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Abstract 

Leucocyte subpopulations in both lymphoid and myeloid lineages have a significant impact on antitumor immune 
response. While radiation‑induced lymphopenia is being studied extensively, radiation effects on lymphoid and 
myeloid subtypes have been relatively less addressed. Interactions between leucocyte subpopulations, their specific 
radiation sensitivity and the specific kinetics of each subpopulation can be modeled based on both experimental 
data and knowledge of physiological leucocyte depletion, production, proliferation, maturation and homeosta‑
sis. Modeling approaches of the leucocyte kinetics that may be used to unravel mechanisms underlying radiation 
induced‑leucopenia and prediction of changes in cell counts and compositions after irradiation are presented in this 
review. The approaches described open up new possibilities for determining the influence of irradiation parameters 
both on a single‑time point of acute effects and the subsequent recovery of leukocyte subpopulations. Utilization of 
these approaches to model kinetic data in post‑radiotherapy states may be a useful tool for further development of 
new treatment strategies or for the combination of radiotherapy and immunotherapy.
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Background
Leucocyte subpopulations in both lymphoid and myeloid 
lineages exert an essential impact on tumor regulation. 
Leucocytes are part of the immune system, which pro-
tects the body against foreign invaders, as well as cancer 
[1]. Homeostasis is the mechanism that helps maintain 
stable levels of leucocytes in the blood against any vari-
ability [2]. Homeostasis is crucial to a proper functioning 
of the immune system. Prediction of leucocyte kinet-
ics and homeostasis in cancer patients is paramount, 
given that the immune system plays an essential role in 
identifying malignant cell properly and reacting against 
them, which underlies the use of immunotherapies in 
cancer treatment [3]. Leucocytes are divided into lym-
phoid or myeloid cells, originating from their common 
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hematopoietic stem cells within the bone marrow [4]. 
Both leucocyte lineages participate to cancer surveil-
lance. Lymphopenia is associated with poor prognosis, 
while favoring tumor development [5, 6]. Myeloid cells 
either promote or control tumor growth, depending on 
their subtype [7, 8]. Neutrophils are the most abundant 
myeloid cells, which have similarly emerged as cancer 
regulators. Indeed, a high circulating neutrophil to lym-
phocyte ratio likely is a robust prognostic factor of poor 
clinical outcome in various cancers [9].

Radiotherapy, which is used in over 50% of cancer 
patients, exerts inevitable, yet usually manageable, del-
eterious effects on normal healthy cells along the radia-
tion beam path. Until recently, the suppressive effect of 
radiotherapy on the immune system has been largely 
ignored in routine practice. Radiation-induced immune 
suppression was investigated in the 1970’s, at the time 
of the premises of immunotherapy, then forgotten for 
about 30 years until a recent rebound in interest in new 
immunotherapy modalities [10, 11]. The synergy between 
radiotherapy and immunotherapy is currently undergo-
ing intense investigations. Controlling radiation-induced 
leucopenia is likely critical for optimizing the synergistic 
effect of these two treatments [3]. However, the radia-
tion-induced leucopenia has scarcely been included in 
models estimating the probability of undesirable effects 
on normal tissues represented by normal tissue com-
plication probability (NTCP) [12]. Among leucocytes, 
lymphopenia is by far the most popular issue due to its 
frequency, duration, and depth of lymphocyte counts 
reduction. Lymphoid cells appear more radiosensitive 
than myeloid cells, and radiation-induced lymphopenia 
occurs more often than myelosuppression [13].  How-
ever, myeloid cells contribute to prognosis and radiation 
response in tumors, whereas their kinetics in the blood 
have been barely investigated [14]. Radiation effects on 
leucocytes are indeed heterogeneous, and both of the 
lymphoid and myeloid lineages can impact prognosis and 
response to immunotherapy [15, 16].

Mathematical modeling has become increasingly use-
ful in medical research as a tool to understand disease 
mechanisms, suggest optimal treatment modalities, and 
predict treatment outcomes [17]. Recent publications 
have highlighted the emerging role of mathematical mod-
eling in optimizing the synergistic action of combined 
radiotherapy and immunotherapy in tumor control. 
Mathematical modeling of longitudinal data of leucocyte 
subpopulation kinetics following irradiation represents 
a potential approach enabling to predict radiotherapy 
effects, as well as to further optimize combinations of 
radiotherapy-immunotherapy, based on understanding 
physiological leucocyte homeostasis. The number and 
relative proportion of leucocyte subpopulations vary 

widely across cancer patients, depending on inflamma-
tion or cancer progression. Therefore, detailed leucocyte 
subpopulation analysis may better inform about progno-
sis and mechanism of treatment responses in comparison 
with global approaches involving limited time points [1]. 
A good understanding of the known biological process is 
critical for developing mathematical modeling, with its 
interpretation and application.

This review sought to evaluate the mechanisms and 
kinetics of radiation-induced leucopenia, addition-
ally addressing the relationships between lymphoid and 
myeloid lineages, as well as the dynamics between tissues 
and blood based on mathematical modeling in order to 
optimize radiotherapy and radiotherapy-immunotherapy 
combinations.

Appropriate references were identified on the basis of: 
1) medicine, biology, and modeling text books for gen-
eral definition of leucocytes and their subpopulations, 
their roles in immune response, and for definition of dif-
ferent modeling strategies; 2) searches of PubMed using 
the search terms “Leucocyte homeostasis”, “Radiation-
induced lymphopenia”, “Radiation-induced myelosup-
pression”, “Radiosensitivity”, “Mathematical modeling”, 
and “Biological modeling” from 1970 until 2021. Only 
papers published in English were reviewed. The final ref-
erence list was generated on the basis of originality and 
relevance to the broad scope of this work.

