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Abstract 

 

Interferometric particle imaging is generally interpreted in the framework of Fresnel conditions. We 

develop here a new formalism based on Luneburg’s kernel. It enables to predict the interferometric 

images of droplets or rough particles when Fresnel conditions are not respected. It is compared to 

previous experimental results, and then used to understand possible sources of noise when analyzing 

interferometric particle images. 

 

I - Theoretical formulation 

 

Interferometric imaging offers an interesting solution to the characterization of droplets, bubbles or 

irregular rough particles in a flow. Particles are illuminated by a laser, while a CCD sensor records the 

scattered interferometric images. They can be two-wave interference patterns in the case of droplets 

or bubbles [1-14], or speckle patterns in the case of more complex particles [15-22]. In this last case, 

there is a priori no theoretical model that can predict rigorously these patterns. This is particularly 

true in the case of particles whose shape’s modelling itself remains an important challenge. We can 

cite ice crystals whose growth modelling is an important domain of research [23]. Nevertheless, 

assuming that the particles can be assimilated to a collection of point emitters randomly located all 

over the contour of the rough particle, it can be demonstrated that the 2Dimensional-Fourier 

transform of the interferometric pattern is directly linked to the 2 Dimensional-autocorrelation of the 

spatial repartition of the emitters on the scattering particles [15,16]. This can be written 

mathematically as follows: 

 

|�������	, ��
�� ����  �, ����  ��| ∝ |�������	�, ���
�∆	, ∆��|   (1) 
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��	, �� is the intensity (interferometric image recorded on the sensor), (x,y) are the transverse 

coordinates in the plane of this image). λ is the laser wavelength, ���� the B-coefficient of the optical 

transfer matrix from the particle to the sensor, (u,v) are the spectral coordinates after 2D-Fourier 

transformation of the interferometric pattern. ���	�, ��� is the electric field scattered by the particle 

(assumed to be an ensemble of point emitters). �	�, ���   are the transverse coordinates in the plane 

of the particle. �∆	, ∆�� are the coordinates after 2D-autocorrelation of function ��. This relation has 

been validated experimentally in many cases [16,19-22] (and references enclosed). It is actually 

established using a scalar Huygens-Fresnel formalism. It is thus limited to the domain where Fresnel 

conditions are valid. As applications of the technique could be numerous, it is important to study the 

limits of validity of this relation (1). For this purpose, it appears crucial to develop a numerical 

simulator that is not limited to the sole Fresnel conditions.  

Diffraction can be described using different theories, with different levels of approximations as in 

Fresnel or Rayleigh-Sommerfeld (RS) formalisms. The difference between RS and Fresnel integrals lies 

in the inclination factor with the optical axis, taken into account in the RS solution, and in the 

development of the amplitude of spherical waves of the type   
�� � �

� . In Fresnel’s model, the radial 

coordinate  � = !	� + �� + #�  is approached by a first order development � ≈ # + %&'(&
� )  that 

generates a quadratic phase term versus the transverse coordinates x and y. This quadratic phase 

term, typical of Fresnel’s kernel, is very convenient to describe light propagation through complete 

optical systems, using generalized Fresnel integrals and eventually the expansion of an hard-aperture 

over a basis of Gaussian functions [9].  

Unfortunately, this formalism can not describe cases where the observation point is close to the 

diffracting screen. This problem can be solved using the Rayleigh-Sommerfeld (RS) solution where 

the phase term is not approximated using the first order development of the radial coordinate �. In 

Interferometric Particle Imaging systems, the scattering particles are in general far from the imaging 

objective, and we imagine first that Fresnel conditions are always satisfied. Nevertheless, the sensor 

is in a defocused position, with a defocus parameter that can be small. The distance between the 

focused image of the particle and the observation point can be so small that Fresnel conditions are 

actually not respected.  

Our objective is double in this study: first we want to develop an analytical model that can be applied 

both when Fresnel conditions are respected or not. There are indeed cases where the 

interferometric images suffer alterations that can not be interpreted in the Fresnel approximation. 

