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Abstract: Background: Arc therapy allows for better dose deposition conformation, but the radiother-
apy plans (RT plans) are more complex, requiring patient-specific pre-treatment quality assurance
(QA). In turn, pre-treatment QA adds to the workload. The objective of this study was to develop a
predictive model of Delta4-QA results based on RT-plan complexity indices to reduce QA workload.
Methods. Six complexity indices were extracted from 1632 RT VMAT plans. A machine learning
(ML) model was developed for classification purpose (two classes: compliance with the QA plan or
not). For more complex locations (breast, pelvis and head and neck), innovative deep hybrid learning
(DHL) was trained to achieve better performance. Results. For not complex RT plans (with brain and
thorax tumor locations), the ML model achieved 100% specificity and 98.9% sensitivity. However,
for more complex RT plans, specificity falls to 87%. For these complex RT plans, an innovative QA
classification method using DHL was developed and achieved a sensitivity of 100% and a specificity
of 97.72%. Conclusions. The ML and DHL models predicted QA results with a high degree of accu-
racy. Our predictive QA online platform is offering substantial time savings in terms of accelerator
occupancy and working time.

Keywords: machine learning; deep hybrid learning; radiotherapy; VMAT; quality assurance;
clinical routine

1. Introduction

The past decade has seen several technological advances that have paved the way for
improved radiotherapy techniques. One such technique, volumetric intensity modulated
arc therapy (VMAT) [1], works by modulating the beam fluence during a rotation (or an arc)
of the accelerator arm to deliver a tumoricidal dose while preserving healthy tissue. As the
accelerator arm rotates, the multi-leaf collimators (MLC) must geometrically conform to the
dynamic treatment volume while the tumor is being irradiated, making arc therapy treatment
plans more complex than conventional treatments [2]. With the increase in plan complexity,
there is a huge challenge to accommodate the patient anatomy, dosimetric constraints,
optimization algorithms and the linac’s capabilities to ensure that the treatment delivered is
as planned on the treatment planning system (TPS). In this context, patient-specific quality
assurance (QA) is mandatory and performed for each plan before the patient’s treatment.
Using specific phantoms, QA checks whether the planned dose on the TPS corresponds to the
dose delivered to the patient on the accelerator using two metrics (mean gamma and gamma
index) [3] and thus decides whether or not a treatment plan complies. It is important to note
that QA is a time-consuming activity that represents a significant amount of unavailability
for the machines to treat patients. Moreover, in our center, only five percent of the treatment
plans are non-compliant (gamma index < 0.95, 3%/3 mm).
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Several alternatives to QA have been studied and presented in different literature
reviews [4–8]. Two main methods were proposed for predicting QA outcomes using
complexity indices calculated from treatment plans. One is based on a threshold approach
of complexity indices [9]. In this method, QA results are determined according to a decision
tree that integrates two complexity indices (combination of Leaf Travel and Modulation
Complexity Score (LTMCS) and monitor unit) to eliminate the risk of false positives. As
specified [10], false positives (prediction is conforming QA when in reality QA is non-
compliant) are equivalent to Type I error, while false negatives are equivalent to Type II
error. This last point is still important to take into account in the prediction results because
a high number of type II errors requires a lot of QA on the machine. Therefore, the results
obtained with the decision tree show a large number of type II errors for complex locations,
such as the breast [9].

The second method is a more complex approach based on prediction models such
as machine learning regression and classification. As presented in the recent review
“Integration of AI and machine learning in radiotherapy QA” [11], different studies have
been realized on the use of AI for patient QA in radiotherapy. However, except for the
studies by Granville et al. [12] and Hirashima et al. [13], the AI models were created on few
numbers of radiotherapy (RT) plans (between 250 and 600 radiotherapy plans) that did
not allow the robustness of the models to be checked on a large set of plans. A study by
Wang and colleagues [14] used an autoencoder deep learning-based model with 426 RT
plans for training and 150 RT plans for validation. The results obtained show that a model
performs better with 100% sensitivity and 83% specificity for technical validation and
100% sensitivity and 72% specificity for clinical validation.

However, these results are not satisfactory enough for routine clinical implementation,
as the number of errors is still large, especially for complex RT plans (related to high number
of arcs, high variation of flow, speed of the arm of the accelerator, speed of the leaves, to the
MLC field opening . . . ). Moreover, no public solution was developed from these models,
which do not enable use in clinical practice. For these reasons, more complex AI models are
needed for complex RT plans, and easy to use solutions available for everyone are needed
to be clinically usable.

