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ABSTRACT This work, presented in two parts, investigates the relevance of using fractal analysis to characterize and study
liquid flow atomization processes and participates to the required effort of conducting experimental investigations on primary
break-up processes. This first part tackles the problem of the method. Several methods to determine fractal dimension are
available but none of them is a priori better than any other and they all require to be tested. Three methods are tested on
synthetic images that have similar characteristic features as the liquid flow images we intend to analyze. The results show that
Euclidean Distance Mapping (EDM) method is the most appropriate in our case where local fractal dimension wants to be
determined. It is shown that this method is well adapted to determine both the textural and the structural fractal dimensions of an
object. These two fractal dimensions characterize the tortuosity of the object boundary and the tortuosity of the object itself,
respectively. It is also found that EDM allows building fractal dimension distribution which is useful to qualify the fractalness of
the analyzed object.
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1. INTRODUCTION

A rapid overview of the works available in the
literature shows that the question of liquid flow distortion —
prior step to any liquid atomization process — has been
widely investigated from a theoretical point of view but that
experimental investigations on primary break-up processes
are lacking. Primary break-up designates the process of
liquid detachment from the continuous liquid flow
connected to the nozzle. Chigier [1] pointed out that the
primary break-up region of an atomizing liquid flow
requires to be investigated since it is the vital link between
the liquid emerging from the nozzle and the fully developed
spray. Furthermore, he added that imaging remains the sole
technique for obtaining information about liquid sheets and
jets emerging from nozzles and their subsequent break-up
and that efforts must be made to record, analyze and
interpret the break-up process. The work reported in this
study intends to participate to this effort.

Ilustrations of atomizing liquid flows presented and
discussed in [2] show that whatever the working conditions,
an atomizing liquid flow is a geometric object with
complex boundaries and that drop and ligament detachment
is a function of the shape of the stream. Therefore, it
appears relevant to characterize the shape of the liquid flow
during atomization. This study, that is presented in two
parts, investigates the possibility of using the fractal
dimension concept to characterize atomizing liquid flows.

The fractal dimension is an extension of the Euclidean
dimension and allows describing complex boundaries. For a
straight line, Euclidean and fractal dimensions are equal to
1. For a line inscribed in a plane, the fractal dimension
varies from 1 if the line is straight to 2 if the line is so
tortuous that it fully covers the whole plane. Fractal
dimension is a measure of the tortuosity, fragmentation or
roughness of a surface or a line that is strictly or statistically
self-similar over a range of scales, i.e., pieces of the pattern,

when magnified, resemble to the whole [3].

Fractal analysis is used in several fields to characterize
object with complex shapes. In medicine, it characterizes
neuron and cell morphology [3-5]. In physics, fractal
analysis has been widely applied to characterize scalar
interface in turbulent flows [6]. In combustion, the
morphology of front flame [7] and of soot particles [8] can
be related to a fractal dimension.

The use of fractal analysis in liquid atomization and
spray systems has received very little attention so far.
Chehroudi and Talley [9] used a fractal analysis to
characterize the envelop of dense sprays as a function of the
atmospheric conditions. As far as the characterization of
liquid flow primary atomization region is concerned, only
two approaches are available. The first one is due to Shavit
and Chigier [10] who considered the liquid gas interface of
an air assisted cylindrical liquid jet. They succeeded in
determining a fractal dimension of the liquid gas interface
and found that, as going downstream from the nozzle exit,
this fractal dimension increased, reached a maximum and
decreased. The region where the fractal dimension is
maximum was identified as the region where the liquid
break-up is the more effective. Furthermore, the maximum
fractal dimension reported a relationship with some mean
diameter of the spray drop size distribution. A similar
approach was followed in a previous study [11] in a totally
different situation. The liquid atomization process was not
controlled by a gaseous turbulent assisting flow but by the
turbulence generated in the liquid flow itself. The
conclusions of that work confirmed the general trend
reported by Shavit and Chigier [10]. Although these two
investigations showed the relevance of using fractal
analysis to liquid atomization process, several points
remained unanswered among which, what is the best
method to determine liquid interface fractal dimension?
What is the quality of the atomization process fractalness?
What kind of physical information can be deduced from a



fractal analysis? This last question is important.