Main text
The lymphoid population
Mature lymphoid cells, i.e., lymphocytes, are subdivided 
into T-cells, B-cells, and NK-cells based on protein-
complexes on their surface. In humans, T-cells (express-
ing T-cell receptors [TCR] comprise 40–60% of the total 
circulating pool of lymphocytes, and B-cells (expressing 
B-cell receptors BCR) 20–30% [1, 18] of the pool, while 
NK-cell proportions range from 4 to 28%. The T-cell pop-
ulation is subdivided into CD4 + (including helper and 
regulatory T-cells) and CD8 + T-cells (cytotoxic T-cells) 
[1]. Reduced lymphocyte counts in blood, i.e., lympho-
penia, has been correlated with poor survival in patients 
with solid tumors [10].

Lymphoid lineage function
T-cells and B-cells participate in adaptive immune 
responses, and different lymphocyte types play specific 
roles: T-cells synthesize and release cytokines or kill their 
target cells. B-cells mediate immune responses by releas-
ing antibodies [1]. NK-cells belong to the innate immune 
system, and they mediate anti-viral and anti-tumor 
responses [19].

Considering tumor responses, T-cells can iden-
tify and eradicate tumors through TCR recognition of 
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tumor-associated antigens [20, 21]. B-cells participate in 
suppressing tumor progression by secreting immuno-
globulins, promoting T-cells responses, and activating 
NK-cells [22]. NK-cells are able to kill tumor cells. NK-
cells and helper T-cells promote cytotoxic T-cells to dif-
ferentiate into effective cytotoxic T-cells that eliminate 
tumor cells. These anti-tumor effects are suppressed by 
regulatory T-cells [20].

Physiology of lymphoid populations

Production, maturation, and distribution Lympho-
cyte progenitors are produced in the bone marrow 
(Fig. 5A) [23]. B-cell maturation is initiated in the BM 
and finalized in the spleen, while T-cells are generated 
in the thymus after migration of lymphocyte progeni-
tors. Naïve (non-activated mature) lymphocytes either 
circulate in the blood or home into secondary lym-
phatic organs (SLOs), such as the spleen and lymph 
nodes (LNs). Naïve T-lymphocytes become activated 
lymphocytes by interaction with antigen presenting 
cells in LNs. Activated lymphocytes move to inflam-
matory sites so as to participate in immune responses. 
Thereafter, they either die by apoptosis or recirculate 
[24, 25]. The modeling of lymphocyte recirculation 
based on available data in rodents has generated quan-
titative estimates of migration rates and residence time 
of lymphocytes in major organs. Indeed, mean transit 
time was shown to be long in SLOs, exceeding 2  h in 
the spleen, and 10 h in LNs, compared with less than a 
minute in the lung and liver [26].

Only a small number of lymphocytes is indeed present 
in circulating blood at any time. In rodents, 5% of lym-
phocytes can be found in the blood, 25% in the spleen, 
and 70% in the LNs or other lymphoid organs [27]. Simu-
lated instantaneous lymphocyte distribution in rodents is 
shown in Table 1. In humans, no direct method allows to 
estimate the lymphocyte distribution in organs. Extrapo-
lation of rodent data to humans based on organ size of 
both species has revealed that about 2% of lymphocytes 
reside in the blood at any time (Table 1) [28].

Simulation from recirculation models likewise showed 
that following a sudden drop, the blood lymphocyte 
counts nearly reached their initial levels in less than 
3  h via lymphocyte recruitment from lymphatic organs 
(Fig. 1).

Homeostasis The mechanisms of lymphocyte homeo-
stasis were mostly studied using experiments in rodents, 

prior to these data being extrapolated to humans. Home-
ostasis plays an essential role in lymphocyte recovery 
after acute lymphopenia. The control of both T-cells and 
B-cells is independent [29].

Mature T-cells comprise naïve and memory T-cells. 
Naïve T-cells are small cells, which mature in the thymus 
before entering peripheral blood circulation. Once acti-
vated, these T-cells travel to extra-lymphoid effector sites 
where they exert an adaptive immune function. Naïve 
and memory T-cell counts are governed by independ-
ent homeostatic mechanisms to preserve the response to 
any novel infection via naïve T-cells, whilst ensuring effi-
cient memory responses against known antigens. Stud-
ies in rodents suggested that thymus production actually 
exceeds the quantitative requirements to replenish T-cell 
counts in the peripheral pools [30]. Naïve T-cell homeo-
stasis is mainly governed by cell survival, which is con-
trolled by cytokine interleukin (IL)-7, and TCR binding 
to major histocompatibility complex (MHC) molecules. 
For activated T-cells, survival is mainly controlled by IL-
7,yet independent from MHC. T-cell homeostasis also 
depends on sub-populations’ integrity and presence of 
regulatory T-cells. The mature T-cell niche depends on 
outputs from the thymus in rodents or on homeostatic 
proliferation in humans [31]. Lymphopenia triggers 
lymphopenia-induced proliferation in order to replenish 
the depleted T-cell niches [32]. However, lymphopenia-
induced proliferation actually expands the memory pop-
ulation, whereas it is insufficient to replenish the naïve 
T-cell population. T-cells homeostasis has been summa-
rized in Fig. 2A.

The homeostasis regulation of CD4 + and CD8 + popu-
lations does not occur independently. Studies in rodents 
showed that loss of either CD4 + or CD8 + T-cell subsets 
is likely compensated one by another so that the overall 
T-cell population size is preserved [33].

Mature B-cells comprise resting and activated B-cells. 
Resting B-cells are activated through antigen binding 
with BCR. Antigenic peptides can then be loaded onto 
MHC complexes; these antigen/MHC complexes are 
recognized by activated helper T-cells, thereby trigger-
ing adaptive immune responses. Activated B-cells can 
differentiate into plasma cells (either short-lived and 
dying after infection, or long-lived in the bone mar-
row for antibody production) or memory B-cells (long-
lived in LNs for antibody production) [34]. The resting 
and activated B-cell populations undergo independent 
homeostatic regulation. The B-cell production within the 
bone marrow exceeds the requirement for B-cell counts 
in the periphery in rodents. Yet, B-cell homeostasis is 
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maintained mainly by their survival in the periphery 
rather than by bone marrow production [35]. BCR sign-
aling is vital for B-cell survival. B-cells also undergo lym-
phopenia-induced proliferation following lymphopenia 

resulting in enlargement of the long-lived population. 
B-cell homeostasis has been summarized in Fig. 2B.

