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Abstract

Unsupervised domain adaptation aims to generalize the knowledge learned

on a labeled source domain across an unlabeled target domain. Most of existing

unsupervised approaches are feature-based methods that seek to find domain

invariant features. Despite their wide applications, these approaches proved to

have some limitations especially in regression tasks. In this paper, we study the

problem of unsupervised domain adaptation for regression tasks. We highlight

the obstacles faced in regression compared to a classification task in terms of

sensitivity to the scattering of data in feature space. We take this issue and

propose a new unsupervised domain adaptation approach based on dictionary

learning. We seek to learn a dictionary on source data and follow an optimal

direction trajectory to minimize the residue of the reconstruction of the target

data with the same dictionary. For stable training of a neural network, we pro-

vide a robust implementation of a projected gradient descent dictionary learning

framework, which allows to have a backpropagation friendly end-to-end method.

Experimental results show that the proposed method outperforms significantly

most of state-of-the-art methods on several well-known benchmark datasets,

especially when transferring knowledge from synthetic to real domains.
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1. Introduction

Deep learning has achieved remarkable success in knowledge engineering,

such as classification, regression and clustering. However, there still exist sev-

eral problems that users encounter during implementation. First, deep learning

models behavior depends on large-scale labeled datasets, which can be expen-5

sive and time consuming in real-world applications. Another main issue, as

imposed by the assumptions underlying the learning theory, both training and

test samples should be drawn from the same features space and from the same

distribution. A solution to these two problems relies on using labeled data from

a relevant domain (referred to as source domain) to learn statistical models10

that work well on the new domain (usually referred to as target domain), by

undertaking an adaptation that minimizes the shift and bias between these two

domains. This framework in machine learning is called Domain Adaptation.

Domain adaptation problems can be divided into two main groups based on

the learning settings. When dealing with labeled target data in the learning15

process, we refer to the problem as supervised domain adaptation, while in the

other case it is considered unsupervised. Here, we are interested in the latter,

which is more di�cult, due the lack of any label from the target domain in the

alignment process of the two domains. In the same manner, unsupervised do-

main adaptation methods can be classified into four main classes [42]. The first20

gathers the self-labeling approaches that are based on guessing labels for target

domains and then adjusting them during training [18]. For example, the au-

thors of [5] introduced a pseudo-labeling curriculum inside a domain adaptation

framework for semantic segmentation. After the first epoch, the pseudo-labels

are generated for the target using a dynamic thresholding strategy with a linear25

decay; Then, starting from the second epoch, these labels are used to train the

model. The second class groups cluster-based approaches that give the same

label to instances belonging to the same dense regions such as in [41] and [1]. In

[38], a discriminative clustering is used to classify the features extracted from
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target data. The clustering objectives are based on entropy minimization for30

cluster separation, a soft-Fisher criterion for inter-cluster isolation and intra-

cluster purity. In addition to the clustering objectives, the network is trained

with a supervised learning objective using source labels. In the third class,

the approaches are based on instance weighting, where matched instances be-

tween two domains are being re-weighted [22]. The last class consists of the35

feature representation learning approaches that seek to find a common space

with invariant components between the two domains [34], [9] and [21]. In recent

years, the machine learning community has been focusing on the last class of

approaches that proved to be e↵ective in the unsupervised problem. Existing

approaches such as [35] make use of Maximum Mean Discrepancy to minimize40

the distance between source and target distributions. Other approaches, like

[37], aim to align the second-order statistics of these distributions via a linear

transformation. Adversarial training can also be used such as in [46], [13] and

[31] with a domain discriminative feature module. In [19], the authors propose

a network composed of three parts: a feature extractor, a domain classifier; and45

a domain discriminator. The network is trained through a minimax objective

function that maximizes the adversarial loss and minimizes the classification

loss. To align the two domains, the authors introduce a manifold alignment

loss based on Grassmann distance between the orthogonal bases extracted via

singular value decomposition.50

The feature-based methods achieved good performance on classification tasks

while having major limitations on regression tasks. To highlight this di↵erence,

we illustrate a domain adaptation problem for classification in Figure 1, and for

regression in Figure 2. Figure 1 shows a scatter plot for two sets of data in a

two-dimensional space, before (left figure) and after domain adaptation (right55

figure). Prior to any adaptation, the decision boundary learned on labeled source

data cannot perfectly separate target data. Distribution matching techniques

aim to transform both source and target data to a new feature space where each

class of the target samples lies on the right side of the decision boundary. This

means that the accuracy of the matching techniques is robust to the scattering60
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of the samples in the new feature space (U1, U2) unless they are in the correct

classification zone. And here lies the di↵erence with a regression task. Figure 2

shows an example of the domain adaptation process for regression. In the input

space (X1, X2), a relation between the distribution of the source data and their

labels (i.e., regression values) can be seen with color and level sets. However, this65

information is missing on the target samples. Therefore, to apply an accurate

distribution matching, the source and target data are transformed into a new

feature space where the two distributions match with the level sets applying

to the unlabeled target data. This means that performance of the matching

techniques is highly sensitive to the scattering of the samples in the feature space70

(U1, U2). Moreover, as illustrated with level sets, one can see the regression task

as a continuum of boundaries, compared to a single boundary for a classification

task.