A fractal analysis may bring other information than the
sole fractal dimension. In the literature, fractal objects are
divided in two groups: linear (or ideal) fractals and
non-linear (or natural) fractals (Foroutan-pour et al. [12]).
Linear (or ideal) fractals result from an absolute generating
process. For these objects the fractal dimension is analytical
and can be exactly calculated over a semi infinite domain.
Non-linear (or natural) fractals result from a statistical
generating process. Physical objects fall into this category
and are fractal in a range of physical cutoff length scales.
The knowledge of these length scales might be interesting
but requires an appropriate technique to determine the
fractal dimension. The question of the fractal analyzing
method is addressed in the present article.

There are several techniques to determine the fractal
dimension of 2D contours. Smith et al. [5] classified them

in two categories; the Length methods and the Mass method.

Length methods are extensively used. They can be
subdivided into the Box Counting methods and the Sausage
methods. The previous attempts of atomization process
fractal analyses were performed with a Box Counting
method [10, 11]. The Mass Methods are less used. We can
find applications of this method in Panico and Sterling [3],
Caserta et al. [4] and in Smith et al. [5]. These fractal
methods have been compared in several working conditions
[3, 5, 7, 9, 12]. According to these works (and others) it
appears impossible to know whether one technique is better
than any other in a given situation. It seems therefore
reasonable to test several methods on images of
mathematical (linear) fractals paying attention that these
images are of the same type as those of the physical
behavior we want to characterize. This work is presented in
this article.

Three fractal dimension determination methods are
tested on synthetic images. These images, presented in the
next section, have similar characteristic features as the
liquid flow images we want to analyze and contained 2D
mathematical contour of known fractal dimension. As far as
the fractal dimension methods are concerned, it is decided
to use a Box Counting method, a Sausage method and a
Mass Method. These techniques are presented in section 3
of this article and the application of these methods to
analyze the synthetic images is presented and discussed in
section 4.

2. DESCRIPTION OF THE IMAGES

The atomizing liquid flows that will be analyzed are
produced by a simplified compound (or cavity) nozzle.
Compound injectors, widely used in low pressure gasoline
injection, are made of a superposition of two or three disks.
The internal nozzle geometry imposes drastic deflections to
the flow and favors the development of complex issuing
flow structures. At the exit section, the flow shows a double
swirl and a consistent turbulent level. It was shown in a
previous investigation (Dumouchel et al. [14]) that the
aerodynamic forces have no effect on the atomization
process because of low injection pressures. The atomization
efficiency is related to the kinetic energy of the non axial
flow component as well as to the turbulent kinetic energy at
the nozzle exit, both characteristic features being functions
of the injection pressure and of the nozzle geometry. The

simplified cavity nozzle used in the present investigation is
described in the second part of this study.

An example of the liquid flow issuing from this nozzle
is shown in Fig. 1-a. This image was obtained with heptane
and an injection pressure of 0.2 MPa. Thanks to the use of
appropriate camera and light source, the image shows good
spatial and temporal resolutions. The fractal analysis we
intend to perform concerns the continuous liquid flow only
and detached droplets and ligaments are not taken into
account and are removed from the image. Thus, the objects
to be analyzed are contours of the continuous issuing flow
as illustrated in Fig. 1-b. (Details on the experimental
set-up, diagnostics and on the image analyzing technique
are given in the second part of this study).

Figure 1: Left — Example of liquid flow issuing from
the simplified compound nozzle (4P; = 0.2 MPa, fluid:
Heptane), Right — Associated contour of the continuous

liquid stream. The rectangle shows the Analyzing Window
delimiting portion of the flow for the determination of local
fractal dimension (not on scale)

Image 1

Image 2

Image 3

Image 4

Image 5

Figure 2: Synthetic images

Following previous studies (Shavit and Chigier [10],
Dumouchel et al. [11]), we are interested in the
determination of the local fractal dimension in order to
investigate its evolution from the nozzle exit to the end of
the primary atomization process. To achieve this, the fractal
dimension is determined on portions of the liquid flow



delimited by an analyzing window (see Fig. 1-b). This
window is 257 pixels height and is as wide as the initial
image, i.e., 2,016 pixels. Thus, the objects to be analyzed
are two contour parts, more or less close according to the
distance from the nozzle. They are different than most of
the objects analyzed in the literature that are closed
contours. This justifies the present study which consists in
testing fractal analysis methods on synthetic images of
mathematical objects with a known fractal dimension.