Mature NK-cell homeostasis is dependent on IL-15. Fol-
lowing immune stimulation by infections, NK-cells are 
activated, undergo proliferative expansion, and become 
long-lived memory cells. NK-cells homeostasis has been 
summarized in Fig. 2C.

Impact of irradiation: radiobiological considerations
Lymphocytes are radiosensitive cells in mammals. Cel-
lular radiosensitivity is measured either directly by cell 
death biomarkers (annexin V/propidium iodide assay for 
apoptosis/necrosis), using cell surviving fraction, or indi-
rectly by chromosomal aberrations.

Fig. 1 Simulation of lymphocyte kinetics in the blood and SLO after a sudden drop in blood, using lymphocyte recirculation model developed 
by Ganusov and Auerbach, 2014 [26]. Legend: Following a sudden drop in the blood compartment at 25 min, lymphocytes in blood recovered 
to higher than 80% of their initial level in less than 200 min. This recovery occurred because of the recruitment of lymphocytes homing in SLOs. 
According to this simulation, the lymphocytes in SLOs (spleen and LNs) decrease gradually following their reduction in blood. Details of simulation 
are provided in the supplementary materials (Supplementary Fig. 3)

Table 1 Lymphocyte distribution in rodents (simulation 
explained in supplementary data: Supplementary Fig. 1 and 
Supplementary Fig. 2) and human [28]

Organs Blood Spleen Other secondary 
lymphatic organs

Others

% of lymphocytes 
(Rodents)

4.15 33.21 58.08 4.56

% of lymphocytes 
(Human)

2.2 15.2 45.6 37.0
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In humans, lymphocyte surviving fraction following a 
single dose of 2 Gy is about 90% in vivo [36]. The sur-
vival of lymphocytes is heterogenous across different 
lymphocyte types (T-cells, B-cells, or NK-cells). In both 

humans and rodents, B-cells are the most radiosensi-
tive lymphocytes [37, 38]. Among T-cells, CD4 + T-cells 
were shown to be more sensitive than CD8 + T-cells 
[39]. NK-cells are more resistant to radiation in 

Fig. 2 Dynamic and homeostatic control of lymphocytes in the periphery. Legend: Ag, LN, IL, and BAFF‑R stand for antigen, lymph node, 
interleukin, and B‑cell activating factor receptor, respectively. A Dynamic and homeostatic control of T‑cells in the periphery. In rodents, the naïve 
T‑cell level is maintained based on input to the thymus and survival signals, which are controlled by IL‑7 and TCR signaling with MHC. The memory 
T‑cell level is maintained by differentiation input from the naïve cell population and survival signals controlled by IL‑7. Memory cells can proliferate 
or differentiate from the naïve population in case of lymphopenia. Effector cells differentiate from naïve T‑cells following immune stimulation. 
Most effector cells die shortly after stimulation by apoptosis, and only a few differentiate into memory cells. B Dynamic and homeostatic control of 
B‑cells in the periphery. The resting B‑cell level is maintained by input from the spleen and survival signals, controlled by BCR signaling and B‑cell 
activating factor receptor (BAFF‑R). Activated B‑cells either die after immune stimulation or differentiate into long‑lived populations. The long‑lived 
memory population can expand by proliferation or differentiation from the naïve population in case of lymphopenia. C Dynamic and homeostatic 
control of NK‑cells in the periphery. The resting NK‑cell level is maintained by input from primary lymphatic organs and survival signals, which are 
controlled by receptor signaling and IL‑15. Activated NK‑cells either die after immune stimulation or differentiate into long‑lived populations
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comparison with other lymphocyte types, with simi-
lar surviving rates of NK-cells at 2 Gy in irradiated and 
non-irradiated cells [40].

Radiation induces chromosome damage and aberration 
like centric/dicentric rings in lymphocytes in the meta-
phase. Aberrant chromosomes divide unevenly among 
daughter cells, which then undergo delayed “mitotic 
death” after a few generations following radiation expo-
sure. Chromosome aberrations are dose-dependent 
(Fig. 3) [41, 42].

Irradiation may be either restricted to the tumor site 
or involve sites of probabilistic tumor involvement. A 
distinct situation is total body irradiation condition-
ing before bone marrow transplantation (usually in leu-
kemias). In all Rhesus macaques receiving a single dose 
of 6  Gy, severe lymphopenia occurred immediately. In 
animals surviving 15  days following irradiation, abso-
lute lymphocyte counts represented 3% of pretherapeu-
tic treatment levels. Recovery occurred slowly to reach 
stable levels within 100–300  days, following a transient 
rebound effect [43, 44]. Homeostasis after a single radi-
ation dose takes up to a year to fully recover. In rodent 
models, lymphocytes isolated from irradiated animals 
showed a reduction in proliferation and cytokine secre-
tion through reduction of TCR activation [45].

Radiation-induced lymphopenia arises regardless of 
radiotherapy modality and tumor site. The incidence of 
Grade 3–4 radiation-induced lymphopenia (total lym-
phocyte counts < 500 for normal values of 1000—4800 
cells/µL) was reported in 89% of cervix cancer patients, 
and 20–40% of brain tumor patients. Radiation-induced 
lymphopenia has been associated with poor prognosis 

in many tumors [10]. Fractionated irradiation causes 
more severe radiation-induced lymphopenia in com-
parison with single dose treatment due to lymphocyte 
redistribution from SLOs into the blood during fraction 
intervals. Cranial irradiation in leukemic children was 
connected with a more severe radiation-induced lym-
phopenia with increasing fraction number for a same 
total radiation dose. Until now, the precise mechanisms 
of radiation-induced lymphopenia are still unclear. One 
of the hypotheses is that radiation-induced lymphopenia 
is accounted for by the exposure of blood circulating into 
radiation beams during radiotherapy. Simulations using a 
model of glioblastoma demonstrated a higher impact in 
case of fractionated irradiation [46].