Subsequently, more complex and innovative AI models have been developed including
the combination of machine learning and deep learning approaches, named deep hybrid
learning (DHL). One example application of this method was to automate the analysis of
radiographic images in order to diagnose various pathologies [15]. Today, to the best of our
knowledge, no study has used the DHL model for the prediction of QA outcome on many
RT plans.

The objective of this study was to develop AI models that are more complex than those
proposed in the literature but still being clinically applicable. The models are based on the
complexity indices of the treatment plans in order to predict the results of QA. The first step
of this work was to create machine learning classification models for easy to moderately
complex RT VMAT plans. In the second step, more complex and innovative DHL models
have been developed for more complex RT VMAT plans. Finally, to use these models in
clinical routine, a freely online platform has been developed.

2. Materials and Methods
2.1. Patient Cohorts

This retrospective study was approved by the local institutional review board. One
thousand, six hundred and thirty-two patients with cancer referred to our oncological
center between June 2019 and March 2022 were included. The Declaration of Helsinki and
MR-004, a national French institution (INDS) defining health research conduct guidelines,
were used for this study. The number of tumors per location is represented in Table 1. As
several locations have low numbers of cases (digestive, rachis, other, member and skin
tumor location) which is too low to build efficient models for these locations, we pool these
cases in the “all” model only, and we did not develop specific models for these locations.
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Table 1. Description of the patient cohort and tumor location.

Tumor Location Number of VMAT Plans

Pelvis 576
Breast 462
H&N 204
Brain 156

Thorax 99
Digestive 49

Rachis 30
Other 25

Member 17
Skin 14
All 1632

2.2. Radiotherapy Plan

Radiotherapy treatment using volumetric modulated arc therapy (VMAT) was undertaken
with a RapidArc (Varian®, Le Plessis-Robinson, France) machine. Radiotherapy plans (RT-plan)
were computed using Eclipse® TPS. Complexity indexes were obtained from RT-plan using
Raystation® TPS and an in-house python code available at: https://github.com/AurelienCD/
DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_Diagnostics [16] and “Com-
plexity_index.py” (accessed on 1 February 2023). To achieve an easy solution applicable to
routine clinical settings, only six complexity indexes were used: Leaf Sequence Variability (LSV),
Aperture Area Variability (AAV), Modulation Complexity Score (MCS), Leaf Travel (LT), com-
bination of LT and MCS (LTMCS) and Small Aperture Score (SAS10) [5]. Complexity indexes
were extracted from the plan and not from each arc.

2.3. Patient Specific Quality Assurance

The Delta4® phantom from Scandidos® was used for patient-specific quality assurance.
To establish the QC conformance, the local gamma index has to be higher than 0.95% with
3%/3 mm and the gamma mean needs to be below a threshold (Figure 1).
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GMthreshold = x + 1.96 × σ

where:

x: gamma mean value
σ: standard deviation

The GMthreshold value for each tumor location is summarized in Supplementary Table
S1. To compute AI predicting models, conformance and non-conformance QC was assigned
to 1 and 0, respectively.

2.4. Artificial Intelligence Algorithms
2.4.1. Machine Learning (ML)

Input data of the ML models were six quantitative variables obtained from the RT
plans which represents the complexity of the radiotherapy treatment. LSV, AAV, MCS, LT,
LTMCS and SAS10 are sensitive to the variation of the leaf position, number of monitor
unit and area of irradiation. The aim of the ML models was to be able to predict, from these
six complexity indexes as input, the two classes of conformance and non-conformance
QC (0 or 1, respectively) as output. ML classification models were used for the low to
medium complexity RT plans of tumors localized in the brain and thorax. The models
were developed with hyperparameter optimization and cross-validation using the Sklearn
python library [17]. This library provides a selection of efficient tools for ML and statistical
modeling including classification, regression, clustering and dimensionality reduction.
Training and testing were proportionally assigned to 80% and 20%, respectively. Several
ML models were tested and compared by evaluating their prediction scores: Linear Dis-
criminant, Linear Regression, Ridge, Gaussian NB, Decision Tree, Support Vector Classifier,
Stochastic Gradient Descent and Random Forest Classifier. ML model hyperparameters
were optimized using gridsearch and the cross-validation tools of the Sklearn library. As
presented in the code available online, for each ML model classifier, the hyperparameters
were tuned to obtain a higher validation score and area under the curve (AUC).