These problems with domain adaptation for regression were also highlighted

in [7]. The authors conducted an experiment where they show the robustness75

of a classification task with respect to the Frobenius norm of the input while,

for a regression task, the error changes as a function of the norm. For that,

the authors proposed a state-of-the-art method based on a deep neural network

for the adaptation process. From the feature matrices extracted via a deep fea-

ture extractor (ResNet-18), the method aims to align the orthogonal bases of80

the matrices using a geometrical distance based on Grassmann manifold and

principal angles calculated via a singular value decomposition (SVD). Although

the e↵ectiveness of this approach, there exist some setbacks. First, the SVD

imposes an orthogonality constraint on the bases vectors. This additional con-

straint can cause a loss in information and interpretability of the data, which85

will later a↵ect the alignment of the data. Besides, integrating an SVD module

inside a neural network provides instability to the training [47]. This comes

from the fact that power iteration’s gradients of SVD depend on the singular

values of the input data. In case of zero singular values or values close to each

other, the gradients will explode.90

The initial feature matrices extracted from each domain via a Siamese fea-
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Figure 1: Domain Adaptation in Classification.
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Figure 2: Domain Adaptation in Regression.

ture extractor allow to hold information related to the task at hand as well as

the domain it belongs to. To obtain proper adaptation across di↵erent domains,

the goal is to reduce the domain-specific features presented in these feature ma-

trices while holding the task-specific ones. This can be achieved by extracting a95

shared domain-invariant subspace from both domains and using the projected

features as an input for a regression module. Dictionary learning has proved its

ability in extracting representative subspace of the input data, such as in hy-

perspectral unmixing problems where high dimensional data can be represented

by a much lower dimension dictionary as well as a sparse coe�cient matrix100

[10]. Moreover, several coupled dictionary learning approaches were introduced
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to fuse two di↵erent domains together, such as in [17] where multispectral and

hyperspectral images are fused together to perform collaborative clustering.

In this paper, we propose a novel domain adaptation technique based on

dictionary learning for the alignment of the feature matrices. Starting from a105

constraintless dictionary learned on the source domain, we follow an optimal

direction path that minimizes the reconstruction residue of target data with

the same dictionary [11]. The contributions presented in this paper can be

summarized as following:

1. We propose to extract the bases of the feature matrices of both domains110

using a dictionary learning approach. This o↵ers a relaxation step to the

process, where we seek to represent the features in the most complete way

without any kind of information loss.

2. We integrate a projected gradient descent dictionary learning module in-

side a neural network. It is an iterative projection method for solving the115

sparse decomposition problem. It consists of first order gradient updates

for dictionaries and a Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA) [4]. This process is backpropagation friendly with a stable be-

havior during training as it is compatible with PyTorch autograd1, which

provides the automatic gradient calculations that empowers neural net-120

work training. To our best knowledge, this the first time where this kind

of module is integrated within a deep neural network.

3. We present a new domain alignment approach that seeks to unify the

dictionaries between source and target feature matrices. We make use of

optimal direction’s updates [11] for dictionaries to follow a smooth tra-125

jectory that goes from a source dictionary to the target ones. For stable

gradients, we make use of the Moore-Penrose pseudoinverse [3] to solve

the ridge regression problem.

The rest of the paper is organized as follows. Section 2 highlights some of the

1
https://pytorch.org/docs/stable/autograd.html
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related work on unsupervised domain adaptation. In Section 3, we present the130

core ideas behind our proposed method. After that, the experimental studies

with the obtained results are presented in Section 4. The contributions are

summarized in Section 5, as well as future work.

2. Related Work

To address unsupervised domain adaptation, several works have been in-135

troduced [2, 23, 26, 29]. Most of the existing methods seek for finding do-

main invariant features for the source and target domains. These feature-based

methods were integrated in both shallow and deep regimes. In [28], the shallow-

regime Transfer Component Analysis (TCA) method is proposed to learn the

transfer components across target and source domains in a Reproducing Ker-140

nel Hilbert Space (RKHS) and using the Maximum Mean Discrepancy (MMD);

After obtaining a new subspace shared between di↵erent domains, a new clas-

sifier or regressor is trained using labeled source samples in order to use in

the target domain. For deep-regime approaches, [6] introduces a marginalized

denoising autoencoder to learn new domain invariant representations. For the145

Deep Adaptation Network (DAN) introduced in [25], hidden representations

of all task-specific layers are embedded in an RKHS, where the mean embed-

dings of di↵erent domain distributions can be explicitly matched; The domain

discrepancy is further reduced using an optimal multi-kernel selection method

for mean embedding matching. In the same spirit, the Domain Adversarial150

Neural Network (DANN) [14] uses an adversarial loss to learn hidden features

that are discriminative for the regression or classification task on the source do-

main, while indiscriminate with respect to the shift between the domains. More

recently, the Maximum Classifier Discrepancy (MCD) [33] generates target fea-

tures near the task-specific decision boundary to minimize domain discrepancy155

while maximizing the discrepancy between two classifier’s output. A parameter-

free adaptive feature norm approach is presented in [44] with the Adaptive Fea-

ture Norm (AFN) method, which progressively adapts the feature norms of the
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Figure 3: Methodology of the proposed method.

two domains into a larger one, thus having more transfer gains. However, the

application of these methods is limited to the classification problem.160

As defined in the previous section, the focus of this paper is on the regression

problem. Most of the existing methods in this field are based on importance

weighting such as [15, 45]. Such methods rely on at least few labeled tar-

get data, which makes them not applicable to the unsupervised problem. For

feature-based methods, [27] searches for a low-dimensional subspace such that165

the projections of the source domain samples are informative with respect to

the output variable and the projected domain input samples have a small co-

variance di↵erence. The Joint Distribution Optimal Transport (JDOT) method

[8] performs the mapping of a prediction function in a source domain into the

target ones in a shallow regime, taking as an assumption that there exists a170

nonlinear transformation between the joint feature/label space distributions of

both domains. For deep feature methods, the Representation Subspace Dis-

tance (RSD) method [7] uses a singular value decomposition (SVD) to extract

orthogonal bases of the representation spaces. A geometrical distance over rep-

resentation subspaces is defined within the Riemannian geometry of Grassmann175

manifold, and deep transferable representations are obtained by minimizing it.