Section II will show such an exemple. Secondly, we want to develop a vectorial IPI model that can 

simulate correctly IPI experiments taking into account the polarization of light. It will indeed become 

a necessary tool to develop and analyze polarization-resolved IPI experiments.  

Luneburg addressed with high attention the resolution of the Helmoltz equation [24]. Fresnel’s 

kernel appears as a first order Taylor series expansion of the Luneburg’s kernel in the far field 

approximation. Luneburg’s description is well adapted through the definition of a specific kernel, in 

good accordance with the first-type RS integral. It can be easily applied to the modelling of IPI 

experiments, in the continuity of previous works that used the Fresnel kernel. As mentioned for the 

RS integral, there will be no approximation concerning the radial coordinate �. This formalism will 

offer the possibility to address our two objectives: (1) develop an efficient vectorial model for IPI, (2) 

apply the model in more general conditions than the sole Fresnel conditions. The inconvenience is 

that we will lose the capabilities offered by Fresnel integrals (generalized Fresnel integrals to describe 



complete systems, and expansion of elements as hard-apertures over a basis of Gaussian functions 

because such functions are no more attractive). 

The electric field scattered by the rough particle under laser illumination will be noted in the plane of 

the particle (z=0) :  *+ = �,�% , ,�(, ,�)� . According to Luneburg’s development, the different 

components of the electromagnetic field:  *-. = �,)/
% , ,)/

( , ,)/
) �  at distance #0 of the particle can be 

obtained through [24-26]: 

 

,)/
% �	, �, #0� = − )/

�2  ∬ ,�%�4, 5, 0� 78 9 �:;
�< = >8 9 � ?4 ?5    (2) 

,)/
( �	, �, #0� = − )/

�2  ∬ ,�(�4, 5, 0� 78 9 �:;
�< = >8 9 � ?4 ?5    (3) 

 

where   �� = �	 − 4�� + �� − 5�� + #0�, and @ = 2B/�. The longitudinal component is obtained by 

means of Maxwell’s equation ?D��*-� = 0. We get: 

 

,)/
) �	, �, #0� = ;

�2  ∬E�	 − 4� ,�%�4, 5, 0� + �� − 5� ,�(�4, 5, 0�F 78 9 �:;
�< = >8 9 � ?4 ?5 (4) 

 

As previously mentioned, there is no theoretical model that can calculate rigorously the 

electromagnetic field scattered by an irregular rough particle of any shape. In order to investigate the 

limits of relation (1) when Fresnel conditions are not respected, particles will be assimilated to a 

collection of point emitters located all over the contour of the rough particle (as in previous studies, 

which will make possible the comparisons). 

Assuming that the electric field scattered by the particle is transverse to the propagation axis z, the 

electric field scattered by the particle will be written *+ = �,�% , ,�(, 0� , where the u-component (u = 

x or y) is given by : 

 

,�G�	, �, #� = ∑ I8,G J�	 − K8, � − L8, # − M8� >8 N�,OPQ/
8R;     (5) 

 

The δ are Dirac functions, ST0  is the number of emitting spots that cover the particle. �K8, L8, M8� are 

the coordinates of point emitter numbered i. For the u-component (u = x or y), I8,G is its amplitude, 

and U8,G its phase. This expression of ,�G describes irregular rough particles covered by scattering 

asperities, and droplets or bubbles as well, considering only two, three or four glare points [9,27,28]. 

Using relations (2-4), we can then determine the x-, y- and z- components of the electric field 

scattered at distance #0 of the center of the particle (center located at position z=0). We obtain for 

the x- and y-components: 

 

,)/
G V	, �, #0W = − ∑   )/:X�

�2   I8,G  Y8 9 ��:;
��<

Z >8 9 ��  >8 N�,OPQ/
8R;      (6) 



 

where u = x or y, and  �8 = [�	 − K8�� + �� − L8�� + �#0 − M8��. 