Following model optimization, Receiver Operating Characteristic (ROC) curves and
confusion matrices were computed for the best models. This was conducted to find the
optimal probability threshold for obtaining as few as possible false positives. All the ML
codes with detailed documentation are available at: https://github.com/AurelienCD/
DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_Diagnostics and “Ma-
chine Learning.ipynb” (accessed on 1 February 2023).

2.4.2. Deep Hybrid Learning (DHL)

RT treatment plans for pelvis, breast and H&N tumor locations are generally more
complex than those of brain and thorax tumor locations. For example, VMAT plans treating
breast tumor location have to manage build-up issue, the difference between tissue (prox-
imity of lung and breast tissues), beam entry surface is not planar, etc. For this reason, more
complex AI models were needed and deep hybrid learning involving the combination of
ML and DL was used. As shown in Figure 2, the ML models described in the previous
section have as input six quantitative values of complexity indexes, and each ML model
predicted a probability (between 0 to 100%) of conformance or non-conformance QC. The
probabilities of non-conformance QC of the ML models which have more than 80% predic-
tion score were then given to a multilayer deep learning (artificial neural network) model
to obtain probabilities of conformance and non-conformance QC. The deep learning model
was computed using the Tensorflow (v2.8.0) and its Keras library [18]. Optimization of
the hyperparameters such as the activation function, number of layers, number of neurons
in each layer, loss function, regularizer function, learning rate, metrics and percentage of
dropout was performed using hyperparameter tuning with KerasTuner.

https://github.com/AurelienCD/DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_Diagnostics
https://github.com/AurelienCD/DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_Diagnostics
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Figure 2. Deep hybrid learning model architecture (breast tumor location example).

This optimization gave 2 dense layers of 658 neurons and an output layer of two
neurons with an L2 regularization function and a learning rate of 0.005.

The activation function and dropout were relu, 0%; selu, 60% and softmax in order. The
model was built with a binary cross-entropy loss function and binary accuracy optimization
metrics on 100 epochs. As with the majority of medical datasets, our data were imbalanced
with an important proportion of conformance QC in comparison to non-conformance QC;
to avoid the negative impact of this characteristic, the Imblearn python library and Keras
class weight was used [19]. In addition, to manage the imbalance data, weights of the
model were adjusted regarding the proportion of classes.

All the DHL codes with detailed documentation are available at: https://github.com/
AurelienCD/DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_Diagnostics
and “Deep Hybrid Learning.ipynb” (accessed on 1 February 2023).

2.5. Statistical Analysis

The performance of the ML and DHL models was evaluated considering the accuracy
score of Sklearn and Tensorflow of the test dataset, area under the curve (AUC) of the
ROC curves, specificity, sensitivity and finally the number of false positives. All statistical
analyses were completed in python [20] using the statistical data visualization and Seaborn
library [21,22].

3. Results
3.1. Prediction Models for All Tumor Location

The first approach was to develop general machine learning models able to predict
QC conformance whatever the tumor location. The following ML models were used. As
shown in Figure 3, the large number of RT plans used for ML resulted in good training
and validation scores for the different ML models used. Random Forest Classifier training
and validation scores were the highest with 100% and 89.9% respectively. Quantitative
performances of the ML models classifier are presented in Supplementary Table S2.

https://github.com/AurelienCD/DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_Diagnostics
https://github.com/AurelienCD/DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_Diagnostics
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Figure 3. ML model performance for all tumor locations. Training score (A) and validation score (B).

A confusion matrix is used to visualize the performance of the Random Forests ML
algorithm with a summary of the errors given in Table 2. It is noteworthy that only 1.10%
false positive (FP) values were obtained. ROC analysis of only 18 RT plans using the
Random Forests ML algorithm gave an AUC value (0.97) close to 1 (Figure 4 and Table 2).

Table 2. Performance for all tumor location ML models. TP = true positive, TN = true negative,
FP = false positive and FN = false negative.

TP TN FP FN Sensitivity Specificity

90.56% 7.05% 1.10% 1.29% 98.6% 86.47%
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Despite these good results, application of the general ML models to specific tumor
locations did not provide acceptable results for clinical practice. For example, application of the
Random Forests Classifier model for brain tumor RT plans gave a 4.49% FP rate and specificity
of 30%; see Supplementary Figure S1 and Supplementary Table S3. Therefore, ML models for
each tumor location had to be developed to increase the performance of the models.