In [43], an Adversarial Bi-Regressor Network (ABRNet) is introduced to pro-

duce domain-invariant representations. Using a dual-regressor design, the model
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detects target samples outside source distribution and serves as a discriminator

to generate domain-invariant features. Moreover, to overcome the distribution180

shift across source and target domains, ABRNet seeks to eliminate the origi-

nal cross-domain discrepancy by constructing source-similar and target-similar

domains and align them with the discriminator.

3. Proposed Method

In this section, we describe the proposed methodology for domain adaptation185

via subspace mapping using dictionary learning, and derive the corresponding

optimization algorithm. For better understanding, the optimization process is

illustrated in Figure 3. We first present the underlying idea before describing

in detail each part of the model.

Within the unsupervised scenario under study, we have labeled source input190

data and unlabeled target ones. Starting with these source and target data, we

seek to find more representative features for each domain via a deep network

denoted as �w. Now the purpose is to align these features so that a regression

module trained on the source data shall perform well on the target data. For

this purpose, we propose to close the domain through aligning the bases of each195

domain feature’s matrix extracted via a dictionary learning block.

We start the process by extracting the dictionary DS of the source features

and then reconstruct the target features with the same dictionary. The aim is

to unify the dictionaries for both feature sets; In other words, we aim to push

DS towards DT . Thus, after obtaining the reconstruction of target data, we200

follow the method of optimal directions [11] that seeks to obtain adjustment

vectors for each atom of the dictionary �DS , and pushes the source dictionary

toward the target one.

As the training is done in batches, we update the network parameters in

a way that the calculated adjustment vectors become close to zero, which is205

equivalent to minimizing their Frobenius norm k�DSk
2

F . The advantage of

such a subspace gap approach is the ability to work on all types of dictionaries
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Figure 4: Architecture of the proposed deep model. The blue block applies Algorithm 1. The

red block applies Algorithm 2. The overall process is given in Algorithm 3.

compared to existing approaches that are based on principal angles and work

only with orthonormal bases. Besides, we are seeking to adapt a regression task

on both domains; thus, we shall also add a regression loss while training, by210

taking advantage of the availability of source labels to train the network with a

mean squared error loss.

Figure 4 shows the architecture of the proposed model for domain adaptation

for regression. In the following, we present in detail each part of the deep neural

model.215

3.1. Feature Extraction

Let Rk denote the input space. The model takes as an input a batch of

NS samples from the source dataset and NT samples from the target datasets,

denoted respectively

8
<

:
XS = [x1

S , x
2

S , . . . , x
NS
S ]> 2 RNS⇥k

XT = [x1

T , x
2

T , . . . , x
NT
T ]> 2 RNT ⇥k

(1)

Let yiS denote the label of the i-th sample xi
S of the source batch with YS =220

[y1S , y
2

S , . . . , y
NS
S ]>.

The first part of the neural network consists of a feature extractor �w, with

w being the parameters of the feature extractor that maps the input from the
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input space Rk to a feature space Rb. The features extracted from the source

batch XS and target batch XT are denoted respectively225

8
<

:
FS = �w(XS) 2 RNS⇥b

FT = �w(XT ) 2 RNT ⇥b
(2)

Let f i
S and f i

T be the two features obtained from samples xi
S and xi

T , respec-

tively.

Any feature extractor can be used in our model. We restrict ourselves to deep

neural networks that are backpropagation friendly. Without loss of generality,

ResNet-18 is used for this purpose since it has been largely investigated in the230

literature of domain adaptation; see Section 4 for more details.

3.2. Generation of Domain Dictionaries

In this section, we seek to learn a domain dictionary on the source features

FS . Dictionary learning aims to extract a sparse representation of the input by

re-describing it as a linear combination of a few essential elements that form235

a dictionary. These atoms are considered more flexible than an orthogonal

basis because they provide richer data representations. Moreover, the proposed

dictionary learning algorithm (described in the following) is based on a gradient

descent which provides a stable gradient calculations that allows to overcome

the issue of instability that other approaches su↵er inside a neural network, such240

as singular value decomposition.

The (sparse) dictionary learning problem seeks to find a dictionary DS of m

atoms, namely DS = [d1, ..., dm]> 2 Rm⇥b, and a representation (called sparse

codes) RS = [r1, ..., rNS ]
>

2 RNS⇥m, according to the following optimization

problem:245

8
><

>:

(DS ,RS) = argmin
D2C,R2RNS⇥m

kFS �RDk
2

F + � kRk
1

where C =
�
D 2 Rm⇥b : kdik2  1, 8i = 1, . . . ,m

 
(3)

for some positive hyperparameter � that controls the sparsity level and where

C is a constraint that forces the columns of D to have a constrained `2-norm so
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that we do not have arbitrary low values of ri. A well-known strategy to solve

this problem is alternating minimization, where the cost function is minimized

over one variable while keeping the second fixed [24].250

To find the optimal sparse codes for a given dictionary D, several techniques

improved to be e�cient, such as orthogonal matching pursuit [40] and LASSO

[39]. While the former is a greedy approach that has setbacks in high dimen-

sional data. However, the LASSO solvers such as FISTA proved to be fast and

e�cient [4]. The FISTA optimization problem is defined as following:255

RS = argmin
R

kFS �RDk
2

F + � kRk1 (4)

Using the iterative shrinkage-thresholding algorithm (ISTA), we obtain the fol-

lowing iterative solution

R
t+1 = O�µ

⇣
R

t
� 2µrR

⇣��FS �R
t
D
��2
F

⌘⌘
(5)

where µ is an appropriate stepsize, r· denotes the gradient operator, and O�µ

is the shrinkage operator defined by

O�µ(R) = max {0, |R|� �µ} sgn (R) (6)

with sgn(·) being the sign function. FISTA uses Nesterov’s Accelerated Gradient260

Descent [30] to solve the descent step in Equation 5.

