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Abstract—Networks have provided a representation for a wide
range of real systems, including communication flow, money
transfer or biological systems, to mention just a few. Communities
represent fundamental structures for understanding the organi-
zation of real-world networks. Uncovering coherent groups in
these networks is the goal of community detection. A community
is a mesoscopic structure with nodes heavily connected within
their groups by comparison to the nodes in other groups.
Communities might also overlap as they may share one or
multiple nodes. Evaluating the results of a community detection
algorithm is an equally important task. This paper introduces
metrics for evaluating overlapping community detection. The idea
of introducing new metrics comes from the lack of efficiency and
adequacy of state-of-the-art metrics for overlapping communities.
The new metrics are tested both on simulated data and standard
datasets and are compared with existing metrics.

Index Terms—Social Network Analysis, Overlapping commu-
nity detection, evaluation metric.

I. INTRODUCTION

Social network analysis has received tremendous attention
over the past decade. Its main objective is understanding
individual behaviors, based on their interactions. Network
analysis has attracted significant interest due to its potential
to handle many real-world case studies [1], [2]. In particular,
community detection has become a fundamental and highly
relevant research area in network science [3]. Therefore, a
substantial number of community detection algorithms have
been developed, across varied disciplines such as statistics,
physics, biology, sociology, etc.

The result of community detection is a partition with
disjoint, overlapping, fuzzy, or hierarchical communities. To
evaluate and compare community detection algorithms, the
literature has given much attention to evaluation metrics [4],
[5]. Evaluation metrics can be either quality metrics that assess
structural quality of communities, or information recovery
metrics that compare the result to a gold standard, also called
ground-truth. Despite the number of evaluation metrics in the
literature, very few are applicable to overlapping communities.
Having a simple and easy to interpret metric is of importance
when dealing with community detection algorithms.

In this paper, we propose four information recovery metrics
for overlapping community detection results. Each of the
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proposed metrics considers a specific aspect of the network
and is designed to provide a clear explanation. Our goal is
to overcome the classical drawbacks of standard information
recovery metrics, namely the difficulty to interpret the results.

This paper is organized as follows. Section II presents pre-
liminary definitions about community detection and evaluation
metrics. In section III, we illustrate the proposed metrics and
their properties. Finally, section IV analyses several tests of
the performance of proposed metrics both on synthetic and
real-world networks.

II. BACKGROUND
A. Overlapping communities detection

One of the most important application of networks’ analysis
relies on the search for dense groups, also called communities.
Community detection in networks has aroused a lot of interest
during the last decade [2], [3], [5]. Although community is not
an accurately defined concept, a general consensus implies
that a community represents a group of densely connected
vertices, either sharing some properties or playing similar
roles inside the network as stated by the authors of [5].
Depending on the characteristics of the network, the result
of community detection may lead to disjoint communities,
overlapping communities, dynamic communities, etc.

Although most of the work in the literature is focused
on disjoint communities, more efforts are oriented toward
overlapping communities. In this paper, we are particularly
focused on overlapping communities’ detection. Unlike crisp
communities, overlapping communities may share one or
more nodes. A node can simultaneously be part of multiple
communities of different scopes and levels, such as family,
friends, work, city, etc. [6]. Overlapping communities were
studied in the literature in various contexts such as biology
[7], e-commerce [8], mobile networks [2], etc. For a complete
study of overlapping community detection, we refer the reader
to [9].

B. Evaluation Measures

One of the biggest challenges related to community detec-
tion is the ability to evaluate the generated results. Evaluation
is a real issue for real networks where only little data are
provided. Evaluation metrics in this area can be employed
either to assess the performance of a community detection
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algorithm, or to compare the performances of different algo-
rithms applied on the same set of nodes. A lot of work was
done regarding evaluating metrics for community detection
[5], [10]. Evaluation metrics can formally be classified into
two categories: intrinsic and extrinsic metrics.

While intrinsic metrics evaluate structural properties of
the identified communities, extrinsic quality metrics evaluate
instead how the resulted communities are comparable to the
ground-truth. These metrics are also called information recov-
ery metrics because they measure the ability of algorithms to
recover information from the ground-truth. For synthetic net-
works, the ground-truth communities are provided manually
based on the network generation process.. However, for real
networks this ground-truth is not always available. Therefore
in this paper we only consider either synthetic networks, or
real networks where the ground-truth is known.

The most popular information recovery metrics for over-
lapping communities are the overlapping Normalized Mutual
Information (ONMI) [11], the omega index [12], and the
average Fl-score [13].