3.2. Prediction for Brain and Thorax Tumor Location: Machine Learning Models

The specific ML for each tumor location gave better results than the model developed
on all the tumor locations. For brain tumor RT plans, perfect prediction was obtained with
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zero FP, resulting in an AUC equal to one and an accuracy and specificity of 100%; see
Supplementary Figure S2 and Supplementary Table S4. Similar results were obtained using
the specific ML model for thorax tumor RT plans. However, for more complex RT plans
such as the pelvis, breast and H&N tumors, ML models were not accurate enough. As an
example, ML models for breast tumor RT plans gave a specificity of only 87%. For this
reason, more complex AI models using deep hybrid learning (DHL) were developed for
pelvis, breast and H&N tumors.

3.3. Prediction for Pelvis, Breast and H&N Tumor Location: Deep Hybrid Learning Models

DHL models presented very accurate results. As an example, the DHL model for
breast cancer reduced the number of FP from 9 with ML to 0, increasing the specificity to
97.7% (87% with ML only model); see Figure 5 and Table 3.
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Table 3. Performance for breast tumor DHL model.

TP TN FP FN Sensitivity Specificity

83.33% 14.72% 0% 1.95% 97.7% 100%

Similar results were found with DHL models for H&N tumor locations (FN of ML and
DHL model for H&N location = 5.88% and 1.47%, respectively).

As previously shown, AI models had to be adapted regarding the tumor location
which involve more or less complex RT dosimetry plans. The performance and architecture
of each model for the different tumor locations are summarized in Table 4 below:

Table 4. AI models architecture and performance for each tumor location.

Locations AUC Sensitivity Specificity Accuracy TP TN FP FN Architecture

Brain 1 100% 100% 100% 94.87% 5.13% 0% 0% ML
Thorax 0.9986 98.90% 100% 98.99% 90.91% 8.08% 0% 1.01% ML
Pelvis 0.9869 100% 90% 99.65% 96.53% 3.13% 0.35% 0% DHL
Breast 0.9984 97.72% 100% 98.05% 83.33% 14.72% 0% 1.95% DHL
H&N 0.9589 98.32% 84% 96.57% 86.27% 10.29% 1.96% 1.47% DHL

All 0.9891 99.33% 98.50% 97.43% 91.24% 8.03% 0.12% 0.61% DHL

3.4. Application of the Solution in Clinical Practice

The prerequisite of this study was to develop a facile approach that could easily be im-
plemented in clinical practice. For this reason, an application programming interface (API)
was developed which can easily be used in a clinical environment. Six complexity indexes
must be entered in the user interface and the tumor location chosen; then, ML or DHL mod-
els are used to predict patient-specific QC conformance. The API is freely available at: https:
//aureliencd-radiotherapy-quality-api-cq-patient-predictor-2clxve.streamlitapp.com/ (ac-
cessed on 1 February 2023). The performance of the API was only optimized on our

https://aureliencd-radiotherapy-quality-api-cq-patient-predictor-2clxve.streamlitapp.com/
https://aureliencd-radiotherapy-quality-api-cq-patient-predictor-2clxve.streamlitapp.com/
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data and needs to be fully validated before external use. The mean time (minute) taken
for calculation of the complexity index, and conformance prediction with the platform,
was five min per plan. If we only measure the plans with a non-conformance prediction,
the time saved per week is around 135 min compared to the 150 min normally taken to
perform patient-specific QA, which gives the possibility of treating seven more patients.
The complete workflow we proposed in our center to use this solution is presented in
Supplementary Figure S4.