With a fixed sparse code R, the dictionary is updated. Several update

techniques have been proposed in the literature, the most-known being the

Method of Optimal Directions [11]. This method introduces the update step

as D = R
+
F, where R

+ denotes the Moore-Penrose pseudoinverse of R, and265

then re-normalizes the columns of D to fit the constraints. However, the matrix-

inversion becomes intractable for high dimensional data. To overcome this issue,

we consider a stochastic gradient descent approach, where the update is done

iteratively according to following equation:

D
t+1 = projC

n
D

t
�rD

⇣��FS �RD
t
��2
F

⌘o
(7)

where projC is a projection operator into the constraint set C usually done270

via normalization of dictionaries. In this expression, the gradient operation

12



can be easily computed, yielding R
> (FS �RD

t). The resolution of the

above optimization problem can be done in two steps, the update D
t+1 =

D
t
�R

> (FS �RD
t) followed by a unit-norm normalization of its columns.

The pseudocode of the overall projected gradient descent algorithm for dic-275

tionary learning is presented in Algorithm 1. The advantages of the proposed

method can be seen as following:

• The algorithm is based on the projected gradient descent technique, which

o↵ers stable and bounded gradients. This property is essential because this

algorithm will be added to the training of a neural network, thus gradient280

explosions would cause computational and convergence troubles.

• The use of FISTA method is not a↵ected with the curse of dimensionality.

Algorithm 1 Projected Gradient Descent Dictionary Learning.

Require: FS 2 RNS⇥b, Rank m, Number of iterations T, �

1: Initialize D
0
2 Rm⇥b with random values from N (0, 1)

2: for t = 0 to T do

3: R
t = FISTA (FS ,Dt,�) {Update Rt

via (5)}

4: D
t+1 = D

t
�R

t> (FS �R
t
D

t) {Update Dt
via (7)}

5: for i = 1 to m do

6: D
t+1

i = D
t+1

i /
��Dt+1

i

��
2

{Normalize Dt}

7: end for

8: end for

9: return DS = D
T+1

3.3. Minimizing Subspace Gap Between Source and Target

Subspace Modeling is a common way of tackling the problem of domain

adaptation. Having a shared subspace between both source and target data285

will allow us to close the domain gap. One approach can be done by extracting

two dictionaries, one for each domain, and then deriving a mutual description

between them. This would require two dictionary learning procedures, one for
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the source and one for the target domain, which would be cumbersome. In the

following, we provide a more e�cient strategy, which takes one domain as a290

reference and then, by modifying the other domain, we create a trajectory to

reach this reference.

Having the source dictionary DS obtained via the projected gradient descent

dictionary learning, we first reconstruct the target features FT with DS via a

sparse coding model as following:295

RT = argmin
R

kFT �RDSk
2

F + � kRk1 (8)

where RT = [r1, . . . , rNT ]
>
2 RNT ⇥m denotes the sparse coe�cients matrix of

the target features and � is the sparsity level. The resolution of this optimization

problem is done using the aforementioned FISTA algorithm. The residue of this

reconstruction can be expressed as following:

Jres = FT �RT DS (9)

Now Jres achieves its minimum whenever DS is as close as possible to DT ,300

since DT = argminD kFT �RT Dk
2

F (it is worth noting that the dictionary of

the target data needs not to be computed in our method). According to [11],

the optimal adjustment �DS (a path) that minimizes Jres can be obtained as

follows:

�DS = min
�D

kJres � RT �Dk
2

F (10)

For a smooth adjustment at each step, a penalization can be applied on305

k�DSk
2

F :

�DS = min
�D

kJres � RT �Dk
2

F + ↵ k�Dk
2

F (11)

where ↵ is a trade-o↵ parameter. This can be seen as a ridge regression problem.

Setting the first order derivatives to zero, the solution becomes:

�DS =
�
R

>
T RT + ↵I

��1

R
>
T Jres (12)

where I is the identity matrix.
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Algorithm 2 shows the steps of the domain gap estimation algorithm that310

computes the subspace gap between source and target bases. Algorithm 2 o↵ers

the same kind of stability as that of Algorithm 1 with a controlled smooth

adjustment criterion to the source dictionaries.

Algorithm 2 Domain Gap Estimation Module.

Require: FT 2 RNS⇥b, DS 2 Rm⇥b, �, ↵

1: RT = argminR kFT �RDSk
2

F + � kRk1 {Calculate using (5)}

2: Jres = kFT �RT DSk
2

F

3: �DS =
�
R

>
T RT + ↵I

��1
R

>
T Jres {Adjustments of source dictionary}

4: return �DS

3.4. Domain Adaptation in Deep Neural Networks

The architecture of the proposed method, as illustrated in ??, shows the315

two investigated objective functions that will be backpropagated within the

deep neural network for the domain adaptation for regression: the domain loss

and the regression loss. The overall loss is composed of these two losses, namely

it takes the form

Ltotal = Lregressor + � LDomain (13)

where � controls the trade-o↵ between the two losses. In the following, we320

describe in detail these two losses.