 

The z-component is given by: 

,)/
) V	, �, #0W = ;

�2  ∑    EI8,%  �	 − K8� >8 N�,\ + I8,( �� − L8� >8 N�,]F Y8 9 ��:;
��<

Z >8 9 ��PQ/
8R;     (7) 

 

Finally, the intensity in the plane of the sensor (# = #0) can be evaluated numerically, combining 

relations (6-7), from : 

�V	, �, #0W  ∝  ^,)/
% V	, �, #0W^� + ^,)/

( V	, �, #0W^� + ^,)/
) V	, �, #0W^�

   (8) 

 

Let us compare this development to Fresnel’s formalism. Assuming that M8 ≈ 0 and that #0 ≫
	, �, K8, L8, we can write:  

)/:X�
�2   I8,G  Y8 9 ��:;

��<
Z ≈ 8

` )/ I8,G and simplify the phase term: >8 9 �� ≈

>8 9 a)/'�\bc��&
& d/ '�]be��&

& d/ f
. In the case of an electric field with only one component, it leads to the scalar 

Fresnel model already used in previous studies [9,29,30]: 

 

,)/
g��hi�jV	, �, #0W = − ∑   8

` )/   I8   >8 9 a)/'�\bc��&
& d/ '�]be��&

& d/ f >8 N�PQ/
8R;     (9) 

 

For comparison, with the notation � = kl,   the first-type Rayleigh-Sommerfeld integral for 

diffraction  ��l� = − 8
` ∬ ��k� cos�p� ;

89
q

qrs 7�� � tu
rs = ?�v�k� 

�w�   where cos�p� = )/
�   leads to the 

Luneburg’s kernel of equations (2-3):  − )/
�2  78 9 �:;

�< = >8 9 � . 

In diffraction theory, the angular spectrum method is frequently used. The propagation of the 

angular spectrum xy is described in Fresnel conditions by relation: 

xyV�, �, #0W = xy��, �, 0�  ×  >8 9 )/: 8 2 ` )/ �G&'{&�      (10) 

In Luneburg’s condition, it respects the more accurate relation (see appendix B of reference [26]): 

xyV�, �, #0W = xy��, �, 0�  ×  >8 )/  !9&: | 2& �G&'{&�      (11) 

 

 

 

 



II - A comparison with experimental results 

 

The previous model can be applied simply to spherical droplets. In this case, for a scattering angle of 

66°, light scattered by the droplet is mainly composed of light reflected on the droplet (p=0 order in 

Debye series) and light refracted in the droplet without any additional internal reflexion within the 

droplet (p=1 order in Debye series). The electric field scattered by the droplet can be described by 

only two point emitters, the well-known glare points, i.e. ST0 = 2 in equation (5). Their exact 

positions (parameters K8, L8, M8), and the phase difference (parameters U8) can be determined using 

geometrical optics. Their amplitudes are identical at 66° scattering angle, for a perpendicular 

polarization of the incident electric field. In these conditions, it is easy to compare results obtained 

using equation (6) based on Luneburg’s kernel (limited to only one transverse component linked to 

the polarization of the illuminating laser field), and the scalar equation (8) using Fresnel’s kernel. 

In an ILIDS experiment [3], the interferometric particle image is obtained using an objective and a 

CCD sensor located in an out-of-focus plane. The previous vectorial model cannot describe the 

optical system as could be done using a generalized Huygens-Fresnel integral [9,29,30], because we 

are not in Fresnel conditions anymore. In order to make comparisons with experimental results 

obtained with a real ILIDS set-up, it is necessary to find an equivalent configuration without 

objective. Figure 1 explains this. The droplet is described by the two emitting glare points A and B. 

Their focused images are A’ and B’. In the out-of-focus plane where the CCD is located, a pattern 

composed of two-wave interferences is observed. They are actually equivalent to those that would 

be created by two emitters A’ and B’ separated by ∆’, at distance p of the sensor. 

 

Figure 1: Equivalent set-up adapted to the developments performed 

 

Let us consider an experimental case: the airborne ALIDS probe [31]. This instrument has been 

realized within the European Facility for Airborne Research (EUFAR) of Seventh framework program 

of the European Community to perform airborne measurements of the size of droplets. It has been 

presented in references [31] and the structure of the instrument is shown in figure 2.  