4. Discussion

Patient-specific assurance control in RT is mandatory but very time-consuming and
consequently impacts RT machines’ availability for patient treatment [23]. As QC results
are highly correlated with the complexity of the RT dosimetry plans, we proposed the use
of prediction models using RT plans complexity indexes as input to predict QC outcome
while guaranteeing treatment assurance [2]. In this study, we firstly used a similar ap-
proach to that described in the literature by thresholding complexity indexes to predict
QC outcome. As shown in Supplementary Figure S4 and Table S5, our results are similar
to those of Jazouli and co-workers [9], as we obtained a high number of TP; however, the
FN rate was significant and correlated with the complexity of the RT plan. We secondly
developed regression models to predict absolute gamma index values. Valdes and col-
leagues [24] showed good results using this approach with predicting errors smaller than
3%; however, in our study, ML regression models resulted in validation scores around
0.3; see Supplementary Figure S5A,B. For this reason, we expanded to classification ML
models. A recent study by Granville and colleagues, in a large cohort similar to that of
our study, reported an AUC of 0.80 to 0.92 for mixed tumor locations using a support
vector classifier [12]. Our classification ML model for easy RT dosimetry plans (brain and
thorax tumors) yielded better results with AUC = 1 and 0.99 for brain and thorax RT plans,
respectively. As noted in a recent review by Simon and colleagues [25], Granville and
now our study are the only studies that have developed ML models using a large number
of patients with VMAT RT plans. Due to the more complex technique used for VMAT
in comparison with intensity-modulated radiotherapy (IMRT), developing a prediction
solution for QA is highly relevant. To the best of our knowledge, our study is the first using
the innovative deep hybrid learning approach for patient-specific QA prediction. For a
moderately complex dosimetry plan (prostate/pelvis tumors location), a more complex
AI DHL model was required. In the literature, Kimura and colleagues developed a deep
learning solution for the QA of prostate plans and obtained a specificity value of 0.986 [26],
which is in agreement with that obtained in our study (specificity value for pelvis tumor
location = 1). However, no study has been published for complex VMAT dosimetry plans
(breast or H&N). Interian and colleagues used a deep learning approach for patient-specific
QA prediction mainly based on breast tumor plans and obtained a mean absolute error of
0.70 [27]. We obtained similar results with our ML-based model for breast tumors plans
with a specificity of only 87%. We therefore developed a more innovative model using
DHL to increase the specificity to 97.7%.

Most of the literature uses gamma index metrics to determine patient-specific QA
conformance. In this study, we chose to use a combination of gamma mean and gamma
index to provide a more patient-specific QC result more similar to that of our clinical
practice. Whereas both parameters give complementary information, to the best of our
knowledge, this is the first study developing an AI model using both parameters. As it is
mentioned by the Task group 218 of the American Association of Physicists in Medicine [28],
a gamma rate of 95% with 3%/3 mm is the most used criteria in the world even if they
proposed to be more specific regarding the type of treatment and for example use 3%/2 mm.
As the gamma rate of 95% with 3%/3 mm is still the most used in the world, we decided to
develop the AI model using this criterion.

When determining the features for AI modeling, it is important to select which com-
plexity indexes are relevant and should be incorporated in the model. Granville and
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colleagues highlighted the importance of including the number monitor unit (MU) in
their model. As it can be observed in our code online, the six complexity indexes used in
our study accounted for the MU; however, when we analyzed the importance of specific
features, no differences were observed between the six complexity indexes.

Several authors have used the log file from machine and MLC to predict QA con-
formance [29–31]. These approaches gave interesting results, and it would be interesting
to combine complexity indexes and log file approaches to improve the efficacy of the AI
prediction model. However, these approaches need to use the machine to obtain the log
files or have to be completed after patient treatment as post-treatment patient-specific QA.

As QA of the prediction model itself, we add to the annual QC of the TPS a QC of the
script used in routine for complexity indexes extraction and prediction constancy for the API.
Ten constancy plans for different tumor locations are used for this control: the script is run, the
given metrics are compared with the reference (i.e., metrics given at the first run of the script)
and the prediction conformance of the QC is also compared to the reference prediction.

A significant number of studies have developed AI models to accelerate the patient
QA process in RT. However, very few studies have implemented the models clinically.
A study was implemented clinically, but the results obtained for the AUC were at best
0.869 [32]. Our initial aim of this study was to develop an AI solution for QC in VMAT that
is easily usable by everyone and can be implemented in clinical routine. For this reason, we
used only six complexity indexes in the modeling, which can readily be obtained during
the dosimetry step while packaging the solution in an API for ease of use by all.

The reproducibility of AI models in different clinical settings and in different centers is key
to its clinical implementation. By using a federated learning approach, multi-centric AI models
led to the development of a global model based on local model updates [33]. Our model was
developed at a single medical center; the next step is to use a federated learning approach with
voluntary centers to improve our model and increase its relevance for other centers.

