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Abstract: We report the 3D-tracking of irregular sand particles in a wave flume using a cylindrical
interferometric particle imaging set-up. The longitudinal position of each particle is deduced from
the ellipticity of its speckle-like interferometric image. The size of a particle is determined from
the analysis of the 2D Fourier transform of its defocused image. It is further possible to identify
some rotation of the particles. Simulations accurately confirm the experimental determination of the
different parameters (3D position and size of each particle).
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1. Introduction

The 3D-tracking of particles in a flow has important applications in atmospheric
studies and health, combustion, sprays, and fluid dynamics [1–5]. The possibility to perform
a 3D-tracking of particles using only one camera in a backward scattering configuration is
very attractive when the optical access to the inner area of the flow is limited. Interferometric
rough particle imaging can offer a solution in this case: it consists in the analysis of the
speckle patterns produced by the particles under laser illumination [6–9]. It is an extension
of Interferometric Laser Imaging for Droplet Sizing (ILIDS) [10–18] to the characterization
of rough particles. However, in the case of rough particles, the technique is not limited to
a small range of scattering angles, θ, as for droplets. ILIDS requires indeed that only the
p = 0 (reflected ray) and p = 1 (transmitted ray without internal reflection). Debye orders
dominate the scattering pattern produced by the droplet. It occurs at around θ = 70◦ for
a water droplet with a perpendicular polarization of light (with respect to the incidence
plane). With rough translucent particles, Interferometric Particle Imaging (IPI) can be
used in a backward scattering configuration, as shown in different studies [9,19–21]. With
sand particles, it has indeed been observed that the properties of the speckle pattern
are independent on the scattering angle [8]. The technique could also be applied to the
characterization of ice particles at scattering angles of 90◦, or 135◦ as well [21,22]. IPI does
not require the presence of a reference beam, as in digital holography [22]. Digital-in-
line holography is a very convenient technique to perform a 3D-tracking of the particles,
but the CCD sensor has to be in a forward scattering position, and not in a backward
scattering position [23]. Other techniques such as stereo- and tomo-PIV have also been
considerably developed in recent years to measure 3D velocity fields in flows, but they
require the use of two or more cameras [24–26]. IPI delivers 2D images. To perform a
3D-tracking of particles and to obtain in particular their longitudinal position, a solution is
to build a cylindrical imaging system [27–32]. It still works in a defocused configuration.
Nevertheless, the defocused image of a particle is elliptical and its ellipticity is linked to
the longitudinal position of the particle. With an appropriate design of the system, it is
possible to define a region of interest where the 3D position of each particle is deduced
from its defocused image. Analyzing the interferometric pattern in further detail, the size
of the particle can be deduced as well.
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Such a set-up can have different applications, but most of the experimental demon-
strations have been performed on optical tables until now. The potentiality of the system
still has to be validated on installations such as wind tunnels, or hydrodynamic channels.
The present study will concern the tracking of sand particles in a wave flume. We will first
demonstrate the possibility to simultaneously determine the 3D position of the particles
and their size using a relatively simple instrumentation facing a Plexiglas window of the
35 m-long wave flume. Such a set-up has been proposed and tested previously on an optical
table but not on a real hydrodynamic installation. The method will then be applied on a
series of successive images to perform the tracking of the particles in the wave flume. The
morphodynamics of the sea bottom is indeed strongly influenced by the size and shape of
sedimentary particles. The understanding of particles’ trajectory and deposit as a function
of their size and shape is an important issue [33]. Moreover, in the sea, the performances
of tidal turbines suffer the advection of stones of various sizes through the turbine. The
possibility to measure the size, the trajectory, and the velocity of surrounding particles is
important to evaluate the impacts and loads on the blades. We are interested here in the
3D-tracking of suspended sand particles in the presence of gravity waves. Experiments are
performed in a wave flume and interferometric imaging is shown to enable a 3D-tracking
of sand particles in suspension. Section 2 will first present the experimental set-up, while
Section 3 will explain the cylindrical interferometric imaging method used to realize the
3D-tracking. Section 4 will show some results obtained concerning the 3D-tracking of
the particles (Section 4.1), the measurement of the size of the sand particles using this
cylindrical configuration (Section 4.2), and the rotation of a particle (Section 4.3).