The myeloid population
The myeloid lineage consists of granulocytes (neutro-
phils, basophils, and eosinophils), monocytes (mac-
rophages), megakaryocytes (platelets), and dendritic 
cells [4, 47]. The most abundant granulocytes in mam-
mals are the neutrophils [1, 48]. The myeloid popula-
tion also comprises myeloid-derived suppressor cells, 
which are either immature monocytes or neutrophils. 
Myeloid-derived suppressor cells only appear in the 
blood in persistent myelopoiesis induced by pathologi-
cal conditions including cancer, which will not be fur-
ther discussed here[49, 50].

Myeloid lineage function
Myeloid cells participate in the innate immune responses. 
Neutrophils provide an efficient defense barrier against 
pathogens [1]. Monocytes are phagocytic cells, which 
home into tissues in order to differentiate into mac-
rophages following infection and tissue damage or mac-
rophage depletion [51].

Myeloid cells play an essential role in tumor response. 
Neutrophils, depending on their phenotype N1 or N2, 
exert either tumor-promoting or anti-tumor effects [52]. 
N1 neutrophils promote tumor angiogenesis. N2 neu-
trophils participate in tumor elimination by antibody-
dependent mechanisms, activation of antitumor adaptive 
immune mechanisms, as well as cytokine secretion [50, 
53]. Monocytes differentiated into M1-macrophages or 
M2-macrophages in tissues likely exert anti-tumor effect 
or promote tumor growth, respectively [54, 55].

Physiology of myeloid populations

Production, maturation, and distribution Myeloid cells 
are produced via myelopoiesis, and they differentiate into 
different cell lines within the bone marrow. Myelopoie-
sis is stimulated in response to cytokine signals and 

Fig. 3 Quadratic linear regression curve describing occurrence 
of chromosome aberrations in human lymphocytes (grey curve) 
and neutrophils (black curve) following in vitro irradiation [41, 42]. 
It shows that chromosome aberrations occur at a higher rate in 
lymphocytes compared with neutrophils
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infectious stimuli. In healthy individuals, myelopoie-
sis stimulation comes to an end when the stimuli van-
ish. Persistent myelopoiesis can be observed in cases of 
chronic infection, inflammation, or cancer.

Neutrophils develop within the bone marrow from the 
hematopoietic stem cells (HSC) into three steps: prolif-
eration, maturation, and function acquisition (about 14, 
6.5, and 2.5  days, respectively). After maturation, neu-
trophils participate in innate immune responses [56]. 
Mature neutrophils in their terminal differentiation state 
recover after neutropenia in a proliferation-dependent 
way before being released from the bone marrow in the 
blood. Neutrophil half-life is relatively short of about 
3–12  h [57]. Following inflammation, neutrophils are 
rapidly recruited to injury sites so as to participate in 
innate immune responses.

After maturation, monocytes stay within the bone mar-
row for about 1.6  days before being released into the 
blood. Classical monocytes represent 99% of monocytes, 

which either migrate into tissues and differentiate into 
macrophages and then contribute to immune responses, 
or they die by apoptosis within a day. Non-classical 
monocytes called immediate monocytes, or also long-
lived monocytes, stay within the blood for 4.3 and 
7.4 days, respectively [58]. In rodents, 40% of monocytes 
are distributed in the blood, and 60% are dispersed in 
marginating pools [59]. In humans, monocytes are in the 
blood and the spleen, but their largest reservoir under 
homeostatic conditions is the bone marrow [60].

Homeostasis Myeloid cell homeostasis is regulated by 
multiple factors, including differentiation and prolifera-
tion of precursor cells within the bone marrow, release 
into the blood, margination in organs, as well as apop-
tosis [61]. For neutrophils, multiple cytokines, including 
granulocyte colony-stimulating factor (G-CSF), mac-
rophage colony-stimulating factor (M-CSF), granulo-
cyte–macrophage colony-stimulating factor (GM-CSF), 
IL-6, IL-3, and IL-17, promote progenitor proliferation 
and differentiation (Fig.  4A). G-CSF receptor deficiency 

Fig. 4 A Dynamic and homeostatic control of neutrophils. Legend: Neu: neutrophil. Without any immune stimulation, the neutrophil level in the 
blood is controlled by a balance between input from bone marrow and cell survival, which is regulated by cytokines, such as G‑CSF, IL‑23, and IL‑17. 
The homeostasis is disrupted by immune stimulation, as observed in inflammation. B Dynamic and homeostatic control of monocytes. Legend: 
Classic, Int, and non‑classic: classical, intermediate, and non‑classical monocytes, respectively. Without immune stimulation, monocyte levels in the 
blood result from a balance among inputs from the bone marrow, cell survival, and differentiation into long‑lived monocytes. The homeostasis is 
disrupted by immune stimulation, as observed in inflammation
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leads to profound neutropenia. Neutrophils release 
from the bone marrow into the blood is inhibited by 
interactions of stromal derived factor-1 (SDF1) with the 
chemokine receptor CXC-receptor 4 (CXCR4). CXCR4 
down-regulation by G-CSF is associated with neutrope-
nia, thereby increasing mature neutrophil residency in 
bone marrow [62]. Phagocytosis of apoptotic neutrophils 
regulates granulopoiesis via IL-23 and IL-17 [63].

The production of monocytes in the bone marrow is 
governed by growth-stimulating cytokines, such as 
IL-3, SCF, GM-CSF, and M-CSF [64]. Monocyte release 
from the bone marrow into the blood depends on C–C 
chemokine receptor 2 (CCR2). CCR2 deficiency results 
in monocytopenia (Fig. 4B).