5. Conclusions

As patient-specific QA takes time on the treatment machine with the impossibility to
treat patients during that time, the objective of this study was to propose an alternative
solution for patient-specific QA that would make treatment machines more available to
patients. We developed AI models based on complexity indexes to predict patient-specific
QA conformance for VMAT treatments. We show that the ML models used were able to
predict with 100% specificity the QA results for easy dosimetry plans for brain and thorax
tumor location. For moderate to more complex dosimetry plans of tumors located in the
pelvis, H&N and breast, innovative DHL models were required, providing specificity of
84% to 100%. In our clinical practice, this solution leads to use the solution in that way:
before patient-specific QA, if the result is okay, the QA would not be completed. However,
if the result is not okay, patient-specific QA is performed, and if it is still not okay, then
the RT plan is re-computed with lower complexity. All these processes are under the
responsibility of the medical physicist.

We further developed an API that is freely available to the scientific community for
the application of the QA solution in clinical routine. Subsequently, we will be able to
propose transfer learning or federate learning solutions so that our solution can be used
and optimized in other partner radiotherapy centers

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/diagnostics13050943/s1.

Author Contributions: Conceptualization, A.C.-D., N.M., C.J., C.B., L.L., N.F., A.B.; methodology,
A.C.-D., N.M. and C.J.; software, A.C.-D., N.M.; validation, all.; formal analysis, N.M., A.C.-D.;
investigation, N.M., A.C.-D.; resources, N.M., A.C.-D.; data curation, N.M., L.B.; writing—original
draft preparation, A.C.-D., N.M.; writing—review and editing, all.; visualization, N.M., A.C.-D.;
supervision, A.C.-D.; project administration, A.C.-D.; funding acquisition, A.C.-D. All authors have
read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/diagnostics13050943/s1
https://www.mdpi.com/article/10.3390/diagnostics13050943/s1


Diagnostics 2023, 13, 943 10 of 11

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) MR-004.” for
studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study can be sent upon reasonable request
and the python code used are openly available at https://github.com/AurelienCD/Radiotherapy_
Quality_Control_API (accessed on 1 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Otto, K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med. Phys. 2007, 35, 310–317. [CrossRef] [PubMed]
2. Antoine, M.; Ralite, F.; Soustiel, C.; Marsac, T.; Sargos, P.; Cugny, A.; Caron, J. Use of metrics to quantify IMRT and VMAT

treatment plan complexity: A systematic review and perspectives. Phys. Med. 2019, 64, 98–108. [CrossRef] [PubMed]
3. Low, D.A.; Harms, W.B.; Mutic, S.; Purdy, J.A. A technique for the quantitative evaluation of dose distributions. Med. Phys. 1998,

25, 656–661. [CrossRef] [PubMed]
4. Ge, Y.; Wu, Q.J. Knowledge-based planning for intensity-modulated radiation therapy: A review of data-driven approaches. Med.

Phys. 2019, 46, 2760–2775. [CrossRef] [PubMed]
5. Chiavassa, S.; Bessieres, I.; Edouard, M.; Mathot, M.; Moignier, A. Complexity metrics for IMRT and VMAT plans: A review of

current literature and applications. Br. J. Radiol. 2019, 92, 20190270. [CrossRef] [PubMed]
6. Shen, C.; Chen, L.; Zhong, X.; Gonzalez, Y.; Visak, J.; Meng, B.; Inam, E.; Parsons, D.; Godley, A.; Jiang, S.; et al. Clinical experience

on patient-specific quality assurance for CBCT-based online adaptive treatment plan. J. Appl. Clin. Med. Phys. 2023, e13918.
[CrossRef]

7. Savjani, R.R.; Salamon, N.; Deng, J.; Ma, M.; Tenn, S.; Agazaryan, N.; Hegde, J.; Kaprealian, T. A Framework for Sharing Radiation
Dose Distribution Maps in the Electronic Medical Record for Improving Multidisciplinary Patient Management. Radiol. Imaging
Cancer 2021, 3, e200075. [CrossRef]

8. Sadowski, B.; Milewska, K.; Ginter, J. Machine Learning Based Prediction of Gamma Passing Rate for VMAT Radiotherapy Plans.
J. Pers. Med. 2022, 12, 2071. [CrossRef]

9. Jazouli, Z.; Muraro, S.; Julian, D. Patient-QA prediction: A new approach of complexity indexes. Phys. Med. 2021, 92, S87.
[CrossRef]

10. Kubben, P.; Dumontier, M.; Dekker, A. Fundamentals of Clinical Data Science; Springer International Publishing: Cham, Switzerland, 2019.
[CrossRef]