2. Experimental Set-Up

ILIDS (corresponding to water droplets in air) is traditionally performed at the scatter-
ing angle of 70◦ (i.e., in a forward scattering region) [11]. The intensities of the reflected and
refracted rays indeed have to be approximately equivalent to ensure an optimized contrast
of the interferometric pattern. In addition, other scattering orders are then negligible. In
the case of irregular rough particles, there is no such limitation, in particular for translu-
cent particles such as sand. It is possible to work in a backscattering configuration. This
property is directly linked to the measurement method: there is no theoretical model to
predict the pattern scattered by irregular rough particles of any shape under coherent laser
illumination. Nevertheless, in past studies, it has been assumed that a rough particle can
be assimilated to an ensemble of coherent point emitters that cover the whole particle. In
the Fresnel domain, the two-dimensional Fourier transform of the interferometric pattern
is then demonstrated to be linked to the 2D autocorrelation of the envelope of the particle
through Equation (1) [9]:

|FT2D[I](λBtotu, λBtotv)| ∝ |A2D[G0](dx, dy)| (1)

where I is the intensity of the out-of-focus pattern of the particle and G0 is the electric
field scattered by the illuminated particle. λ is the wavelength of the laser, and λBtot is the
scaling factor between both functions, which is deduced from the set-up. Experimentally,
this correspondence between the two-dimensional autocorrelation of the particle’s shape
with the two-dimensional Fourier transform (2DFT) of its interferometric image could be
confirmed in many cases, in both backward and forward scattering regions [9,19–21]. This
approach has offered the possibility to study and quantitatively interpret the interferometric
scattered patterns.

To perform a 3D-tracking of the particles, the main difficulty is to determine the
longitudinal position of the particles in the flow. One possibility is to measure the diameter
of the defocused image of the particle using a classical imaging system. It is linked to
the longitudinal position as the defocus parameter changes. Another possibility is to
use a cylindrical defocused imaging system. The longitudinal position of the particle is
then linked to the ellipticity of the defocused image of the particle [27–29], and specific
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algorithms can be developed to determine the ellipticity of the defocused images [34]. This
last solution based on a cylindrical imaging configuration is tested in the present work.

The interferometric imaging experiments reported in this study have been performed
through the optical window of a 35 m-long, 90 cm-wide, and 1.2 m-high wave flume.
A global top view of this channel is shown in Figure 1. Sand particles of varying size
between 50 and 200 µm are deposited in the flume. Regular waves are generated by a
piston-type wavemaker. The wave conditions have been chosen such that the particles
remain in motion under wave action. The imaging set-up used to perform a 3D-tracking
of the particles is shown in Figure 2. It consists of an enlarged laser beam sent into the
channel through the window and an imaging system that collects light scattered by the sand
particles in the backward region. The angle between the laser beam axis and the imaging
axis is approximately 45◦ in this set-up (corresponding to a scattering angle of θ = 135◦ in a
backward direction). The laser is a frequency-doubled Nd-YAG laser emitting nanosecond
pulses at the wavelength of 532 nm. The detail of the imaging system is depicted in Figure 3.
It is composed of a 200 mm focus length objective, a cylindrical lens (CL), a diaphragm
(D), and a CCD sensor. The CCD sensor is made of 2048 × 2048 pixels (with a pixel size of
5.5 µm). The CCD sensor is synchronized with the laser to record bright interferometric
images. As the pulse duration is very short, each image corresponds to a fixed position
of the particle, without any blurring due to the particle’s motion. The acquisition time of
the CCD is 100 µs. The repetition rate of the laser illumination is 30 Hz. The time interval
between two consecutive images is thus 33 ms. The laser beam is enlarged with an optical
system to obtain a beam diameter of approximately 10 cm in the region of interest where
the sand particles under study are located.
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3. Method to Estimate the Longitudinal Particle’s Coordinates