 

(a) 

 

 

 (b) 

Figure 2: Principle of the ALIDS probe: M1, M2, M3, M4 are reflecting mirrors, CL is a cylindrical lens 

to generate a laser sheet (a), design of the final instrument (b) (see reference [31] for more details) 

 

Despite optical windows due to the atmospheric environment, and deflecting mirrors that ensure a 

better compactness to the device, the optical set-up of this probe can be simplified to the one of 

figure 1, with #; = 0.4�, � = 0.025�, �#� − �� = � = 0.025�. The CCD sensor is in the focus plane 

of the objective in this instrument, but it works well in an out-of-focus configuration as the droplets 

are at a finite distance #; of the objective, in the plane of the laser sheet, and not at infinity. The CCD 

sensor is a 8-bit DALSA Genie HM1024 camera. The CCD resolution is 1024x768 pixels (pixel size of 

7.4 µm). The laser is a frequency-doubled Quantel Ultra 100 laser emitting at 532 nm. In the 

configuration discussed here, we use a f/0.95 Goyo objective (focus length 25mm), which gives 

interferometric images with limited aberrations despite a large aperture. The set-up is a compromise 

between a relatively high working distance, a large field of view, and a size range measurement for 

water droplet diameters between 20 and 200 micrometers. The scattering angle of 66° induces 

image deformations that can be solved using a Scheimpflug system, or working in the focus plane of 

the imaging objective (this last solution is used in the ALIDS probe to limit the weight of the 

apparatus). This ensemble of compromises enabled to record interferometric images in flight. Using 



the generalized Huygens-Fresnel formalism described in reference [9], that takes into account the 

whole imaging system (slices of air, the lens and its aperture [9,32,33]), figure 3(a) shows the 

interferometric image of two glare points A and B separated from Δ = 63 μm. It corresponds to a 

water droplet (refractive index 1.33) whose diameter is 70 ± 1 μm using a geometrical optics 

definition of the glare points. This interferometric configuration is equivalent to a two-wave 

interference pattern generated by two glare points A’ and B’ separated from Δ� = )&
)� Δ = �

)�:� Δ ≈
4.2 μm , and recorded in a plane at distance p = �&

)�:� ≈ 0.0017 m (these relations have been 

developed using the conjugation law through a lens). Figure 3(b) shows the interferometric pattern 

predicted for this equivalent configuration using equation (8) (adapted to Fresnel conditions) 

considering two glare points separated from 4.2 μm, at distance #0 = 0.0017�. This model does not 

describe the role of the aperture but the frequency of the fringes is exactly the same as the one of 

figure 3(a). Both models describe the same configuration in terms of interferometric pattern. We can 

note that #0 is only a few millimeters. As the CCD sensor is larger, the coordinates (x,y) in the plane 

of the sensor can be of the order of magnitude as #0. It means that the set-up does not respect the 

Fresnel conditions when the aperture is large, and that the Luneburg development should be used ; 

Figure 3(c) shows thus the interferometric pattern predicted with the same assumptions as Fig 3(b) 

using now relation (6).  We can observe that the fringes are not parallel lines but look like hyperbols.  

Figure 3: Interferometric image of two glare points A and B separated from Δ = 63 μm (i.e. water 

droplet of diameter is 70 ± 1 μm) using the model of reference [9] based on generalized Huygens 

Fresnel integrals (a), pattern predicted using equation (8) that does not describe the aperture 

(Fresnel kernel [29]) (b), and pattern predicted using now relation (6) (Luneburg kernel) (c). 

 

Figure 4(a) shows a second example in the case of two glare points A and B separated from Δ =
162 μm using the generalized Huygens-Fresnel formalism of reference [9]. It corresponds to a water 

droplet (refractive index 1.33) whose diameter is 180 ± 1 μm. Figure 4(b) and 4(c) show the 

simulations predicted using Fresnel and Luneburg’s kernels respectively in the case of the equivalent 

set-up (A’ and B’ separated from ∆�= 10.8 μm, with the same distance #0 = 0.0017�.  



Figure 4: Interferometric image of two glare points A and B separated from Δ = 162 μm (i.e. water 

droplet of diameter is 180 ± 1 μm) using the model of reference [9] based on generalized Huygens 

Fresnel integrals (a), pattern predicted using equation (8) that does not describe the aperture 

(Fresnel kernel [29]) (b), and pattern predicted using now relation (6) (Luneburg kernel) (c). 