The synthetic images were designed to reproduce the
characteristic features of the atomizing liquid flow images.
They have the same size as the analyzing window
(257x2,016 pixel®) and contain one or two portion(s) of
objects. Five images are analyzed, they are presented in Fig.
2.

Image 1 is a single vertical straight line positioned in
the middle of the image. The fractal dimension of this
object is 1. Image 2 is an inclined single straight line (the
inclination angle is equal to 15°). Although this image is
similar to the previous one since the objects they contained
have the same fractal dimension, the line in Image 2 will
allow quantifying image digitalization effect. Image 3
contains two parallel straight lines. The distance between
the two lines is 100 pixels. The analysis of this image will
illustrates the influence of the presence of two contour
portions on the determination of the fractal dimension.
Image 4 contains a portion of a 5-order triadic Koch coast
line. The Koch line is a linear (or ideal) fractal often used in
the literature to test fractal methods. It results from an
absolute generating process with a known construction rule.
Its fractal dimension is analytical and equal to 1.2618. The
portion of Koch coast line in Image 4 is inclined. Finally,
Image 5 contains two portions of 5-order triadic Koch coast
line.

3. DESCRIPTION OF THE FRACTAL ANALYZING
METHODS

The fractal analysis of the synthetic images presented
above is conducted with three methods: the Minimum Grid
Counting method, the Euclidean Distance Mapping method
and the Mass Method.

3.1. Minimum Grid Counting method (MGC)

The MGC method is a length method that derives from
the Box Counting Method. It consists in superimposing a
regular grid of square elements of size » on the image and
in counting the number N(r) of squares intersecting the
contour. Plotting N(r) as a function of » on a logarithm
scale reports a linear behavior if the contour is fractal. This
log-log plot is called the Richardson-Mandelbrot plot. The
fractal dimension of the object can be deduced from the
slope of this plot: the Box Counting Method connects the
number N(r) and the spatial scale r by the relation:

N(r)zKr_'s (1)

where K is a constant and J is the fractal dimension of the
object. This technique was used by Shavit and Chigier [10].
It was noted in the literature (Panico and Sterling [3],
Foroutan-pour et al. [12], Dumouchel et al. [11]) that the
number N(7) is sensitive to the position of the grid upon the

object. Panico and Sterling [3] and Dumouchel et al. [11]
averaged the number N(r) on all possible grid positions,
whereas Foroutan-pour et al. [12] noted that the strict
estimation of a fractal dimension value requires the
minimum box covering. These two approaches are not
equivalent. For » = 1, a single grid position exists and both
approaches report the same number N(r). However, for
large spatial scales (large r), the number N(r) averaged on
the grid position is always greater than the minimum
number N(r). Thus, according to Eq. (1), the average
counting reports smaller fractal dimensions than the
minimum counting. This might explain why, using the
average counting, Triballier [15] reported fractal dimension
less than 1 for contour lines barely tortuous. To avoid such
non-physical results, it was decided to use the minimum
N(r) for each value of » and to refer to this approach as the
Minimum Grid Counting method.

3.2. Euclidean Distance Mapping method (EDM)

Classified in the Sausage Methods, the EDM method is
also a length method. Each pixel of the image is attributed a
gray level that is equal to the shortest distance, expressed in
pixel, between this pixel and the contour: if the distance is 7,
the gray level attributed to this pixel is  also. Then, for
each value of r, the number N(7) of pixels with a brightness
less or equal to r are counted. This number of pixels
coincides with the area of a ribbon around the contour, each
external pixel of the ribbon being at an equal distance from
the contour. There are several ways of calculating the
fractal dimension. According to Bérubé and Jébrak [13], the
more practical is to plot the number N(r) against the width
of the corresponding ribbon, ie., 2r+1. This
Richardson-Mandelbrot plot is linear if the object is fractal
and the fractal dimension J can be obtained from the slope
of the line by using the relationship:

N(r)=K(@2r+1)7° )

where K is a constant. This method was found more reliable
than box methods to determine the fractal dimension (Hall
et al. [7], Bérubé and Jébrak [13]). Furthermore, EDM is
more isotropic, more efficient and generally more precise
(Chehroudi and Talley [9]).