The transverse position of each particle will be deduced from the position of its out-
of-focus image in the whole global image recorded with the CCD sensor. Let us now
briefly recall the method used to determine the longitudinal position of a particle from
its interferometric image. This is performed thanks to the cylindrical lens of the imaging
system (CL in Figure 3). In the presence of the cylindrical lens, the interferometric image of
each particle is no longer spherical, but elliptical. The ellipticity of this defocused image is
linked to the longitudinal position z1 of the particle. The determination of this z-coordinate
is thus reduced to the determination of the ellipticity of the defocused interferometric image.
For droplets in air or bubbles in water, the z-position of the particle can be further coupled
to a rotation of the orientation of interference fringes to enhance the accuracy [27,28]. This
is not possible with rough particles such as sand, whose interferometric images are complex
speckle patterns.

Let us define the ellipticity of an interferometric out-of-focus image by the ratio Φy/Φx,
where Φy is the size of the out-of-focus image along axis y while Φx is its size along axis
x. This ratio is analytically linked to the parameters of the experimental set-up. Using a
transfer matrix formalism through an optical system, in our case where the cylindrical lens
is after the diaphragm we obtain [27–29]:

Φy

Φx
=

∣∣∣∣∣By
T

Bx
T

∣∣∣∣∣ (2)

where Bx
T (respectively By

T) is the B coefficient of the total transfer matrix from the particle
to the CCD sensor for transverse axis x (respectively for axis y). The parameters are
zw = 20 mm, z2 = 150 mm, fobjective = 200 mm, z3 = 220 mm, z4 = 72 mm, and
z5 = 60 mm (see Figure 3 for the definition of these different parameters). The focus length
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of the cylindrical lens (CL) is 100 mm for axis y, and infinite for axis x. The index of water
is 1.33 and the index of the window is 1.5. With this set of parameters, Figure 4 shows the
evolution of parameters Bx

T (in red) and By
T (in blue) versus parameter z1 that gives the

longitudinal position of the particle. Position z1 corresponding to By
T = 0 corresponds to the

position of the focused image for axis y. Position z1 corresponding to Bx
T = 0 corresponds to

the position of the focused image of the particle for axis x. Between these two values of z1,
a domain exists where the ellipticity of the defocused image varies from 0 to infinity versus
z1, as classicaly observed with astigmatic systems. Figure 5 shows the ratio Φy/Φx deduced
from previous curves versus z1. To illustrate these results, Figure 6 shows the simulation of
four interferometric images of 200 µm rough particles, presenting 4 different longitudinal
positions: z1 = 0.40 m (a), z1 = 0.36 m (b), z1 = 0.31 m (c), and z1 = 0.27 m (d). These
simulations of particles’ interferometric patterns are performed using the model developed
in [7]. Each particle is assumed to be an ensemble of 30 coherent point emitters randomly
located on a sphere of radius 100 µm. The electric field obtained in the plane of the CCD
sensor is calculated using generalized Fresnel integrals. The coefficients of this integral are
the coefficients of the optical transfer matrix of the set-up used. The aperture is described
using a mathematical development of the hard-aperture D (defined in Figure 3) over a basis
of gaussian functions [35,36], which enables the obtention of analytical relations [7].
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Figure 6. Interferometric images of 4 sand particles located at 4 different longitudinal positions:
z1 = 0.40 m (a), z1 = 0.36 m (b), z1 = 0.31 m (c), and z1 = 0.27 m (d).