 

The parameters used in these simulations are those of the airborne ALIDS probe [31]. Three 

experimental patterns recorded in flight or during laboratory tests with ALIDS are reported in figure 5 

(a), (b) and (c). The diameter of the out-of-focus images, and the frequency of the fringes are well 

recovered using our simulations in the case of these droplets, whose sizes vary in the range from 70 

micrometers to 180 micrometers approximately. Nevertheless, the fringes of these patterns are no 

more perfectly vertical in the border of the out-of-focus images. This behavior is only described using 

the Luneburg’s formalism (simulations of figures 3(c) and 4(c)). In this configuration of the ALIDS 

probe, that uses a high-aperture f/0.95 Goyo objective, Fresnel conditions are no longer perfectly 

satisfied in the borders of the out-of-focus images. But the observations made can be interpreted 

using Luneburg’s kernel that gives better predictions of the interferometric images.  

 

Figure 5: Experimental ILIDS patterns recorded with the ALIDS probe [31]. The set-up corresponds to 

the parameters of the simulations of figure 3 and 4. 

 

 



III – Predictions for irregular rough particles: case of a cross-like particle 

Let us now detail the modifications predicted in the case of irregular rough particles. We consider a 

cross-like particle, depicted in figure 6. It is composed of 200 point emitters randomly located on the 

two bars of the cross. Each bar is 60 micrometers long and 6 micrometers large. The normalized 

amplitude of each emitter is 1, while its phase is a random number in the range [0,2π]. 

 

Figure 6: crossed-like particle composed of 200 point emitters 

 

The wavelength of our simulations will be : � = 532 ��. Figure 7 shows the interferometric patterns 

(actually the absolute value of the electric field) predicted at distance #0 = 0.02�. Figure 7(a) has 

been obtained using the scalar Fresnel’s model of equation (8) while figure 7(b) has been obtained 

using the vectorial Luneburg’s model based on relations (6) and (7). Both patterns appear very 

similar. This is confirmed by figure 8(a) that shows the difference between the intensity obtained 

using Fresnel’s model and the intensity obtained using Luneburg’s model (normalized to 1). It 

appears clearly that both models give similar results in the center of the pattern. Differences appear 

in the surrounding ring. 

As mentioned in section II, The model based on relations (6) and (7) does not describe the whole 

optical system, as depicted in figure 1, but an equivalent propagation in free space. It is interesting to 

give a system corresponding to previous simulations. For example, these simulations made at 

distance #0 = 0.02� correspond to an equivalent IPI system with the following set of parameters : 

#; = 0.2�, #� = 0.05�, � = 0.04�,   � = #0 = 0.02�, for cross-like rough particles of length Δ =
240μm. We can verify that  Δ�/Δ = #�/#;, while the conjugation law #;:; + #�:; = �:; is well 

respected.  

 

 



 

Figure 7: Interferometric images (actually the absolute value of the electric field for better contrast) of the 

cross-like particle of figure 6 using Fresnel’s model (a) and Luneburg’s model (b) at distance #0 = 0.02�. 

 

 

Figure 8: Normalized difference  ���O��eO�Q�%,(�:���������%,(�
��O��eO�Q�%,(� �  when #0 = 0.02� (a) and when #0 = 0.01� (b). 

 

Figure 9 shows now the interferometric patterns predicted at distance #0 = 0.01�. As previously, 

figure 9(a) has been obtained using the scalar Fresnel’s model of equation (8) while figure 9(b) has 

been obtained using the vectorial Luneburg’s model based on relations (6) and (7). Figure 8(b) shows 

the difference between the intensity obtained using Fresnel’s model and the intensity obtained using 

Luneburg’s model. Except in the center of the pattern, both models give different results. The 

pattern of figure 9(b) shows some distorted profile, as already observed in the case of droplets in 

section II. In the corners of the pattern of figure 9(b) where this « distortion » is the most visible, we 

have the 	 = � = 4 �� while #0 = 1M�. Fresnel conditions #0 ≫ 	, � are clearly not respected and 

both models give different results. 