3.3. Mass Method (MM)

The third method to be tested is called the Mass
Method or the Sandbox method (Panico and Sterling [3],
Smith et al. [5]). This method is a variant of the
box-counting method [4]. A pixel belonging to the contour
is chosen as a centering site. In the present approach, square
boxes of size r are centered on it and, for each value of 7,
the total number N(r) of black pixels falling within the
square is counted. The Richardson-Mandelbrot plot shows
the number N(r) as a function of  in a logarithm scale. A
fractal object reports a linear Richardson-Mandelbrot plot
and the fractal dimension O is obtained from the
relationship:

N(r)=Kr° (3)

where K is a constant. For a given object, the procedure
must be repeated using as centered sites all contour pixels



belonging to a region delimited by the radius of gyration of
the object (Panico and Sterling [3], Smith et al. [5]). The
fractal dimension of the object is the average of the fractal
dimensions obtained with all the centering sites.

The MM provides more information about the fractal
object than the length method. It deals with a quantitative
description of the contour and also leads to the concept of
lacunarity and multifractals (Smith et al. [5]).

Log(N(r))

Log(r,,,) Log(r,,,)
Log(r)

Figure 3: Theoretical Richardson-Mandelbrot plots
according to the method (Case of a natural fractal: the
object is fractal in the scale range delimited by r;,, and r,,,.
Quantity in squares indicate local slope)

The three methods described above and tested in the
present work report different Richardson-Mandelbrot plots
that are compared in Fig. 3 for a natural fractal with a
self-similarity spanning in the length scale interval [r;,,;
rou]. Within the range of these scales, the slope of the
Richardson-Mandelbrot plot is a function of the fractal
dimension and of the method used (see Eq. (1)-(3)). Thus,
the determination of the fractal dimension requires the
identification = of the linear regions in  the
Richardson-Mandelbrot plot, which is, most of the time, a
tricky task. In the present work, the local slope graph
technique introduced by Panico and Sterling [3] is used. It
consists in calculating linear regressions over a window
containing a limited number of consecutive points in the
log-log plot and to investigate the evolution of the local
slope as the window slides over the entire r-range. For a
fractal object, this technique reports a local slope constant
over a range of length scales. If no region with constant
local slope is found, the object is not fractal. In the present
study, local linear regression are performed over seven
consecutive points in the Richardson-Mandelbrot plot. As
noted by Panico and Sterling [3] we observed that smaller
intervals for local slope calculation increased the noise but
did not affect the apparent linearity in
Richardson-Mandelbrot plots.

4. RESULTS

The three methods described above are tested with the

synthetic images (Fig. 2). For the MGC method, the size r
of the square elements varies from 1 to 257 pixels, and the
EDM method is applied with an interval of brightness level
r ranging from 1 to 126 pixels. As explained above, the
MM method is local and requires defining contour pixels as
centering sites. It is important that the size r of the
structuring element varies in the same interval for each
pixel centering site. To satisfy this requirement, the
centering sites are the pixels of the contour intercepting the
middle line of the analyzing window and the square size
varies from 1 to 257 pixels, taking only the odd values to
make sure that the centering sites is always the middle point
of the square. The symmetry of Images 1, 2 and 3 renders
unnecessary an statistical approach and the three methods
are applied on a single image each time. However, they are
applied on 150 images for Images 4 and 5, each image
showing a different part of the Koch coast line but
equivalent in size. The Richardson-Mandelbrot graphs are
plotted with the average of the numbers N(7) obtained for
each image.

The result of the analysis of Image 1 is given in Fig. 4.
This figure compares the local slope graph obtained with
the three methods. In order to facilitate the comparison
between the three methods the local slope graph shows the
value of ¢ calculated from Eq. (1) to (3) according to the
method. Furthermore, the results presented in this paper are
smoothed by performing sliding average of J on 15
consecutive values of 7, for each value of r. It is interesting
to add that this smoothing precaution reported a minor
influence on the initial results.