4. Experimental Results
4.1. 3D-Tracking of Particles

Let us now present the experimental results. Figure 7 shows an interferometric pat-
tern recorded on the CCD sensor. Supplementary Video S1 shows a video composed of
20 images. The interferometric images observed evolve from vertical to horizontal seg-
ments, as predicted in Figure 6. In general, with ILIDS, we can detect and measure a few
tens of particles per image (typically 20 or 30) depending on the value of the defocus pa-
rameter and of the field of view. Both parameters are actually adjusted to the concentration
in particles when designing the system. Figure 7 contains approximately 20 particles. Some
of them are on the longitudinal borders of the region of interest (interferometric images
very similar to the plots of Figure 6a,b, respectively), and their quantitative analysis is not
possible. The contrast of the images of some other particles can be very low. This is one
of the main difficulties when transferring an experimental set-up from an optical table to
an experimental system as a wave flume whose optical access is not high-quality optical
windows. However, an analysis of the sequence can still be performed. We have decided
here to follow 4 particles that are present on the 20 images of the sequence presented
in Supplementary Video S1. To identify them easier in Figure 7 and in Supplementary
Video S1, their interferometric images are “encircled” with an ellipse. As described in
the theoretical section, the ellipticity of each defocused image provides the longitudinal
position z1 of the corresponding particle (the ellipticities have been determined for all
images of Supplementary Video S1). Equation (2) shows that the ellipticity is linked to
the optical transfer matrix coefficients of the imaging system. In the case of our set-up,
Equation (2) used to plot Figure 5 is the equation of an hyperbole whose quantitative
equation is Equation (3):

z1(m) = 0.3976− 0.1294
Φy/Φx/0.635 + 1

(3)

where Φy/Φx is the ellipticity parameter of a defocused particle’s image under study.
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Figure 7. Interferometric images of sand particles in a wave flume. Four particles are selected to
perform their 3D-tracking (Supplementary Video S1).

To perform a 3D-tracking of the different particles, the sole z1 position of a particle is
not sufficient. It is necessary to determine the x- and y-coordinates of each particle. As the
imaging set-up is constituted of a cylindrical lens, the determination of these coordinates is
not direct. For a defocused image, we first determine the coordinates (x′c, y′c) of the center
of the encircling ellipse. The transverse coordinates (x1, y1) of the center of the particle (in
the real measurement volume) are then provided by the relations:

x1 = −
Bx

1
Bx

2
x′c (4)

y1 = −
By

1

By
2

y′c (5)

where Bu
1 is the B-coefficient of the optical transfer matrix from the sand particle to the

aperture D (see Figure 3) for transverse axis u (u = x or y), and Bu
2 is the B-coefficient of

the optical transfer matrix from the aperture D to the CCD sensor for transverse axis u
(u = x or y). Note that Bx

1 = By
1 = B1 in our system. The cylindrical lens is indeed after

the aperture D. Coefficients Bx
2 and By

2 are fixed by the set-up, but coefficient B1 depends
on the longitudinal position z1 of the particle observed. For each particle of any image,
we thus first determine the ellipticity of the out-of-focus image, deduce the z1 position of
the particle according to Equation (3), determine coefficient B1 for this particle, and use
Equations (4) and (5) to obtain the transverse coordinates (x1, y1) of the particle. This is
repeated for all particles selected and for all images. We can then perform a tracking of all
particles selected. Figure 8 finally shows a tracking of the four particles selected in Figure 7
(and in Supplementary Video S1). The beginning of the trajectories during the tracking is
represented by an encircled cross. As the time interval between the two consecutive images
is 33 ms, it is actually possible to deduce the velocity of the particles from Figure 8.

4.2. Size Measurements of the Particles

IPI enables a deeper analysis than the sole 3D-tracking of the particles. It is indeed
possible to determine the size of the particles. The procedure is as follows: For a given
image (we will consider Figure 7), we select the defocused image of one particle. Let us
first consider particle 1 (encircled in red in Figure 7). The selected pattern is reported in
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Figure 9a. This truncated pattern is 2D Fourier-transformed. The reason for this operation is
explained by Equation (1), which shows that the 2D Fourier transform of the interferometric
image can be assimilated to the 2D autocorrelation of the contour of the rough particle. The
procedure is, however, not as straightforward as usual. Equation (1) is indeed adapted to a
spherical imaging set-up. In the case of a cylindrical imaging set-up, Equation (1) has to be
modified, as: ∣∣∣FT2D[I]

(
λBx

totu, λBy
totv

)∣∣∣ ∝ |A2D[G0](dx, dy)| (6)

where the scaling factors λBx
tot and λBy

tot are different, according to the cylindrical geometry
of the set-up. Bx

tot and By
tot are the B-coefficients of the optical transfer matrix for the

total system (i.e., from the particle to the CCD sensor), for both transverse axes x and
y, respectively. It is actually possible to separately determine coefficients Bx

tot and By
tot.