 

 

Figure 9: Interferometric images (actually the absolute value of the electric field) of the cross-like particle of 

figure 5 using Fresnel’s model (a) and Luneburg’s model (b) at distance #0 = 0.01�. 

 

These differences can induce important effects on the analysis of the particle’s shape. In a last 

example, figure 10 shows indeed the interferometric patterns predicted at distance #0 = 0.005�. 

Figure 10(a) has been obtained using the scalar Fresnel’s model of equation (8) while figure 10(b) has 

been obtained using the vectorial Luneburg’s model based on relations (6) and (7). Both patterns are 

now very different, except in the center. Some distorsion-like pattern is clearly evidenced on figure 

10(b). From such interferometric patterns, an analysis of the particle’s shape and size is done in 

general using relation (1). Unfortunately, this relation (1) is established in a Fresnel formalism. Let us 

first compare the results obtained using the sole truncated patterns in the blue rectangles of figure 

10. Figure 11(a) shows the binarized 2D-Fourier transform of the central part of the interferometric 

pattern of figure 10(a) (selection of the pattern in the blue rectangle), while 11(b) shows the 

binarized 2D-Fourier transform of the central part of the interferometric pattern of figure 10(b). The 

scaling factor � ���� has been applied in such a way that the axes of figure 11 can be assimilated to 

the coordinates in the plane of the particle according to relation (1). Parameter ���� equals #0 =
0.005� in this case. Both binarized 2D-Fourier transforms appear very similar in these figures where 

the model derived from Luneburg’s kernel matches Fresnel’s model. In both cases, these figures give 

the expected 2D-autocorrelation of the initial cross-like particle represented in figure 6. 

Figure 12(a) shows the binarized 2D-Fourier transform of the decentred part of the interferometric 

pattern of figure 10(a) (selection of the pattern in the red rectangle), while 12(b) shows the binarized 

2D-Fourier transform of the decentred part of the interferometric pattern of figure 10(b). Both 

binarized 2D-Fourier transforms appear very different in these figures where the model derived from 

Luneburg’s kernel diverges from Fresnel’s model. The shape’s and size analysis can become 

erroneous using relation (1). 

Finally, figure 13(a) shows the binarized 2D-Fourier transform of the whole interferometric pattern of 

figure 10(a), while 13(b) shows the binarized 2D-Fourier transform of the whole interferometric 



pattern of figure 10(b). It appears that the non-respect of Fresnel conditions tends to shorten and 

sharpen the thin extremities of the 2D-Fourier transform of the pattern.    

 

 

Figure 10: Interferometric images (actually the absolute value of the electric field for better contrast) of the 

cross-like particle of figure 6 using Fresnel’s model (a) and Luneburg’s model (b) at distance #0 = 0.005�. 

 

Figure 11: Binarized 2D-Fourier transform of the central part of the interferometric pattern of figure 10(a) 

(truncated pattern in the blue rectangle) (a), and of figure 10(b) (b). 

 



 

Figure 12: Binarized 2D-Fourier transform of the central part of the interferometric pattern of figure 10(a) 

(truncated pattern in the red rectangle) (a), and of figure 10(b) (b). 

 

Figure 13: Binarized 2D-Fourier transform of the whole interferometric pattern of figure 10(a) (a), and of figure 

10(b) (b). 

 

IV – The potentiality of a vectorial model 

 

The possibility to understand erroneous reconstructions is not the sole interest of this new model. As 

it is a vectorial model, it offers the possibility to describe the influence of light polarization on 

interferometric particle imaging experiments [34]. In figure 14, we plot the difference between the 

intensity pattern �g���	, �� obtained using the scalar equation (8) (Fresnel’s model) and the intensity 

pattern ��G�	, �� obtained using the vectorial model derived from Luneburg’s kernel, based on 

relations (6) and (7). Figure 14 shows |��G�	, �� − �g���	, ��| in four cases. In figure 14(a), the 

polarization of light scattered by the emitters is assumed to be linearly polarized along the bisector of 