11. Chan, M.F.; Witztum, A.; Valdes, G. Integration of AI and Machine Learning in Radiotherapy QA. Front. Artif. Intell. 2020, 3, 577620.
[CrossRef]

12. Granville, D.A.; Sutherland, J.G.; Belec, J.G.; La Russa, D.J. Predicting VMAT patient-specific QA results using a support vector
classifier trained on treatment plan characteristics and linac QC metrics. Phys. Med. Biol. 2019, 64, 095017. [CrossRef] [PubMed]

13. Hirashima, H.; Ono, T.; Nakamura, M.; Miyabe, Y.; Mukumoto, N.; Iramina, H.; Mizowaki, T. Improvement of prediction and
classification performance for gamma passing rate by using plan complexity and dosiomics features. Radiother. Oncol. 2020, 153,
250–257. [CrossRef] [PubMed]

14. Wang, L.; Li, J.; Zhang, S.; Zhang, X.; Zhang, Q.; Chan, M.F.; Yang, R.; Sui, J. Multi-task autoencoder based classification-regression
model for patient-specific VMAT QA. Phys. Med. Biol. 2020, 65, 235023. [CrossRef] [PubMed]

15. Khan, S.H.; Sohail, A.; Khan, A.; Hassan, M.; Lee, Y.S.; Alam, J.; Basit, A.; Zubair, S. COVID-19 detection in chest X-ray images
using deep boosted hybrid learning. Comput. Biol. Med. 2021, 137, 104816. [CrossRef]

16. Corroyer-Dulmont, A. DeepHybridLearning_RadiotherapyQA. 2022. Available online: https://github.com/AurelienCD/
DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_22-1397 (accessed on 27 February 2023).

17. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhof, P.; Weiss, R.; Dubour, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

18. Chollet, F. Keras. 2015. Available online: https://docs.anaconda.com (accessed on 27 February 2023).
19. Lemaitre, G.; Fernando, N.; Aridas, C. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in

Machine Learning. J. Mach. Learn. Res. 2017, 18, 559–563. [CrossRef]
20. Anaconda Software Distribution; Anaconda Inc.: Austin, TX, USA, 2020.
21. Waskom, M.L. seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]
22. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
23. Agazaryan, N.; Solberg, T.D.; Demarco, J.J. Patient specific quality assurance for the delivery of intensity modulated radiotherapy.

J. Appl. Clin. Med. Phys. 2003, 4, 40–50. [CrossRef]
24. Valdes, G.; Scheuermann, R.; Hung, C.Y.; Olszanski, A.; Bellerive, M.; Solberg, T.D. A mathematical framework for virtual IMRT

QA using machine learning. Med. Phys. 2016, 43, 4323–4334. [CrossRef]

https://github.com/AurelienCD/Radiotherapy_Quality_Control_API
https://github.com/AurelienCD/Radiotherapy_Quality_Control_API
http://doi.org/10.1118/1.2818738
http://www.ncbi.nlm.nih.gov/pubmed/18293586
http://doi.org/10.1016/j.ejmp.2019.05.024
http://www.ncbi.nlm.nih.gov/pubmed/31515041
http://doi.org/10.1118/1.598248
http://www.ncbi.nlm.nih.gov/pubmed/9608475
http://doi.org/10.1002/mp.13526
http://www.ncbi.nlm.nih.gov/pubmed/30963580
http://doi.org/10.1259/bjr.20190270
http://www.ncbi.nlm.nih.gov/pubmed/31295002
http://doi.org/10.1002/acm2.13918
http://doi.org/10.1148/rycan.2021200075
http://doi.org/10.3390/jpm12122071
http://doi.org/10.1016/S1120-1797(22)00184-3
http://doi.org/10.1007/978-3-319-99713-1
http://doi.org/10.3389/frai.2020.577620
http://doi.org/10.1088/1361-6560/ab142e
http://www.ncbi.nlm.nih.gov/pubmed/30921785
http://doi.org/10.1016/j.radonc.2020.07.031
http://www.ncbi.nlm.nih.gov/pubmed/32712247
http://doi.org/10.1088/1361-6560/abb31c
http://www.ncbi.nlm.nih.gov/pubmed/33245054
http://doi.org/10.1016/j.compbiomed.2021.104816
https://github.com/AurelienCD/DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_22-1397
https://github.com/AurelienCD/DeepHybridLearning_RadiotherapyQA_Depository_ManuscriptID_22-1397
https://docs.anaconda.com
http://doi.org/10.48550/arXiv.1512.03502
http://doi.org/10.21105/joss.03021
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.1120/jacmp.v4i1.2540
http://doi.org/10.1118/1.4953835