Impact of irradiation: radiobiological considerations
Myeloid cells are less radiosensitive than lymphoid cells. 
Murine monocytes and myeloid progenitor cell lines dis-
play almost no decline 24 h after 4 Gy in vitro irradiation 
[13]. In humans, in vitro studies have revealed significant 
numbers of chromosome aberrations in neutrophils fol-
lowing 0.5 Gy single-dose irradiation. The proportion of 
dicentric rings was shown to increase with the radiation 
dose following a linear quadratic function, yet to a lesser 
extent in neutrophils than lymphocytes (Fig. 3) [41, 42].

Marked reduction in myeloid cells has been observed 
after total body irradiation. In tumor-free rhesus 
macaques, a 6  Gy single dose of total body irradiation 
resulted in a neutrophil nadir of 10% and recovery within 
a month. Radiation-induced neutropenia occurs after 
extended field radiotherapy involving a large portion 
of the bone marrow or with concomitant use of myelo-
suppressive chemotherapy agents [15]. High neutrophil 
blood counts have been linked to more aggressive cancer 
and detrimental outcomes in several solid tumors. Pre-
dicting neutropenia following radiotherapy as a prognos-
tic factor could be instrumental in optimizing treatments 
[52, 53].

Balance between leucocyte subpopulations
Balance between myeloid and lymphoid populations is 
critical for immune activities. Skewing of the myeloid/
lymphoid balance towards myeloid population is being 
observed following injuries, such a infection, inflamma-
tion, and irradiation [65]. This balance is controlled by 
homeostasis of each subpopulation.

In hematopoiesis, multipotent progenitors (MPP) dif-
ferentiate either into common lymphoid progenitors 
(CLP) or common myeloid progenitors (CMP), which are 
the progenitors of mature lymphoid and myeloid cells, 
respectively. The probability that a MPP follows a CLP 

rather than CMP route is regulated by mature lymphoid 
and myeloid cells in the periphery. After this step, lym-
phoid and myeloid populations develop and maturate 
in distinct pathways, which are regulated by different 
growth factors (cytokines) (Fig. 5A) [65].

Interactions between lymphoid and myeloid popula-
tions take place following immune stimulation. Recent 
evidence in humans demonstrated cross-communica-
tions between activated neutrophils and T-helper 17 
CD4 + T-cells. Chemokine secretion by stimulated neu-
trophils recruits T-helper 17 lymphocytes to injury sites, 
stimulating IL-17 secretion. IL-17 upregulates G-CSF and 
enhances neutrophil production in the bone marrow, in 
addition to their mobilization to the periphery (Fig. 5B). 
During inflammation, interactions between myeloid and 
lymphoid populations contribute to relations between 
innate and adaptive immune responses. Yet, it is still 
unclear whether such interactions also directly happen 
following RT.

Several lymphoid/myeloid ratios have been associ-
ated with response to radiotherapy, while being used in 
the clinical context to predict treatment efficacy, such as 
neutrophil to lymphocyte ratio (NLR) and lymphocyte 
to monocyte ratio (LMR). NLR is the ratio of neutrophil 
over lymphocyte levels in the peripheral blood. NLR has 
been used as an inflammation marker. A high NLR was 
shown associated with poor prognosis in several cancers, 
such as esophagus cancers. NLR has also been used in 
estimating dose exposure following radiation accidents. 
LMR is the ratio of monocyte over lymphocyte levels in 
the peripheral blood. LMR reflects the degree of systemic 
inflammation, which has been associated with long-term 
prognosis in cancer patients [66]. A high LMR of 4.25 
was reported to be associated with favorable disease-free 
survival in locally advanced breast cancer patients [67].

Quantitative modeling of leucocyte kinetics 
following radiation
Preliminary data and modeling approaches of radiation-
induced leucopenia suggest that recovery kinetics and 
mechanisms differ among white cell lineages. Iterative 
hypothesis-generating processes can further help pro-
vide insights on the ill-defined mechanisms of radia-
tion-induced leucopenia. Modeling approaches were 
separated into single time-point analysis and time-series 
with kinetics based on acquisitions at multiple time-
points. Because modeling accuracy and generalizability 
are dependent on the initial assumption and may thus 
suffer from overfitting, integration of prior knowledge 
and model validation are required in order to minimize 
overfitting, thereby improving model accuracy.
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Single time‑point analysis
Radiation causes perturbations of leucocyte subpopula-
tions. These perturbations can be influenced by radia-
tion parameters (dose, fractionation, rate, and volume of 
irradiated tissue), individual characteristics (body weight, 
age, gender, and cardiac output), or disease status (tumor 
location). Modeling selects essential parameters and 
quantifies their effect on leucocyte subpopulations.

Multiple studies on radiation-induced leucopenia have 
focused on radiation-induced lymphopenia using single 
time-point analysis (in addition to baseline). The end-
points were either early lymphocyte counts during or 
shortly after irradiation (acute effect), late lymphocyte 
counts (chronic effect), or lymphopenia severity (Grade 
1–4). By way of illustration, in one study [68], modeling 
was simply based on piecewise linear and exponential 
models so as to analyze the relationships between lym-
phocyte nadir and dose in the head and neck area [68]. 
In another study [69], a hybrid deep learning model 
was employed to screen several parameters for their 
impact on lymphocyte counts following radiotherapy in 

esophagus cancer patients. In addition to these statistical 
models, blood flow models have been considered under 
the assumption that radiation-induced lymphopenia was 
caused by exposure of blood circulating lymphocytes [46, 
70].

Models built on patient data (with tumors) are intrin-
sically limited in that they cannot determine whether 
radiation-induced lymphopenia is due to systemic effects 
(or the presence of other concomitant treatments such 
as chemotherapies) or an interaction between tumor and 
radiation beams. Models built on healthy individuals can 
explore the systemic effect of irradiation on lymphocytes 
and leucocyte subpopulations. Animal models have used 
total body irradiation in healthy total Rhesus macaques 
[43, 44], or focal brain irradiation in mice [71]. However, 
these models relied on single time-point analyses.