axes x and y., i.e. *+ = 7��
√� , ��

√� , 0=. In figure 14(b), the polarization is assumed to be linearly 



polarized along the line of equation � = −	/√3, i.e. *+ = 7√� ��
� , − ��

� , 0=. In figure 14(c), it is 

assumed to be circularily polarized, i.e. *+ = 7��
√� , 8 ��

√� , 0=. Finally, in figure 14(d), it is assumed to be 

elliptically polarized, i.e. *+ = 7��
√� , − ��

√�  >8 2/�, 0= in this case. At distance #0 = 0.005�,  

��G�	, �, #0� has been obtained from  ��GV	, �, #0W ∝ ^,)/
% V	, �, #0W^� + ^,)/

( V	, �, #0W^� +
^,)/

) V	, �, #0W^�
 where the different components are given by relations (6) and (7). �g���	, �� has 

been obtained from relation (8). The plots of figure 14 do not show a significant role of the 

polarization. Luneburg and Fresnel models give similar results in the center of the patterns, while 

both models diverge when Fresnel conditions are no more respected. Nevertheless, the vectorial 

model enables to better understand the differences existing between the different cases. For 

example, figure 15 shows the z-component of the electric field ,)/
) V	, �, #0W scattered in each of 

these four cases. Depending on the polarization of the light scattered, the domains of the speckle 

patterns where the longitudinal component of the electric field vanishes are different. In particular, 

for a linear polarization of the emitters, we can observe the linear domain of both speckle patterns 

where the longitudinal component of the scattered field vanishes. 

These plots of figures 14 and 15 show simple examples of informations that can bring this vectorial 

model. We think that it can become a very powerful tool to describe interferometric particle imaging 

experiments where a pair of images are recorded for both transverse components x and y of 

polarization, and then analyzed separately for before comparison or combination of the results. With 

this formalism, it is possible to define emitters with different states of polarization, and thus to 

describe phenomenoms as Brewster incidence localized on specific points of the particle, depending 

on its shape, its local curvature and its roughness. 

 

Figure 14: Normalized plots of the difference |��G�	, �� − �g���	, ��| for different polarizations of the 

light scattered by the emitters: linear polarization along the bisector of axes x and y., i.e. *+ =
7��

√� , ��
√� , 0=. (a), linear polarization along the line of equation � = −	/√3, i.e. *+ = 7√� ��

� , − ��
� , 0= 



(b), circular polarization, i.e. *+ = 7��
√� , 8 ��

√� , 0= (c), elliptical polarization, i.e. *+ = 7��
√� , − ��

√�  >8 2/�, 0= 

in this case (d) 

 

 

Figure 15: Longitudinal component of the electric field in the speckle patterns ,)/
) , for different 

polarizations of the light scattered by the emitters : linear polarization along the bisector of axes x 

and y., i.e. *+ = 7��
√� , ��

√� , 0=. (a), linear polarization along the line of equation � = −	/√3, i.e. *+ =
7√� ��

� , − ��
� , 0= (b), circular polarization, i.e. *+ = 7��

√� , 8 ��
√� , 0= (c), elliptical polarization, i.e. *+ =

7��
√� , − ��

√�  >8 2/�, 0= in this case (d) 

 

 

Conclusion 

The interferometric images of irregular rough particles are speckle patterns whose characteristics are 

directly correlated to the size and the morphology of the particle. An intense effort is done presently 

to proceed to efficient reconstructions of the particles from these speckle patterns. Reconstructions 

are based on direct methods as the hybrid input output or the error reduction algorithms, or on deep 

learning techniques [35-38]. In all cases, the description of the link between the particle’s shape and 

its interferometric image is a key parameter for proper reconstruction. It is necessary to develop 

models as precise as possible that can describe the experimental conditions imposed by the imaging 

system. The vectorial model developed in this study, based on Luneburg’s integral, should enable a 

very precise simulation of the patterns when experiments deliver results at the limit of validity of the 

Fresnel conditions. It offers further a vectorial description of the electric field scattered by the 

particles. It should be particularly useful for imaging experiments combining different states of 



polarization. It will be further interesting in the future to study whether models based on an angular 

spectrum method can be convenient to describe IPI, for both droplets or bubbles and irregular rough 

particles. 
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