Their determination is carried out after determination of the longitudinal position z1 of the
particle. Table 1 summarizes all parameters obtained for the whole characterization of the
particles tested. It will be detailed later. Figure 9b shows the 2D Fourier transform of the
pattern in Figure 9a in the logarithmic scale, and after application of the two different scaling
factors λBx

tot and λBy
tot along both transverse axes x and y. It is then binarized. The result is

reported on Figure 9c. According to the modified Equation (6), this binarized shape can be
assimilated to the 2D autocorrelation of the shape of this particle in Figure 7. Assuming an
ellipsoidal shape of this particle, its dimensions are estimated to be 130× 60 µm.
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Table 1. Parameters deduced during the analysis of the 4 “encircled” particles of Figure 7.

Particle 1 Particle 2 Particle 3 Particle 4

color red green white cyan

Ellipticity Φy
Φx

1.87 0.29 0.53 1.06

z1 (m) 0.365 0.308 0.327 0.349

x1 (m) −0.0047 −0.0073 −0.0047 −0.0028

y1 (m) −0.0103 −0.0062 −0.0050 −0.0083

Bx
tot (m) 0.0230 0.066 0.052 0.035

By
tot (m) −0.047 −0.019 −0.029 −0.039

(x× y) size 130× 60 µm 130× 180 µm 140× 170 µm 140× 150 µm

This work is repeated for particle 2, encircled in green in Figure 7. The selected pattern,
its scaled 2D Fourier transform in the logarithmic scale, and its binarization are presented
in Figure 10a–c, respectively. In this case, the dimensions of the particle are estimated to be
130× 180 µm.
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Figure 10. Section of the interferometric image of particle 2 (in green in Figure 7) that will be 2D
Fourier-transformed (a), the log of its 2D Fourier transform (b), and its binarization (c).

For particle 3 (encircled in white in Figure 7), the truncated pattern, its scaled 2D
Fourier transform in the logarithmic scale, and its binarization are presented in Figure 11a–c,
respectively. The dimensions of the particle can be estimated to be 140× 170 µm.
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Figure 11. Section of the interferometric image of particle 3 (in white in Figure 7) that will be 2D
Fourier-transformed (a), the log of its 2D Fourier transform (b), and its binarization (c).

For particle 4 (encircled in cyan in Figure 7), the results are presented in a similar
form in Figure 12. The dimensions of the particle can be estimated to be 140× 150 µm.
This last case shows a supplementary difficulty. The defocused image of another particle
is indeed superposed to the pattern of Figure 12a (the sharp vertical lines). It induces
more noise on the horizontal axis of Figure 12b,c after 2D Fourier transform. Nevertheless,
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eliminating these sharp horizontal extensions on the 2D Fourier transforms of Figure 12b,c,
an estimation of the dimensions of the particle can be performed.
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Figure 12. Section of the interferometric image of particle 4 (in cyan in Figure 7) that will be 2D
Fourier-transformed (a), the log of its 2D Fourier transform (b), and its binarization (c).

In order to summarize the whole study for the four selected particles of Figure 7,
Table 1 shows, for each particle: the ellipticity of its defocused image, the longitudinal
position of the particle (z1), the transverse position of the particle (x1 and y1), coefficients
Bx

tot and By
tot, and the size of the particle, assuming an ellipsoidal shape.

Using these parameters, it is possible to predict the interferometric images of these
four particles. The four particles are assumed to be composed of coherent point emitters
randomly located on the surface of the particle. They are plotted in Figure 13a–d and
match the dimensions predicted for particles 1, 2, 3, and 4, respectively. As in Section 4
to obtain Figure 6, the simulation of the interferometric pattern is performed using the
model developed in [7]. The image obtained is presented in Figure 14. We can see that this
simulation created using the parameters obtained during the analysis of the experimental
image affords a pattern very similar to the experimental one.
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Figure 13. Particles 1 (a), 2 (b), 3 (c), and 4 (d) represented by an ensemble of coherent point emitters
randomly located on the binarized shapes obtained in Figures 9c, 10c, 11c and 12c, respectively.
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of Figure 13, whose positions, sizes, and shapes have been deduced from the whole analysis.