For the regression part, the features FS and FT are used as an input for a

regression network g✓ that gives the label prediction as an output. To train this

network, only the source data are used, since target data are unlabeled. The

regression loss is defined as the mean squared error between true source labels325

and the predicted ones, for each source batch, namely

Lregressor =
1

NS

NSX

i=1

��yiS � g✓
�
f i
S
���2 (14)

where g✓(f i
S) is the predicted label of sample xi

S of the source batch.

Besides, the source features FS are also passed to a dictionary learning mod-

ule in order to learn the corresponding dictionary DS . Then DS is passed into

15



the sparse coding module, as well as the target features FT in order to estimate330

the gap �DS , as given in Algorithm 2. When both domains become more and

more aligned, k�DSk
2

F should converge to zero, meaning no further adjust-

ment for source dictionaries is necessary to match the target data. Therefore,

the domain loss is defined as following:

LDomain = k�DSk
2

F (15)

During backpropagation of LDomain, the parameters of the feature extractor �w335

are updated in order to minimize the gap between both domains. Algorithm 3

shows the recap of the proposed method for domain adaptation using dictionary

learning.

Algorithm 3 Domain Adaptation Using Dictionary Learning.

Require: XS 2 RNS⇥k, XT 2 RNT ⇥k,�, �,↵,�

1: for each epoch do

2: for each batch do

3: FS = �w(XS)

4: FT = �w(XT )

5: DS = Algorithm 1 (FS , m,T, �)

6: �DS = Algorithm 2 (FT , DS , �, ↵)

7: Ltotal = Lregressor + � LDomain {Calculate using (14) and (15)}

8: Backward step {Calculate gradients using PyTorch autograd}

9: Update Neural Network {Update using SGD Optimizer}

10: end for

11: end for

3.5. Model Interpretability

For a regression module to work perfectly on both domains, the input to340

this module should contain the task-specific features only without any domain-

specific ones. The purpose of the proposed method is to eliminate domain-

specific information from FS and FT that are later on passed to the regression

module g✓ to perform task prediction.
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In order to understand the underlying mechanism of the proposed method345

using dictionary learning, we analyze the model when convergence is reached.

As previously stated, the proposed domain loss consists in minimizing k�DSk
2

F .

Therefore, the following properties are achieved at convergence:

• k�DSk
2

F ! 0

• DS ⇡ DT350

• FT ⇡ RT DS

This means that both feature matrices FS and FT share the same basis vectors.

In other words, the process is able to find a domain-invariant subspace common

between both domains and project these feature matrices into it, thus resulting

in the compact representations RS and RT . These representations serve as the355

inputs to a shared module g0✓ for regression, which is composed of the two parts.

The first one is a linear layer with DS as its weights, and the second one is

the regression module g✓. The architecture of the method can be seen as in

Figure 5.

To highlight the significance of the extracted dictionaries, one can make an360

analogy with the unmixing scheme presented in [10]. We can see that in the

case of hyperspectral data as input for our model, R represents the abundances

(output of the encoder part) while D represents the endmembers (decoder part).

Therefore, for domain adaptation in hyperspectral data, it is su�cient to follow

the optimal path presented in this paper to adapt the endmembers from two365

di↵erent domains.

4. Experiments

In this section, we evaluate the performance of the proposed method and

compare it with state-of-the-art techniques. Three benchmark datasets are used

for this purpose: dSprites, MPI3D and Biwi Kinect. Regression performance,370

representation transferability and time complexity are analyzed.
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Figure 5: Interpretation at convergence of the proposed method based on dictionary learning.

Color Noisy Scream

Figure 6: Examples of dSprites Images.

4.1. Datasets

4.1.1. dSprites

dSprites2 is a 2D synthetic dataset used for domain adaptation. It consists

of three domains each with 737,280 images. The three domains are Color (C),375

Noisy (N) and Scream (S). An example is shown in Figure 6 and the labels

of each image are shown in Table 1. For the experiments, following the same

settings as in [7], we predict three regression parameters: scale, Position X

and Position Y. The model will be then evaluated on six transfer tasks: C !

N,C ! S,N ! C,N ! S,S ! C, and S ! N380

2
https://github.com/deepmind/dsprites-dataset
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Table 1: Parameters of dSprites Dataset

Factor Parameters Task

Shape square, ellipse, heart recognition

Scale 2 [0.5, 1] regression

Orientation 2 [0, 2⇡] regression

Position X 2 [0, 1] regression

Position Y 2 [0, 1] regression

Real 

Realistic

Toy

Figure 7: Examples of MPI3D Images.

4.1.2. MPI3D

MPI3D3 is a simulation-to-real dataset with 3D objects. It consists of three

domains: Toy (T), Realistic (RC) and Real (RL), each of 1,036,800 images.

Examples of the images are shown in Figure 7. The labels are reported in

Table 2 with two regression tasks, which are the rotations over the horizontal385

and vertical axis. The model will be then evaluated on six transfer tasks: RL !

RC,RL ! T,RC ! RL,RC ! T,T ! RL, and T ! RC.

3
https://github.com/rr-learning/disentanglement dataset
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Table 2: Parameters of MPI3D Dataset

Factor Parameters Task

Object Color 5 values recognition

Object Shape 6 values recognition

Object Size 2 values recognition

Camera Height 3 values recognition

Background Color 3 values recognition

Horizontal Axis 40 values 2 [0, 1] regression

Vertical Axis 40 values 2 [0, 1] regression

Figure 8: Examples of Biwi kinect Images.