Diagnostics 2023, 13, 943 11 of 11

25. Simon, L.; Robert, C.; Meyer, P. Artificial intelligence for quality assurance in radiotherapy. Cancer 2021, 25, 623–626. [CrossRef]
[PubMed]

26. Kimura, Y.; Kadoya, N.; Tomori, S.; Oku, Y.; Jingu, K. Error detection using a convolutional neural network with dose difference
maps in patient-specific quality assurance for volumetric modulated arc therapy. Phys. Med. 2020, 73, 57–64. [CrossRef] [PubMed]

27. Interian, Y.; Rideout, V.; Kearney, V.P.; Gennatas, E.; Morin, O.; Cheung, J.; Solberg, T.; Valdes, G. Deep nets vs expert designed
features in medical physics: An IMRT QA case study. Med. Phys. 2018, 45, 2672–2680. [CrossRef] [PubMed]

28. Miften, M.; Olch, A.; Mihailidis, D.; Moran, J.; Pawlicki, T.; Molineu, A.; Li, H.; Wijesooriya, K.; Shi, J.; Xia, P.; et al. Tolerance
limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med.
Phys. 2018, 45, e53–e83. [CrossRef] [PubMed]

29. Legrand, C. 49. Current uses of log files in the radiotherapy quality assurance workflow for IMRT and VMAT techniques. Phys.
Med. 2017, 44, 24. [CrossRef]

30. Defoor, D.L.; Vazquez-Quino, L.A.; Mavroidis, P.; Papanikolaou, N.; Stathakis, S. Anatomy-based, patient-specific VMAT QA
using EPID or MLC log files. J. Appl. Clin. Med. Phys. 2015, 16, 206–215. [CrossRef] [PubMed]

31. Chow, V.U.Y.; Kan, M.W.K.; Chan, A.T.C. Patient-specific quality assurance using machine log files analysis for stereotactic body
radiation therapy (SBRT). J. Appl. Clin. Med. Phys. 2020, 21, 179–187. [CrossRef]

32. Yang, R.; Yang, X.; Wang, L.; Li, D.; Guo, Y.; Li, Y.; Guan, Y.; Wu, X.; Xu, S.; Zhang, S.; et al. Commissioning and clinical
implementation of an Autoencoder based Classification-Regression model for VMAT patient-specific QA in a multi-institution
scenario. Radiother. Oncol. 2021, 161, 230–240. [CrossRef]

33. Darzidehkalani, E.; Ghasemi-Rad, M.; van Ooijen, P. Federated Learning in Medical Imaging: Part I: Toward Multicentral Health
Care Ecosystems. J. Am. Coll. Radiol. 2022, 19, 969–974. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.canrad.2021.06.012
http://www.ncbi.nlm.nih.gov/pubmed/34176724
http://doi.org/10.1016/j.ejmp.2020.03.022
http://www.ncbi.nlm.nih.gov/pubmed/32330812
http://doi.org/10.1002/mp.12890
http://www.ncbi.nlm.nih.gov/pubmed/29603278
http://doi.org/10.1002/mp.12810
http://www.ncbi.nlm.nih.gov/pubmed/29443390
http://doi.org/10.1016/j.ejmp.2017.10.074
http://doi.org/10.1120/jacmp.v16i3.5283
http://www.ncbi.nlm.nih.gov/pubmed/26103490
http://doi.org/10.1002/acm2.13053
http://doi.org/10.1016/j.radonc.2021.06.024
http://doi.org/10.1016/j.jacr.2022.03.015

	Introduction 
	Materials and Methods 
	Patient Cohorts 
	Radiotherapy Plan 
	Patient Specific Quality Assurance 
	Artificial Intelligence Algorithms 
	Machine Learning (ML) 
	Deep Hybrid Learning (DHL) 

	Statistical Analysis 

	Results 
	Prediction Models for All Tumor Location 
	Prediction for Brain and Thorax Tumor Location: Machine Learning Models 
	Prediction for Pelvis, Breast and H&N Tumor Location: Deep Hybrid Learning Models 
	Application of the Solution in Clinical Practice 

	Discussion 
	Conclusions 
	References