Figure 4 shows that, over the whole length scale range,
both the EDM and MM methods report a constant local
slope equal to the expected value of 1. However, it can be
seen that the MGC method is not convenient at all for this
kind of image. This behavior is due to the fact that the
range of scale » used for the MGC method is not
appropriate to the size of the image. It is recommended in
the literature (Foroutan-pour et al. [12]) that the maximum
box size in box counting methods must not exceed 25% of
the smallest size of the image. If not, very poor information
is returned by the method. This requirement in our case
limits the value of the maximum square size to 64 pixels.
According to Fig. 4 this limit appears too high as the fractal
dimension of the line is correctly calculated by the MBC
method for a spatial scale » ranging from 1 to 30 pixels only.
The results obtained for the other images confirm the poor
appropriateness of the MGC method for the kind of images
analyzed here. Thus, in the following, the results obtained
with the EDM and MM methods are presented and
discussed only.

Figure 5 presents the local slope obtained for the
analysis of an inclined straight line (Image 2). This figure
shows that the MM method is not at all affected by the
digitalization of the object. However, the digitalization
slightly affects the EDM efficiency. This is mainly
observable at small spatial scales where digitalization is
interpreted as tortuosity. Thus, the fractal dimension is
overestimated in this region. However, the EDM method
reports a very acceptable value of the fractal dimension
when the spatial scale varies from a minimum scale equal
to 50 pixels to 250 pixels. Thus, to minimize the influence
of the image digitalization for the EDM method, the spatial
scale should not be smaller than 50 pixels.
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1 v EDM [T
6T o MM

] m O
5T @ =
41

] = =
34

] (] (]
24
11

Double parallel vertical lines
0 t t t t

0 50 100 150 200 250

Spatial scale r (pixel)

Figure 6: Local slope graphs obtained for Image 3.
Comparison between EDM and MM methods.

The results obtained for Image 3 are shown in Fig. 6.
The test conducted with this image shows the influence of
the presence of two portions of the same contour in the
image. For both methods, the presence of two contour
portions has a similar effect, which is an increase of the
local slope at a given spatial scale that depends on the
method. When the image is analyzed at small scales (small
value of ), both lines are analyzed independently and both
methods report a fractal dimension equal to 1. However, for
a given spatial scale 7, a sudden change in the number N(7)
is observed. This change, which is due to the fact that the
two line portions are seen as a single object at this scale,
induces an increase of the local slope. For the EDM method,
this increase is observed for a spatial scale of the order of
100 pixels (see Fig. 6). This value, which is equal to the
distance between the two lines, is obtained because there is
no pixel farther than 50 pixels from the nearest contour
between the two lines, keeping in mind that the spatial scale
shown in Fig. 6 is twice the nearest distance from the
contour (see Eq. (2)). For the MM method, the number of
contour pixels intersecting the square centered on one line
is suddenly doubled when the square hits the second line,
that is, when its size is 200 pixels as found in Fig. 6.
However, for larger spatial scale, this number of pixels
retrieves a linear dependence with the square size and the
local slope returns to the value of the line fractal dimension.
The width and height of the local slope peak reported by the
MM approach in Fig. 6 are determined by the point interval
used for the local slope calculation and by the smoothing
filter and are not physically relevant. From this point of
view, the results obtained with the EDM method are
different: for large spatial scales, the method reports an
almost constant local slope, suggesting the existence of a
fractal dimension greater than 1 within the large scale
range.

Bérub¢ and Jébrak [13] pointed out the influence of the
overall structure on the fractal dimension. They showed that
objects with similar boundaries reported greater fractal
dimension if they were elongated, and that the EDM
method was particularly sensitive to this aspect. This is
interesting and illustrates the difference between the
textural and the structural fractal dimensions introduced by
Kaye [8]. The textural fractal dimension of an object
characterizes the tortuosity of the boundary of the object,
whereas the structural fractal dimension characterizes the
tortuosity of the whole object. In atomization, this
difference is interesting to make since it dissociates the
tortuosity that characterizes the formation of ligaments
(structural fractal dimension) with the one characterizing
the drop formed from interface peeling off (textural fractal
dimension). Thus, the increase of the EDM local slope in
Fig. 6 characterizes the structure of the object made of two
parallel line portions. This object has a certain spatial
covering capacity which explains the existence of a fractal
dimension. The slight decrease of the local slope at large
spatial scales is due to the lack of self similarity of the
structure of the object. Finally, it is interesting to note that
the scale at which the EDM local slope changes
corresponds to the limit between textural length scales and
structural length scales.