4.1.3. Biwi Kinect

Biwi Kinect4 is a challenging real world dataset used for head pose estima-

tion. It consists of 5874 female images (F) and 9804 male ones (M). Each390

image is labeled with 3 regression factors, pitch 2 [�92.044, 231.352], Yaw

2 [�87.7066, 246.684] and Roll 2 [754.182, 1297.45]. Examples of the Biwi im-

ages can be seen in Figure 8. For domain adaptation, the dataset is divided into

two domains based on gender. Thus, this results in two transfer tasks: F ! M

and M ! F.395

4
https://www.kaggle.com/datasets/kmader/biwi-kinect-head-pose-database
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4.2. Implementation

The model was implemented using PyTorch and trained with Google Colab

P100 GPU. We used a ResNet-18 [20] pretrained on the ImageNet [32] dataset.

We then train our network on the three datasets mentioned above to predict

all regression factors in each dataset. For each dataset, every label is normal-400

ized to [0,1] to eliminate the diversity in scales. For input images, we resize

them to 224 ⇥ 224 and we normalize them to meet the ImageNet images for

the ResNet-18 to work perfectly. Therefore, we subtract the mean and divide

by the standard deviation of each channel of ImageNet images according to

xnormalized = (x � µ)/�, where x is the input image, µ = [0.485, 0.456, 0.406]405

and � = [0.229, 0.224, 0.225] are the mean and the standard deviation of the

images in ImageNet dataset. The regressor g✓ is trained from scratch, so its

learning rate is set to be 10 times greater than that of �w. The model was

trained using mini-batch stochastic gradient descent (SGD) with a learning rate

of 0.1. To keep it fast and e�cient, a small batch size of 36 was selected. We410

compare it to several state-of-the-art techniques for unsupervised domain adap-

tation. All these methods are reported in Table 3. For each method, we run

the process 5 times and then we give the mean and standard deviations of these

trials.

4.3. Hyperparameter Tuning415

The proposed framework consists of three main hyperparameters: the spar-

sity levels � and �, and the smoothing penalization parameter ↵. Now to get

the most out of the proposed method, a proper hyperparameter tuning should

be performed. As we are working in a domain adaptation problem, training

and testing data follow di↵erent distributions while the conditional probabil-420

ity of output given the input P (Y |X) is unchanged. This is referred to as

covariate shift where traditional model selection methods that are based on

cross-validation of training data are not valid anymore.

To address this issue, methods based on the importance weighted cross-

validation (IWCV) can be used [36, 12]. The IWCV gives an unbiased estimate425
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Table 3: Benchmark Methods Used for Comparison.

Method Description

ResNet-18 [20] Baseline Model with no domain adaptation

TCA [28] Transfer Component Analysis

DAN [25] Deep Adaptation Network

DANN [14] Domain Adversarial Neural Network

JDOT [8] Joint Distribution Optimal Transport

MCD [33] Maximum Classifier Discrepancy

AFN [44] Adaptive Feature Norm

RSD [7] Representation Subspace Distance for Domain Adaptation Regression

ABRNet [43] Adversarial Bi-Regressor Network for Domain Adaptive Regression

of the loss under the covariate shift where the weighted loss function is defined

as following: 8
>>><

>>>:

bR (g✓) =
1

NS

NSX

i=1

k⇤(f i
S)
��yiS � g✓

�
f i
S
���2

with k⇤(f i
S) = pT (f

i
S)/pS(f

i
S)

(16)

where k⇤(·) is a weight function applied to training samples to make the em-

pirical loss unbiased w.r.t. testing data, and pS and pT are the probability

distributions of the source and target feature data respectively. Kernel Mean430

Matching [16] was used for estimating these weights. It accounts for the dif-

ference between the two distribution probabilities by re-weighting the training

points such that the mean of the training samples is close to that of test samples.
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(a) ↵ vs � contour plot. (b) � vs � contour plot.

Figure 9: Contour plots showing the weighted loss as a function of the model hyperparameters.

4.4. Results

4.4.1. Hyperparameter Tuning435

The optimal hyperparameters are estimated using the IWCV described

in subsection 4.3. For that, we performed a grid search with discrete val-

ues within the grid intervals ↵ 2 [0, 500, 100, 2000], � 2 [0.1, 0.5, 0.9, 2] and

� 2 [0.1, 0.5, 0.9, 2]. Thus, the total number of trials is 64; However, each trial

was repeated 3 times and the average was recorded. At each trial, we select a440

value from each grid interval and we record the weighted loss. The contour plots

obtained on the dSprites dataset are shown in Figure 9. The results show that

the model exhibits a stable performance for a wide range of moderate values

(not high) of � and � (the sparse coding regularization power). However, we no-

tice that the loss increases as these two terms increase. This can be interpreted445

as high sparse coding regularization can lead to a loss in significant features

of both source and target feature matrices. For the smoothness parameter ↵,

we can see that the model is robust to a wide range of values. In first place,

↵ controls the term k�DSk
2

F in the forward step of the training (where the

dictionaries are being computed) and helps in achieving stable gradients in the450

backward step to minimize the domain loss. Therefore, this robustness around

the values of ↵ means that the model has stable gradients in every trial. The

optimal values that were used are � = 0.9, � = 0.5 and ↵ = 1000.
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4.4.2. dSprites

The MAE results on the dSprites dataset are reported in Table 4. As we can455

see from the table, the proposed method achieved better scores in almost every

task. The improvement in the results can be seen by looking at tasks where the

source domain is N or S. This demonstrates the ability of the proposed model

to transfer knowledge about the shapes in the images across domains without

confusion with the background, such as noise and scream backgrounds that460

did not a↵ect the performance compared to other state-of-the-art techniques.