Time‑series analysis
Radiation-induced leucopenia results from multiple 
mechanisms including changes in circulating cells, cell 
production from primary organs, cell maturation in 

Fig. 5 A Lymphopoiesis and myelopoiesis pathways from common progenitors. Legend: HSC, MPP, CLP, CMP, Neu, and Mono: hematopoietic stem 
cells, multipotent progenitors, common lymphoid progenitors, common myeloid progenitors, neutrophils, and monocytes, respectively. From CLP 
and CMP, lymphoid and myeloid differentiation and maturation are separately processed. B Interactions of neutrophils and Th‑17: T‑helper 17 cells. 
Legend: Chemokines secreted by neutrophils induce IL‑17 secretion by Th‑17. IL‑17 induces granulopoiesis, upregulates G‑CSF, thereby inducing 
the differentiation and mobilization of neutrophils from progenitors within the bone marrow. This results in increasing neutrophil levels in the blood
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secondary organs, cell distribution in the body, and cel-
lular interactions, as well. Leucocyte recovery from 
the acute radiation effects on circulating cells is being 
observed after a certain time that depends on homeo-
static regulation.

The physiologic homeostasis of leucocytes is regulated 
independently among leucocyte subpopulations. Simi-
larly, our modeling approach was based on the assump-
tion that myeloid and lymphoid, B and T-, as well as naïve 
and memory T-cell population kinetics are regulated sep-
arately following radiotherapy. To estimate the balance 
of myeloid/lymphoid kinetics, NLR and LMR may also 
be applied as parameters. Based on data from healthy 
macaques and mice, a second assumption was that initial 
parameters influence acute radiation-induced leucopenia 
rather than the recovery phase. An alternative assump-
tion may consider the impact of initial parameters on 
recovery in the event the first model lacked consistency 
with observational data.

A study in rhesus macaques showed leucocyte subpop-
ulations in both lymphoid and myeloid lineages recov-
ered following acute depletion induced by a single lethal 
dose of total body irradiation in surviving macaques [44]. 
Cells count post irradiation were not significantly differ-
ent from those of the non-irradiated group and remained 
stable for more than a year. This suggest that post-radi-
ation homeostasis could be assimilated to the normal 
physiological homeostasis. However, recovery is delayed 
and is dependent on radiation conditions (dose, rate, vol-
ume). In some cases, post-irradiation homeostasis only 
partially recovers, i.e., to a lower level than before irradia-
tion. Modeling can help to identify the steady post-irradi-
ation level and to screen for the radiation conditions that 
participate in this perturbation.

Phenomenological modeling approach Phenomeno-
logical modeling is based on information extracted from 
data without trying to clarify the underlying mechanisms 
that led to the observed data [72]. It informs on underly-
ing data-generating mechanisms and data interpretation. 
Phenomenological modeling from radiation-induced 
leucopenia data could help better understand its mech-
anisms. In regression modeling, a specific function is 
declared and fitted with the available data in the way that 
minimizes the distance between the data and predicted 
data distributed according to a regression function. 
Based on the recovery pattern, several linear and nonlin-
ear models may be considered using functions (Fig. 6B). 
Although this approach arises from experimental data 
rather than prior biological theory, some links between 
suggested functions and homeostasis processes are likely 
identified for model interpretation.

Choosing the best model could be based on the follow-
ing two approaches: 1) exploratory data analysis in which 
data are summarized with their main characteristics by 
data visualization; 2) model selection criteria including 
mean squared error, Akaike information criterion, or 
Bayesian information criterion. The best model provides 
information about the following: 1) recovery pattern; 2) 
whether a stable point (plateau) was reached during the 
observation period; 3) whether the stable point reached 
was the same as before treatment, which implies that 
homeostasis is being either achieved or altered; 4) if a 
stable point was not reached, it could mean that either 
homeostasis control and homeostasis were dysregulated, 
or that the observation period was not long enough for 
homeostasis regulation. The framework for phenomeno-
logical modeling is generalized in Fig. 6A.

Mechanistic modeling approach Mechanistic modeling 
is based on understanding the mechanism underlying the 
data. This approach is useful for hypothesis verification 
or for subsequently refining mechanistic models [72]. 
The most common mechanistic modeling type consists 
of compartment models that describe the variation of 
quantities (here leucocyte counts) by ordinary differential 
equations (ODE). This is a well-known approach in stud-
ying dynamics and system evolution with time. Compart-
ments, illustrated as boxes, and transfer rates showing 
changes among compartments for each time unit, are 
given by differential equations. The general form of each 
differential equation is the following:

In 1986, a preliminary model described lymphocyte 
kinetics in rodents with either three compartments 
(B-cells) or four compartments (T-cells) (Fig.  7B) [73]. 
Based on this model, data from experiments of post-irra-
diation lymphocyte kinetics were employed for model fit-
ting in order to investigate whether physiologic homeo-
stasis was being observed following irradiation. This first 
step can be instrumental enabling us to establish more 
modern and more complex mechanistic models that inte-
grate the multiple steps of maturation and feedback con-
trol on the proliferation [74].

Myeloid cell kinetics is less complex than that pertain-
ing to lymphocytes, given that there is no recirculation. 
Several structures of mechanistic models have been pro-
posed, such as neutrophil or monocyte kinetic models 
developed based on myelopoiesis, as well as their dynam-
ics in the blood (Fig.  7C). Parameter estimation based 
on human data using deuterium-labeled glucose was 
revealed to be well-fitted with theoretical data [58, 75].

d(variable)

dt
= input − output
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Fig. 6 A Phenomenological modeling approach of radiation‑induced leucopenia based on longitudinal data. B Functions for possible 
phenomenological modeling approaches. Legend: Depending on the data trend (growth trend), appropriate function types can be used for data 
fitting. In agreement with the biological homeostasis theory and radiosensitivity, the function type would provide information regarding the 
characteristics of the recovery processes
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Comparing model fitting results of healthy or leucopenic 
individuals demonstrated that the proliferating rate and 
transfer rate from the bone marrow to blood increase 
when the circulating pool is reduced. This change leads 
to the recovery of the circulating pool, in agreement with 
the homeostasis theory. Based on this idea, a new model 
structure is proposed with some modifications from the 
known mechanistic model. A negative feedback loop 
was added, in which the proliferating rate and transfer 
rate were negatively controlled by the circulating pool 
size (Fig.  7D). The negative feedback loop represents 
homeostatic regulation: in leucopenic conditions, when 
the circulating pool size is smaller than the physiological 
level, the turnover rate of the proliferating pool increases 
accordingly to help the circulating pool recover [76]. On 
the other hand, when the circulating pool exceeds the 
physiological level, the negative feedback loop drives the 
proliferating pool to lower its turnover rate until the cir-
culating pool returns to physiological level [76].