1) ONMI: The ONMI (Overlapping Normalized Mutual
Information) is an adjustment of the normalized mutual in-
formation for overlapping communities [11]. The NMI metric
has become one of the most popular metrics when it comes to
evaluate the relevance of communities thanks to its reliability
[14]. Based on information theory, the NMI measures the
similarity between two partitions. Some of the drawbacks of
NMI, noted by [15], is the finite size effect which implies
that the average score would slide upward with the number
of predicted communities, regardless of the number of the
ground-truth communities.

2) Omega index: The Omega index [12] is the adaptation to
overlapping communities of the Adjusted Rand Index (ARI)
[16]. The ARI considers only disjoint partitions. Originally,
the Rand Index (RI) is based on the agreement between all
pairs of nodes in the graph: a pair of nodes are in agreement
if they are assigned to the same communities. The ARI is
then improved from of the RIL. It considers both the observed
and the expected agreement between partitions: an observed
agreement is the fraction of pairs of nodes classified the same
way in both partitions.

Omega index values are not affected by the number of
communities (unlike NMI). However, it performs poorly with
multi-resolution partitions and has a high computational com-
plexity.

3) Average F1-score: The average Fl-score is the mean of
the Fl-scores of the best matching ground-truth community
to each detected community, and the Fl-scores of the best-
matching detected community to each ground-truth commu-
nity [13]. Each Fl-score is in fact the harmonic mean of
Precision and Recall of considered communities.

One of the drawbacks of Fl-score, is that it gives equal
importance to precision and recall. It is also computed as an
average of community-pairs F1-scores which can lead to high
standard deviation.

III. CONTRIBUTION

The main contribution of this paper relies on the proposition
of a set of metrics for overlapping community detection
evaluation, more specifically ground-truth based validation
metrics. The need for a new metric arose from the inadequacy
observed with the state-of-the art metrics. Adapted metrics,
like ONMI, were proven to give different results than the un-
derlying standard metrics (designed for disjoint communities)
[4]. Another shortcoming observed with the available metrics,
is that they compare partitions globally. While this approach
may lead to good results, it generally misses information
concerning similarities and dissimilarities between partitions.

In this paper, we propose four metrics for comparing com-
munities that overlap. More specifically, the proposed metrics
should take into consideration the structure of the obtained
overlapping communities and compare them with the ground-
truth. Therefore, our metrics combine features of both overlap-
based metrics and structural-based metrics. The metrics should
assess the match between the result of a community detection
algorithm and a ground-truth.

These metrics are the inclusion rate, the coverage rate,
the overlapping rate, and the distribution rate, which will be
detailed below. Accordingly, we impose that a good set of
result communities should have good scores for all the four
metrics. All four metrics must be considered concurrently to
fully understand the results, as some metrics may give good
scores on some bad results.

In the following, let’s consider two sets of communities: a
ground-truth G = G1,Go,. .., G, of size n and a community
detection result R = Ry, Ry, ..., R,, of size m. Communities
in R and G are overlapping. Essentially these two groups do
not have the same number of communities but do contain the
same set of nodes. We assume that a community does not
contain duplicate nodes.

For all metrics, the input is two set of communities GG, and
R, and the output is a measure d(R,G).

In order to be a substitute for conventional evaluation met-
rics, each of the proposed metrics should also fulfill some basic
properties: it should be positive d(R, G) > 0, it should spread
its score over its domain [0, 1] (where 0 means the partitions
are completely different and 1 means they are identical), and

d(G,G) = d(R,R) = 1.

A. Inclusion rate

A simple way to define the similarity between two sets of
communities R and G, is to consider how well R represents
G, taking into account the inclusion of communities in both
groups. In order to define the inclusion rate, and the coverage
rate, we should start by defining the precision and recall.

Considering a result community R; and a ground-truth
community G, the precision defines the number of correctly
classified nodes over the volume of the result R;, and is
defined by W. On the other hand, the recall defines the
number of the C(;rrectly classified nodes over the volume of the

ground-truth, defined by ‘ngijcjl Precision does not account
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for under-segmentation errors, while over-segmentation is not
reflected in recall.

The inclusion rate we propose is a metric that is meant
to measure the embeddedness of result communities into
ground-truth communities. The basic idea behind this metric
was the need of a measure that estimates the well classified
nodes in the result communities compared to the ground-truth
communities. For each result community R;, the individual
inclusion rate is given by the maximum precision rate.

Inclusion rate(R;) = max(precision(R;, Gj)) (1)
j

The overall inclusion rate is then defined by the ratio of a
weighted sum of the individual inclusion rates divided by the
sum of the resulting communities sizes.

