sesame is known to be highly sensitive to waterlogged 
soil [32], though this sensitivity does not always trans-
late into early total root length differences [26]. Instead, 
we saw here that the plant seemed to activate a variety 
of morpho-anatomical responses to cope with flooding 
stress, echoing the literature [33]. Here, we can highlight 
two different morpho-anatomical strategies employed by 
the crop depending on the soil fertility status. Without 
adequate nutrient availability, the crop seemed to opt for 
a tolerance strategy to flooding, developing roots into the 
bottom part of the rhizobox where the soil was saturated 
with water (Fig. 7). We can assume that this apparent tol-
erance strategy is accompanied by other changes not cap-
tured in this study such as the formation of aerenchyma 
and changes in the enzymatic activities [33]. However, 
when there are enough nutrients in the soil, the plants 
seemed to adopt an avoidance strategy, and did not grow 
roots down into the waterlogged soil, but tended to pro-
liferate laterally (Fig. 8). We note that these observations 
are constant across the cultivars; as a result, fertility may 
condition the response of early sesame RSDs to flooding 
stress.

Fig. 6 RSD, EMD score and largest value changes between S40 (a) and S32, S35 and S38 (b–d respectively) for Run 3 and 4. The color scale for b–d 
represents the percentage of root pixels in each spatial bin. e shows the EMD score overall. f–h represent the top 20% value changes between S40 
and the three other cultivars; red spatial bins are unique to S40, green spatial bins are unique to S32, S35 or S38, and yellow spatial bins are common 
to both cultivars
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Validity of the EMD method
Although of interest in estimating early root vigor and 
biomass, only considering TRL provides limited insight 
about RSD as TRL does not consider the spatial arrange-
ments of the roots [26]. Increasing our knowledge and 
understanding of root development in response to envi-
ronmental stresses is of capital importance for global 
agricultural production, and has been defined as the pil-
lar of the Second Green Revolution [1]. Many methods 
are now available to observe RSD and root architecture, 
yet some of the more advanced techniques such as CT 
imaging remain expensive and impractical, underlining 
the need for improved trans-disciplinary phenotyping 
approaches that can capture and quantify the complexity 
of RSD and root system architecture [34–36].

Our proposed STARSEED provides a visual, explicit, 
and quantitative characterization of RSD, allowing for 
spatially precise comparisons between RSD. A valuable 
aspect of the analysis is the introduction of the EMD 
class score, which summarizes all the differences between 
two RSDs down to a single number. The EMD method, 
combined with the CH index, can be used to very quickly 
know which treatment led to the most distinct RSD, and 

the degree to which these RSDs relate to one another 
globally. The STARSEED method could also be used in 
combination with other RSD and root system architec-
ture measurements such as branching, angle, hierarchy, 
and fine-root distribution to achieve a comprehensive 
mechanistic understanding of root system.

The actual spatial EMD result (i.e., Figs.  4 through 8) 
can then used to further elucidate specific differences 
between RSDs. To the best of the authors’ knowledge, 
this is the first time EMD has been used to character-
ize RSD. The method has been thoroughly validated and 
used in varied fields of science, including fluid mechanics 
[37], linguistics [38], or, more related to the present study, 
image classification and comparison [39]. The CH index 
used in STARSEED serves as an evaluation step for the 
method to not only quantify what we observe, but also 
to ensure the approach captures distinct features to effec-
tively group RSD based on shared spatial characteristics, 
which can then be linked to the treatment structure of 
the experiment.

One of the most critical strengths of STARSEED is 
that the proposed method allows for the generation 
of an “average” RSD visual representation called the 

Fig. 7 RSD, EMD score and largest value changes between 80% (a) and 60%, 100% and 120% (b–d respectively) for Run 1 and 2. The color scale for 
Figure 7b-d represents the percentage of root pixels in each spatial bin. e Shows the EMD score overall. f–h represent the top 20% value changes 
between 80% and the three other soil water levels; red spatial bins are unique to 80%, green spatial bins are unique to 60%, 100% or 120%, and 
yellow spatial bins are common to both water levels
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representative RSD image for that treatment, as shown in 
Figs. 4 through 8a through d. By partitioning this newly 
generated image into local bins and calculating a feature 
value for each of these spatial bins, we can generate a vis-
ually explicit average RSD that can be compared to other 
representatives RSD to study differences between geno-
types or environmental conditions (or any other treat-
ment given a different experiment). Recent studies have 
attempted to either develop new techniques to directly 
measure RSD and/or root system architecture [3], find a 
way to accurately represent average root systems corre-
sponding to specific growing conditions [40], and many 
more studies have developed or refined root develop-
ment models [41–44]. One study in particular created 
similar 2D heat maps of “root frequency” observed on 
the four transparent surfaces of rhizoboxes but did not 
perform a spatially explicit analysis to the level of STAR-
SEED [45]. Furthermore, the STARSEED approach is able 
to characterize and compare 2D RSD images of root sys-
tems at various scales. RSD is typically measured through 
soil coring at various depths, using a grid on a profile 
wall, or with mini-rhizotron systems [46–48]. These 