This is related to the fact that the proposed method seeks to make the features

extracted from a noisy domain and the features from a non-noisy one share

the same dictionaries. These dictionaries are task-related and therefore will

eliminate the ones related to the noisy background. For tasks with source465

domain C, the method still achieves good results but close to the RSD method.

Shallow methods, such as TCA and AFN, achieved the worst average scores,

demonstrating the advantage of using deep neural-network based methods over

traditional ones. This shows the importance of using a feature extractor (in

our case a ResNet-18) to extract high-level representations from the input data.470

Besides, from these results, we can see that the proposed method achieves a

close performance to the RSD method on some of the winning tasks. For that,

we conducted a Kruskal-Wallis H-test to examine the null hypothesis whether

the median of all of the several runs of each method is equal. For task N ! C,

the test showed a p-value of 0.008; Since this value is below 0.05, we reject the475

null hypothesis and therefore consider that the di↵erence between the two sets

of results is significant.

4.4.3. MPI3D

The MAE results on the MPI3D dataset are reported in Table 5. As we

can see from the table, the proposed method achieved better scores in every480

single task. The improvement that our model brings to the results can be seen

by looking at tasks where the source domain is T. The massive improvement

in the MAE scores highlights the power of the proposed model to learn in a
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Table 4: MAE of the three regression tasks on dSprites (best scores are high-

lighted in red).

Method C ! N C ! S N ! C N ! S S ! C S ! N Avg

ResNet-18 [20] 0.94 ± 0.06 0.90 ± 0.08 0.16 ± 0.02 0.65 ± 0.02 0.08 ± 0.01 0.26 ± 0.03 0.498

TCA [28] 0.94 ± 0.03 0.87 ± 0.02 0.19 ± 0.02 0.66 ± 0.05 0.10 ± 0.02 0.23 ± 0.04 0.498

DAN [25] 0.70 ± 0.05 0.77 ± 0.09 0.12 ± 0.03 0.50 ± 0.05 0.06 ± 0.02 0.11 ± 0.04 0.377

DANN [14] 0.47 ± 0.07 0.46 ± 0.07 0.16 ± 0.02 0.65 ± 0.05 0.05 ± 0.00 0.10 ± 0.01 0.315

JDOT [8] 0.86 ± 0.03 0.79 ± 0.02 0.19 ± 0.02 0.64 ± 0.05 0.10 ± 0.02 0.23 ± 0.04 0.468

MCD [33] 0.81 ± 0.09 0.81 ± 0.12 0.17 ± 0.12 0.65 ± 0.03 0.07 ± 0.02 0.19 ± 0.04 0.450

AFN [44] 1.00 ± 0.04 0.96 ± 0.05 0.16 ± 0.03 0.62 ± 0.04 0.08 ± 0.01 0.32 ± 0.06 0.523

RSD [7] 0.31 ± 0.03 0.31 ± 0.03 0.12 ± 0.02 0.53 ± 0.01 0.07 ± 0.00 0.08 ± 0.01 0.237

ABRNet [43] 0.20 ± 0.02 0.27 ± 0.01 0.14 ± 0.01 0.56 ± 0.03 0.05 ± 0.01 0.08 ± 0.02 0.217

Proposed Method 0.30 ± 0.03 0.39 ± 0.03 0.11 ± 0.02 0.44 ± 0.02 0.04 ± 0.00 0.05 ± 0.00 0.221

Table 5: MAE of 2 regression tasks on MPI3D (best scores are highlighted in

red).

Method RL ! RC RL ! T RC ! RL RC ! T T ! RL T ! RC Avg

ResNet-18 [20] 0.17 ± 0.02 0.44 ± 0.04 0.19 ± 0.02 0.45 ± 0.03 0.51 ± 0.01 0.50 ± 0.03 0.377

TCA [28] 0.17 ± 0.02 0.42 ± 0.01 0.19 ± 0.02 0.42 ± 0.02 0.50 ± 0.02 0.50 ± 0.02 0.373

DAN [25] 0.12 ± 0.03 0.35 ± 0.02 0.12 ± 0.02 0.27 ± 0.02 0.40 ± 0.02 0.41 ± 0.04 0.278

DANN [14] 0.09 ± 0.01 0.24 ± 0.04 0.11 ± 0.03 0.41 ± 0.03 0.48 ± 0.02 0.37 ± 0.04 0.283

JDOT [8] 0.16 ± 0.02 0.41 ± 0.01 0.16 ± 0.02 0.41 ± 0.02 0.47 ± 0.02 0.47 ± 0.02 0.353

MCD [33] 0.13 ± 0.02 0.40 ± 0.04 0.15 ± 0.02 0.45 ± 0.01 0.52 ± 0.02 0.50 ± 0.03 0.358

AFN [44] 0.18 ± 0.03 0.45 ± 0.02 0.20 ± 0.03 0.46 ± 0.03 0.53 ± 0.02 0.52 ± 0.04 0.390

RSD [7] 0.09 ± 0.01 0.19 ± 0.02 0.08 ± 0.00 0.15 ± 0.03 0.36 ± 0.01 0.36 ± 0.02 0.205

Proposed Method 0.09 ± 0.01 0.18 ± 0.02 0.08 ± 0.00 0.13 ± 0.02 0.36 ± 0.01 0.26 ± 0.02 0.185

synthetic (i.e., toyish) environment and then generalize this knowledge to real

domains, as opposed to most of the compared state-of-the-art techniques that485

failed to do so. As said before, the task-related dictionaries make the process

robust to the type of environment whether real or toyish. Once again, shallow

methods such as JDOT obtained the worst MAE scores. For tasks RL ! T

and RC ! T, the Kruskal-Wallis H-test showed a p-value of 0.01 and 0.008,

respectively; Since these p-values are below 0.05, we therefore consider that490

there is a significant di↵erence between the results.
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Table 6: MAE across three regression tasks on Biwi Kinect (best scores are highlighted in

red).