The results obtained for a single five-order Koch line
are presented in Fig. 7. As explained above, in this case as



well as for image 5, the Richardson-Mandelbrot plots and
local slope graphs result from the analysis of 150 images.
The theoretical fractal dimension of the triadic Koch coast
line is also shown in Fig. 7 (6= 1.2618). This figure shows
the good behavior of the EDM method that reports a pretty
constant local slope for a spatial scale ranging from
25 pixels to 250 pixels. It can be also observed that the
unfavorable influence of the image digitalization is not as
pronounced as it was for Image 2 (see Fig. 5). The result of
the analysis of Image 4 with the MM method is more
problematic. Although the mean local slope averaged over
the whole range of spatial scales is close to the theoretical
fractal dimension, there is no spatial scale interval over
which the local slope is constant. According to the
definition of a fractal object, the MM method induces the
idea that the contour in Fig. 7 is not fractal, which is
incorrect. Thus, it appears that for the type of images
studied in the present work, the MM method is not efficient
to dissociate fractal objects with non fractal ones.
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Figure 7: Local slope graphs for Image 4. Comparison
between the EDM and the MM methods.
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Figure 8: Local slope graphs for Image 5. Comparison
between the EDM and the MM methods.

The results obtained for Image 5 (Double Koch coast
line) and shown in Fig. 8 lead to a similar conclusion.
When analyzing the object at small spatial scales, the EDM
method reports a constant local slope equal to the expected
value of the Koch line fractal dimension. As for Image 3
(Fig. 6), at small spatial scale, each Koch line is analyzed
independently. For a spatial scale of the order of 100 pixels,
the EDM method reports a sudden increase of the local
slope. The value 100 pixels being the shortest distance
between the two Koch lines, it also corresponds to the
spatial scale at which the two lines start to be seen and
analyzed as a single object. When the spatial scale
continues increasing, the EDM method shows a local slope
that evolves towards a constant value of 1.47. Thus, the
analysis conducted with the EDM method says that the
double Koch lines separated by 100 pixels has a textural
fractal dimension equal to 1.26 and a structural dimension
equal to 1.47.

As for the analysis of Image 4, the application of the
MM method to analyze Image 5 reports an unexploitable
local slope graph. Once again, there is no clear spatial scale
interval over which the local slope is constant. This result
should lead to the conclusion that the object in Image 5 is
not fractal.

According to the tests presented just above, it appears
that the EDM method is appropriate to determine both
textural and structural fractal dimensions whereas the MM
method allows determining the textural fractal dimension
only (see Fig. 6 for instance). However, as noticed in Fig. 7,
the MM method fails in deriving the fractal dimension of a
Koch line. To explain this, one has to keep in mind that
these two methods analyze the contour differently. For each
image, the EDM method analyzes the all contour in the
image at the same time whereas the MM method performs a
local analysis by using a limited number of centering sites
for each image. Indeed, only contour pixels intercepting the
pixel middle line of the image are used as centering sites.
Thus, to have a result statistically representative, the MM
method must be conducted on several images and the
number of images used likely influences the quality of the
result. To check this, the influence of the number of images
on the MM method was investigated. For comparison, the
same test is performed with the EDM method. This test
consists in applying both methods on several sets of Image
4 (the single Koch coast-line). Figure 9 shows the local
slope graphs obtained with the MM method and for several
numbers of analyzed images. To make the results more
easily readable, symbols have been replaced by lines. For
comparison, the expected theoretical value o= 1.2618 is
also indicated in this figure. The results presented in Fig. 9
show that the number of images considerably influences the
local slope graph obtained with the MM method. When a
single image is analyzed, the local slope oscillates around
the theoretical value and the amplitude of this oscillation is
rather high. When the number of images increases, the
amplitude of the oscillation decreases. However, this test
shows that a minimum number of a few thousands of
images are necessary to have a reliable results with the MM
method. In the previous application of this method, (Figs. 7
and 8), the number of images analyzed was 150 only which,
according to the results shown in Fig. 9, is far not enough.
This explains the poor quality of the results obtained with
the MM method when analyzing Images 4 and 5 (Figs. 7



and 8).
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Figure 9: Influence of the number of images on the local
slope graph (MM method, Image 4).
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Figure 10: Influence of the number of images on the local
slope graph (EDM method, Image 4).