A feedback loop has already been applied to models of 
neutropenia induced by chemotherapy agents since 2002 
(Friberg’s model, [77]). Because mechanisms of neutro-
penia induced by chemotherapy or radiotherapy both 
affect the bone marrow [15, 77], the Friberg’s model may 
be applied to radiation-induced neutropenia, and a struc-
tural model may thus be built (see compartmental graph 
in Fig. 7E) [77].

Feedback is illustrated as an inversely proportional func-
tion of the circulating pool size to the proliferating pool 
turnover rate [77–79]. The feedback loop in Friberg’s 
model [77] was described as:

where f(C) is the negative feedback function; k is the 
turnover rate of proliferating pool;  k0 is the turnover rate 
of proliferating pool at steady state; C is the circulating 
pool size;  C0 is the circulating size at steady state; and γ 
is the coefficient of homeostasis control. Following this 
function, turnover rate k would increase when C is lower 
than  C0 and return back to  k0 when C is equal to  C0.

Example: radiation‑induced neutropenia in 
non‑human primates following total body irradia‑
tion Both phenomenological and mechanistic mod-
els likely contribute to understanding radiation-induced 
leucopenia. To illustrate this point, we have provided an 
example using data extracted from a study of radiation 
impact on circulating neutrophils in macaques [43]. From 
the data extracted, neutrophil kinetics following irradia-
tion were separated into two periods: [1] An early phase 
(Day 0–14) showing a rise at Day 1 with exponential 
decline from Day 1 to Day 14; [2] a late phase (from Day 
14) showing sigmoid-like increase with a slight rebound 
before reaching a steady level (Fig. 8A).

For the early phase, a phenomenological modeling 
approach was applied using the exponential model:

where Ct is the neutrophil concentration at Day t + 1; 
C0 is the neutrophil concentration at Day 1; t is the day 

f (C) =
C0

C

γ

; k = k0
C0

C

γ

Ct = C0e
−kt

(See figure on next page.)
Fig. 7 A A semi‑mechanistic modeling approach framework for investigating radiation‑induced leucopenia with longitudinal data. Legend: 
A model structure (graph and ODE) for cell kinetics was built based on theory of cell production, maturation, and homeostasis. Based on the 
cell kinetics model, target compartments and parameters of radiation beams must be defined (based on theory and treatment planning 
system). B Structural model of lymphocyte population kinetics. Legend: This model includes: 1) a stem cell compartment with proliferation 
(here the bone marrow) and output, yet no input; 2) the thymus in cases of T‑cells, with input, proliferation, and output of cells; 3) the peripheral 
pool of immunocompetent mature T and B lymphocytes, which are divided in transit compartments; 4) an effector compartment formed by 
antibody‑producing plasma cells, which constitutes a simple transit compartment, with input and output (cell loss), yet no proliferation. C Structural 
model of myeloid population kinetics: (C1) structural model of neutrophil population kinetics. The model considers mitotic neutrophil precursors 
as a single proliferating pool. Cells in this pool proliferate at a mean rate p. After the last mitosis, the cells enter the transit pool at a rate k. Transit 
neutrophils remain for a period in the bone marrow before being released into the circulating pool at rate  k1. The cells either leave this pool in 
the direction of other marginal organs or die by apoptosis at rate  k2. (C2) Structural model of monocyte population kinetics. The model depicts 
monocytes in the bone marrow, where their precursors proliferate at rate p and mature at rate k. Mature monocytes are released from the bone 
marrow at rate  k1 into the circulation. In blood, monocytes either mature into intermediate monocytes at rate  k2 or disappear from the blood (by 
death or by moving to other organs) at rate  d1. Intermediate monocytes either differentiate into long‑lived non‑classical monocytes at rate  k3 
or disappear from the blood at rate  d2. Non‑classical monocytes are the final differentiation stage, which disappear from the blood at rate  d3. D 
Simplified structural model of myeloid cell population kinetics following cell depletion. This model comprises a proliferating pool, mature pool in 
bone marrow, and circulating pool. A negative feedback loop was added, in which the proliferating rate and transfer rate from bone marrow to 
blood were negatively controlled by the circulating pool size. E Compartment description of Friberg’s model. The model consists of a proliferating 
compartment that is sensitive to drugs, in addition to three transit compartments that represent maturation, and a compartment of circulating 
blood cells
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Fig. 7 (See legend on previous page.)
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after Day 1; k is the parameter estimated relating to the 
neutrophil reduction rate. For the late phase, the semi-
mechanistic modeling approach was applied using the 
Friberg’s model (Fig.  7E), assuming that the neutrophil 
concentration in the circulating pool induced negative 
feedback on the proliferation rate in the proliferating 
pool (detailed parameters estimation is illustrated in sup-
plementary Table 2). For both phases, the model returned 
good parameter estimation and well-fitted prediction 
curves (Fig.  8B-Fig.  8C). The phenomenological expo-
nential model for the early phase might be interpreted as 
a semi-mechanistic model where during the first 15 days, 
there is no neutrophil input to blood from Day 1–14, with 
the clearance (death rate) driving neutrophil kinetics.