Method F ! M M ! F Avg

ResNet-18 [20] 0.38± 0.02 0.29± 0.01 0.335

TCA [28] 0.39± 0.01 0.31± 0.01 0.35

DAN [25] 0.37± 0.01 0.28± 0.01 0.325

DANN [14] 0.37± 0.02 0.30± 0.01 0.335

JDOT [8] 0.39± 0.01 0.29± 0.02 0.34

MCD [33] 0.37± 0.02 0.31± 0.02 0.34

AFN [44] 0.41± 0.02 0.32± 0.02 0.365

RSD [7] 0.30± 0.02 0.26± 0.01 0.28

Proposed Method 0.29± 0.012 0.27± 0.01 0.28

4.4.4. Biwi Kinect

The MAE results on the Biwi Kinect dataset are reported in Table 6. As we

can see from the table, the proposed method achieved the best average MAE

score as well as the RSD method. These results show the ability of the model to495

perform adaptation in real-life images that often su↵er from a lot of confusion

between the object and its background.

4.4.5. Time Complexity

The proposed domain adaptation algorithm contains a dictionary learning

module that relies on an iterative strategy, and a sparse coding module. In the500

following, we provide a numerical analysis for the dSprites dataset, the other

datasets having similar results. For a small batch size (e.g. 36), both modules

achieve convergence in less than 50 iterations. Training the regression module

only takes about 0.203 second for one batch. Adding the domain adaptation

process increases the training time to 0.56 second, which remains acceptable505

compared to the gained training stability.

4.4.6. Representation Transferability

To evaluate the performance of the model in transferring the representation

across domains, we start by comparing the evolution of the distance between

subspaces before and after the adaptation. To measure this distance, a common510
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(a) A-distance (b) LDomain

Figure 10: Model performance on T ! RL and T ! RC

metric is the A-distance defined as following:

A-distance = 1� 2 ✏ (17)

where ✏ is the generalization error of a binary classifier trained to distinguish

between input samples from source and target domains. Figure 10a shows the

A-distance on two tasks of the MPI3D dataset: T ! RL and T ! RC. We can

see the decrease in the subspace distance on both tasks after adaptation, which515

highlights the ability of the model to adapt from toy to realistic or real domains.

This can also be seen as the domain-related information in the feature matrices

decreased after the adaptation process. Besides, Figure 10b shows the trends

of the domain loss LDomain, which illustrates its smooth and stable decrease as

a function of the number of iterations. In the same manner, Figure 11 shows520

the domain gap between the source and target dictionary extracted from the

feature matrices before and after the adaptation. This illustration shows that

after the adaptation, dSprites and MPI3D feature matrices hold information

related to the scale and position of the object in the images and more head-pose

information in Biwi feature matrices.525

4.4.7. Sensitivity to � and m

Figure 12 shows the surface plot recording the MAE score as a function of loss

trade-o↵ parameter � and the rank m. The model shows a robust performance
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Figure 11: k�DSk2F

on a wide range of values of these two parameters. This shows that a dictionary

learning block with a rank of factorization m is easy to manipulate as it does not530

require much user intervention. In addition, we can see the ability of the model

to perform well with overcomplete dictionaries, namely when m > b. This sheds

light on the e↵ectiveness of the relaxation of the orthogonality carried out in

our method, which provides a better representation of the domain under study.

Besides, the robustness of the model to the values of � highlights the smoothness535

of training where both regression and domain losses can be minimized with

di↵erent trade-o↵ values.

4.4.8. Ablation Study

In Table 4, Table 5 and Table 6, the first row represents the baseline model

(ResNet-18) with no domain adaptation applied. We can see that applying the540

dictionary learning module improved the regression results in every scenario.

5. Conclusion

In this paper, we investigated unsupervised domain adaptation for regression

tasks. We shed light on the di↵erence between classification and regression tasks

in domain adaptation with respect to robustness of these methods to the scatter-545

ing of samples in feature space. For this purpose, we presented a new method for

unsupervised domain adaptation based on dictionary learning. We introduced a

new domain adaptation loss to minimize the subspace gap of source and target

28



Figure 12: Hyperparameter sensitivity on task RC ! T

representations extracted via deep neural networks. We extracted representa-

tions with common domain dictionaries so that a regression model trained on550

source data would provide good results on target data. Besides, we proposed a

stable implementation of a dictionary learning module integrated inside a neural

network with a friendly backpropagation mechanism and acceptable time com-

plexity. For evaluation, we tested our model on several regression benchmarks

where results showed better performance than state-of-the-art techniques. Re-555

sults also highlighted the big gain in knowledge transfer of the proposed method

while dealing with a synthetic source domain and a real target one. Future work

will consist of extending the approach to embrace heterogeneous domains where

the source and target data lie from di↵erent spaces.
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