techniques lack an efficient way to integrate local data 
at the whole root system’s scale across all depths. STAR-
SEED provides a way to get information about the entire 
RSD (with the outputs presented in Figs. 4 through 8 a, b, 
c and d) and at the same time highlight the largest RSD 
differences between two RSD signatures (Figs. 4 through 
8f–h). This feature is quite unique and could be of great 
value to breeding programs where RSD need to be com-
pared. Some of the shortcomings of STARSEED include 
the need to hand-label root images with WinRhizoTron. 
This is an extremely time consuming task that represents 
a serious limit to the rapidity and ease with which our 
approach can be used. However, recent work in machine 
learning is paving the way for fully automated and robust 
root tracing algorithms [49], which would dramatically 
increase the applicability of STARSEED. In addition, 
STARSEED remains an indirect measure of similarity 
between root systems as the proposed method is based 
solely on image analysis. STARSEED only indicates rela-
tive similarity or differences between two root systems 
captured with the same imaging system.

Fig. 8 RSD, EMD score and largest value changes between 120% (a) and 60%, 80% and 100% (b–d respectively) for Run 3 and 4. The color scale for 
Fig. 8b-d represents the percentage of root pixels in each spatial bin. e shows the EMD score overall. f–h represent the the top 20% value changes 
between 120% and the three other soil water levels; red spatial bins are unique to 120%, green spatial bins are unique to 60%, 80% or 100%, and 
yellow spatial bins are common to both water levels
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Going beyond the 2D images of rhizoboxes
Given the rhizobox set up of this study and the use of flatbed 
scanners for root images acquisition, the observations are 
confined to 2D when root systems always exist in 3D spaces. 
Imaging and characterizing a whole root system in 3D in situ 
or even in vitro is usually low throughput and expensive, if 
not nearly impossible. Most scientists thus resort to using 
models in lieu of direct observations, as previously men-
tioned. One of the main difficulty of using these 3D root 
development models is correct parameterization, which is 
crucial to the accuracy and validity of a model’s prediction 
[50]. Recent work has shown that 2D measurements of root 
systems could be used to adequately inform the parameters 
for 3D models in wheat [51]. It is thus a reasonable hypothe-
sis to say that the current STARSEED approach could be fur-
ther refined and subsequently used to generate and interpret 
such 3D models. There is potential to go even further and 
directly use STARSEED, and more broadly EMD, on 3D data 
[52], although acquiring such data still remains challenging.

Combining the average EMD visual maps with new RSD 
and root system architecture characterization techniques 
[53] have the potential to boost our understanding of root 
system plasticity. These tools would allow for both global 
(i.e., EMD scores) and local (i.e., magnitude and direction 
of changes) comparisons between genotypes and environ-
mental conditions. We can also quantify the distribution 
of arrows as this information is captured from the flow 
matrix. We could record the distribution of the magni-
tude and direction of the arrows (similar to histogram-
based features such as histogram of oriented gradients [54] 
or edge histogram descriptors [55]) for further analysis. 
Another interesting direction would be to develop a way to 
connect the observations made with STARSEED to more 
mechanistic measurements.

Conclusion
In this paper, we presented STARSEED, an approach 
to compare root system distributions from 2D images. 
Qualitative and quantitative analysis demonstrate the 
effectiveness of the proposed method. STARSEED suc-
cessfully incorporated spatial and texture information 
to describe root architectures in both global and local 
contexts. The method is explainable and provides clear 
connections to biological aspects of each root image. 
STARSEED also allows for aggregating individual archi-
tectures to assess and average responses for each envi-
ronmental condition and genotype. Future work includes 
clustering based on root architecture (i.e., using the pair-
wise EMD matrix for relational clustering), comparative 
study of different measures (e.g., convex hull) for feature 
extraction, applying our general framework over time to 
characterize how RSA develops in various conditions, 
along with scaling up to 3D comparisons.
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