4.3. Rotation of Particles

During the experiment, the sand particles might not only move and form trajectories
as in Figure 8, they can also rotate since they are not perfect spheres. One can wonder
whether it is possible to visualize this effect.

The first problem in answering this question is that we observe speckle patterns whose
2D Fourier transform can be assimilated to the 2D autocorrelation of the shape of the
particle (according to Equations (1) and (6)). Unfortunately, the 2D autocorrelation of a
2D shape does not give the original 2D shape directly. Phase retrieval algorithms can be a
solution to reconstruct the exact 2D shape [37–39]. However, it still needs to be confirmed
with the experimental patterns of real particles in a flow. Demonstrations have only been
carried out on simulated patterns or on the experimental patterns produced by particles
programmed on a Digital Micromirror Device [38,39].

The second problem is that the rotation of the particle is not necessarily around the
z-axis (the interferometric images presented in the paper correspond to the (x,y)-plane).
The rotation axis could have any other direction depending on the real 3D shape of the
particle. More angles of view would be necessary to perform a real tomography of the
particles [39].

Nevertheless, assuming that the sand particles of our experiment can be assimilated to
ellipsoidal particles, Figure 15 will show that it is possible to detect a rotation of a particle
during its displacement in the wave flume. Figure 15 shows some images recorded during
another sequence of acquisition. In this sequence, we isolate the displacement of only one
sand particle. Figure 15a,c,e present the interferometric images of the same particle at three
different times (0.47, 0.57, and 0.77 s, respectively). The global trajectory followed by the
particle is indicated with the white curve that has been added. Figure 15b,d,f present the
binarized 2D Fourier transforms of the interferometric images of Figure 15a,c,e, respectively.
The scaling factors have been applied along both the x- and y-axis according to Equation (6).
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We thus observe the binarized 2D autocorrelations of the 2D shape of the particle at the
three times of 0.47, 0.57, and 0.77 s, respectively. Assuming that the sand particles of
our experiment are ellipsoidal particles, we can clearly identify a rotation of (0.07π) of
the particle in the flow at this stage of the trajectory (between Figures 15a and 15c), and
of (−0.07π) between Figures 15c and 15e. The red lines present the main axis of the
“ellipsoidal” contours plotted in Figure 15b,d,f.
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Figure 15. Interferometric images of the same particle at three different times: 0.47 s (a), 0.57 s (c),
and 0.77 s (e), and their binarized 2D Fourier transforms in (b,d,f), respectively. The white curves in
(a,c,e) present the global trajectory of the particle.

5. Conclusions

This study showed the 3D-tracking of irregular rough sand particles in a wave flume
using a backward scattering configuration and only one camera. The 3D-tracking was
obtained using a cylindrical interferometric particle imaging set-up. A sole image enabled
the 3D location and the measurement of the size of the particles. The longitudinal position
of each particle was deduced from the ellipticity of its speckle-like interferometric image.
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The size of a particle was determined from the analysis of the 2D Fourier transform of its
defocused image. It was further possible to identify some rotation of the particles. The
3D-tracking was then performed from image to image at the repetition rate of the laser
system that illuminates the region of interest. The experimental results obtained were
described and interpreted precisely using a scattering model that assimilates the sand parti-
cles to a collection of coherent point emitters that cover the particle. Simulations accurately
confirmed the experimental determination of the different parameters (3D position and
size of each particle). The design of prototypes that could perform measurements in the
vicinity of tidal turbines or sedimentary bottom is thus possible using this technique.

As for ice crystals in icing wind tunnels [40], this work showed the possibility to
characterize rough particles in complex flows and large instruments using IPI, i.e., sand
particles in wave flumes in this study. Recent studies have shown that the analysis of
the interferometric images of rough particles could be refined using phase retrieval algo-
rithms [37–39]. Future works should thus lead to a better reconstruction of the particle’s
shapes using this technique, that requires only the record of light scattered by the particles
after a laser pulse illumination, without the addition of any reference beam.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/opt3030025/s1, Video S1: Interferometric images of sand particles
in a wave flume.
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