For comparison Fig. 10 presents a similar test
performed with the EDM methods. The result is totally
different. Indeed, it can be seen that the number of images
has a reduced influence on the local slope graph obtained
with the EDM method. An interesting point to be noticed is
that, even when analyzing a single image, the EDM method
reports a non negligible spatial scale interval over which the
local slope is constant and equal to the theoretical value.
This interval is positioned in the large spatial scales. For
small spatial scales, we might suspect that the EDM
analysis is affected by the image digitalization because a
Koch line is a succession of straight lines whose
representation is more or less deformed by digitalization
according to their direction.

These last results are important. First, it appears that
the MM method is a reliable method to determine the

fractal dimension of portion of liquid flow provided that a
large number (a few thousands) of images are analyzed.
Such an approach would be very time consuming and is not
adopted here. Second, it appears that the application of the
EDM method on a single image is possible. This allows us
performing the fractal analysis in a different way. By
analyzing each image independently, one will be able to
plot a fractal dimension distribution from the analysis of a
high number of images. According to Smith et al. [5], this
distribution will qualify the fractalness of the physical
process investigated (here, the atomization process). A
distribution with a stiff peak indicates that each image
reports the same fractal dimension and that the process is
fractal. Otherwise, that is if the fractal dimension
distribution is large, the process investigated is multifractal.
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Figure 11: Influence of the inner cutoff scale on the local

slope graph obtained with the EDM method.
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Figure 12: Comparison between the inner cutoff scale and
the minimum spatial scale reported by the EDM method.

Finally, a last test on the propensity of the EDM
method to determine the inner cutoff scale of a natural
fractal is conducted. To achieve this, three series of Koch



line images of different order are analyzed. As the order of
the Koch line varies, the inner cutoff scale, that is the
smallest linear element constituting the line, varies also. In
the present test, Koch lines of order 3, 4 and 5 are analyzed.
Their respective inner cutoff scale is 56, 19 and 6 pixels.
Each series is constituted of 200 images. The local slope
graphs obtained for these three series are compared in Fig.
11. It can be first seen that for each series, the EDM method
reports a spatial scale interval over which the objects are
fractal with a fractal dimension equal to the expected value.
Thus, the EDM method is very robust. Second, this figure
shows that the minimum spatial scale r,,, at which the local
slope becomes constant increases with the inner cutoff scale
of the object. Furthermore, the comparison between the
scale 7,,,, calculated as being the spatial scale at which the
local slope is equal to 98% of the measured fractal
dimension, and the inner cutoff scale r;,,, reveals that these
two scales are linearly related (see Fig. 12). Thus, the EDM
method allows determining a spatial scale that is
representative of the inner cutoff scale of the object,
provided, of course, that this scale is within the resolved
scale interval.

5. CONCLUSION

The analysis of sets of synthetic images with several
fractal analysis methods presented in this paper leads to the
following conclusions. Among the three methods tested, the
EDM method is the best adapted. It allows determining the
fractal dimension with a good accuracy. Furthermore it
succeeds in describing the texture and the structure of an
object and reports two fractal dimensions. One
characterizes the tortuosity of the boundary of the object
and the second one gives information on the shape of the
whole object. It is believed that these two fractal
dimensions can bring precious information on the
organization of the liquid flow during the primary
atomization process.

Another interesting aspect of the EDM method is that it
is possible to apply it on a single image. Therefore, for
given working conditions, it will be possible to determine
the fractal dimension temporal distribution and to qualify
the fractalness of the atomization process.

Finally, it has been shown that the EDM method allows
also determining some representative spatial scales, such as
a scale proportional to the inner cutoff scale of the object as
well as the spatial scale delimiting the textural to the
structural spatial scale interval.

One must insist on the fact that all these results are
meaningful for the kind of images used in the present work
only and that very different conclusions would be drawn for
images of a different type.

6. NOMENCLATURE

K constant [-]
N(r)  Number [-]
r Spatial length scale [pixel]

Vinn Lower cutoff scale [pixel]
Vmin Minimum spatial scale [pixel]
¥ out Upper cutoff scale [pixel]

o Fractal dimension [-]

AP;  Injection pressure [Pa]
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