From the two-phase models, a whole time-series model 
could be inferred where: [1] radiation caused a reduction 
of k to 0 from Day 1; [2] the k value increased gradually 
from Day 1 to Day 14 so as to reach a stable level. The 
model structure is illustrated in Supplementary Fig.  5. 
The model for the whole time-series returned prediction 
curves that were well-fitted with the data (Fig. 8D).

Finally, the model structure and parameter are consist-
ent with prior knowledge. Indeed, in humans, neutro-
phil concentration in blood is dependent on cytokines 
(G-CSF, IL-17, IL-23…), which regulate the production 
and maturation of neutrophils in the bone marrow. Mod-
eling results showed that radiation-induced neutropenia 
was likely caused by a proliferation lack rather than by a 
direct impact on the circulating pool. As suggested, full 
recovery to nearly initial levels could be reached after 
about 14 days.

Variable screening Radiation parameters (dose, frac-
tionation, rate, volumes, etc.) and individual status 
(cardiac output, body weight, age, gender, etc.) might 
interfere with homeostatic regulation of leucocyte sub-
populations, thereby resulting in chronic radiation-
induced leucopenia. Chronic leucopenia may be detected 
by stratifying data on parameter values, while relevant 
parameters could be imputed into the model.

Fig. 8 Radiation‑induced neutropenia following total body irradiation in rhesus macaques. A Data extracted from [43]; B Exponential model fitting 
for the early phase; C Friberg’s model fitting for the late phase; D Model fitting for the whole time‑series data. The black dots and blue line in (B), C, 
and D represent data and prediction, respectively. Data illustration and modeling were processed based on extracted data from Farese et al. 2015 
[43]



Page 15 of 18Pham et al. J Exp Clin Cancer Res           (2023) 42:50  

By way of illustration, assuming that cell popula-
tion kinetics after irradiation follows a linear model 
C = C0 + kt, where C is the cell concentration at certain 
time t, and C0 the concentration during irradiation. The 
parameter k of the linear function is estimated with: 
k = k1 when radiation dose d = d1, k = k2 when radia-
tion dose d = d2, and k = k3 when radiation dose d = d3. 
The radiation dose effect on cell recovery can be assessed 
using a new function f(d) = k in order to represent the 
correlation between k and d. Model comparison using 
AIC can then be applied to select the best f(d), as well 
as compare the new (with variable imputation) and ini-
tial models (without variable imputation) with respect to 
impact of radiation dose.

Individual based modeling Conventional modeling 
approaches predict the mean behavior of a whole popu-
lation. When dealing with longitudinal replication data, 
this approach neglects the interaction between factors 
for each individual. Individual-based modeling is a hier-
archical modeling approach that accounts for a high 
complexity degree among individuals, as well as interac-
tions among individuals, where populations are analyzed 
as a composition of discrete individual organisms in 
which each individual has a set of state variables, such as 
longitudinal time points (Fig. 9) [80]. Studies of leucocyte 
subpopulation recovery following radiation in rhesus 
macaques revealed a high variability among individuals, 
suggesting effect of radiation-induced leucopenia to be 
heterogeneous [44]. Individual-based modeling appears 
particularly useful with heterogenous data, where a con-
ventional approach would deal with confounding factors, 
and thus render the population trends misleading with 
respect to what truly happens within the population at 
the individual level. Although powerful, individual-based 
modeling is not always possible, given that it requires 
access to individual data, which is not always possible 

when retrieving literature data. In addition, more com-
plicated algorithms and machines are needed for individ-
ual-based modeling application. (Fig. 9)

Model validation
The use of modeling in biology often raises questions of 
how well the model likely applies to the real-world set-
ting. The optimal way is to perform model validation 
using large sets of independent data. Model validation 
for small datasets would require either goodness-of fit, 
cross validation, or both [81]. Goodness-of-fit estimates 
the randomness of the distribution of residuals, which 
represent the portion of the validation data that cannot 
be explained by the model [81]. Cross validation parti-
tions the data into complementary subsets, performing 
analyses on one subset, and validation on another subset, 
iteratively. Cross-validation can detect overfitting, thus 
providing insights on how the model would generalize 
to an independent dataset [81]. In addition to statistical 
validation, prediction obtained from bio-mathematical 
models must always be challenged for consistency with 
prior knowledge.

Conclusion
Modeling of radiation-induced leucopenia, in combina-
tion with prior knowledge of leucocyte homeostasis and 
radiosensitivity, opens new approaches to understand 
the mechanisms behind leucocyte variation follow-
ing radiation. With availability of new preclinical and 
clinical data of leucocyte kinetics following radiation, 
modeling likely provides more insights in underlying 
mechanisms. Modeling can not only assess the impact 
of radiation parameters on leucocyte subpopulations, 
but also their recovery following acute leucopenia, 
which can be performed by combining prior physiology 
knowledge and available data. Understanding leucocyte 

Fig. 9 Illustration of how individual‑based modeling is applied in modeling. Legend: In conventional modeling, a common model is evaluated as 
the mean of the whole population. In individual‑based modeling, population estimates are based on the estimation of each individual
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physiology is critical for both model development and 
interpretation. Pioneering studies were mainly focused 
on radiation effects on a single time point, yet with-
out considering the recovery of leucocyte counts with 
time. This review contributes to defining the impact 
of radiation parameters on both a single-time point of 
acute effects and subsequent recovery of leucocyte sub-
populations. It may facilitate the optimization of can-
cer treatments by predicting leucocyte levels depending 
on radiation modality, i.e., X-rays or hadrontherapy, 
and of the combination of radiotherapy and immu-
notherapy. In particular, assessing leucocyte count 
variations with time following radiation can also help 
define the optimal time for immunotherapy initiation. 
Although promising, modeling must be applied care-
fully with proper data calibration. To date, modeling of 
leucocyte kinetics following irradiation only considers 
changes in leucocyte counts, without taking account of 
their function. This is a first step towards modeling and 
understanding the effects of fractionated radiotherapy, 
whereas more data are required in view of a more reli-
able prediction of cancer treatment outcomes.
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