> Inclusion rate(R;) x |R;|
Zi |R1|

Inclusion rate =

2

B. Coverage rate

While the inclusion rate regards similarity from the result
communities perspective, the coverage rate considers it from
the ground-truth angle. Our purpose was to identify two
complementary metrics, that account for analogous similarity
perspectives. As the inclusion rate is based on the maximum of
the precision, the coverage rate is a function of the maximum
recall. For a given ground-truth community G';, the individual
coverage rate is given by:

Coverage rate(G;) = max(recall(R;, G;)) (3)

The overall coverage rate is then defined by the ration of a
weighted sum of the individual coverage rates by the sum of
the ground-truth communities sizes.

>_; Coverage rate(G;) x |G|
2251651

Coverage rate =

“4)

C. Overlapping rate

The overlapping rate is a metric that relies on the number
of overlapping nodes between communities. For every pair
of communities, the overlapping rate is given by the ratio of
the number of common nodes they share by the smallest size
between the two communities:

|Ri (1 R
min(| Ry, | R;])

For a given partition, the overlapping rate is given by the
mean of the overlapping rates of all pairs of communities it
contains. Since our metric is an information recovery metric,
the overlapping rate between R and G, is given by the equation
6 below. It is a measure of ideal overlap, and ideally, we have
a score close to 1.

Owverlapping rate(R;, R;) = &)

Overlapping rate(R,G) =
1 — |Overlapping rate(R) — Overlapping rate(G)|  (6)

D. Distribution rate

The distribution rate compares the number of communities
each node belongs to in the result communities and in the
ground-truth. For each node i, the distribution rate is given
by:

Distribution rate; = |ng(i) — n, (1) 7

Where ny and n, are the number of communities in the
ground-truth and the result to which the node ¢ belongs. The
distribution rate is given by the mean of all nodes’ individual
distribution rates.

>, Distribution rate;
\4

Distribution rate = exp (—

) (®)

IV. EXPERIMENTS
A. Data and results

In order to assess the efficiency and test the practical limits
of the proposed metrics, we applied them on small manual
synthetic network data, and on a classical network of the lit-
erature: the US college football network [17]. For the synthetic
data, our goal was to generate synthetic result partitions that
impact specific aspects such as inclusion, overlap, or number
of communities, and test how the metrics behave accordingly.
When creating the synthetic partitions, our aim was to lay
stress on extreme examples, such as over-segmentation and
under-segmentation. While over-segmentation implies there is
an over-partitioning of the reference communities, and having
a higher number of small communities, under-segmentation
refers to grouping multiple communities into one community
and having fewer extensive communities than the ground-truth.
As for the US college football network, we applied three over-
lapping community detection algorithms: Angel [18], BigClam
[13], and Walkscan [19]. It is to note that our goal is not to
compare the performances of the introduced algorithms but
to consider implemented metrics on the different outputs they
generate. Finally, we computed our proposed metrics along
with classic information recovery metrics such as ONMI, F1-
score and omega index on the obtained communities. Results
are shown in figure 1.

B. Discussion

What can be deduced from these results, is that the inclusion
rate and the coverage rate are highly complementary. While
the first is an indicator of how similar the result communities
are to the ground-truth, the second metric informs on how
well the communities of the ground-truth are represented in
the result. For under-sergmentation cases, we observe that
coverage rate values are rather high. Due to their big size,
result communities would tend to cover to the utmost ground-
truth communities. This subsequently explains high coverage
rates. The inclusion rate in the other hand varies from 0.55 to
0.77. For over-segmentation cases, we observe maximal values
of the inclusion rate (1). This result confirms that the inclusion
rate provides information on how well the result communities
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Fig. 1: An illustration of the results of the inclusion rate, the coverage rate, the overlapping rate, the distribution rate, NMI,

omega index, and F1-score for the synthetic and real data.

are contained in the ground-truth. Especially for the cases
of over-segmentation where communities are rather of small
sizes, they are more likely to be embedded in one of the
ground-truth communities. In contrast, we note that coverage
rates are lower than those observed with under-segmentation.
Our results show roughly an agreement between the proposed
metrics and standard information recovery metrics. For par-
titions where both the inclusion and coverage rates are high,
ONMI, F1-score and omega index are also high.

Results also illustrate how algorithm parameters could affect
the metrics to variant degrees. Therefore, our proposed metrics
could be employed to tune algorithms based on the type
of the intended result. Also, the proposed metrics could be
employed to help the user pick the most suitable algorithm
for a particular use-case and an intended community struc-
ture. Although we noticed the variation of standard extrinsic
metrics, the challenging task is to know what it does mean
when one result scores 0.1 higher than another. In this regard,
our proposed metrics will enable more meaningful perception
of the results. The four metrics offer a complete overview of
the result partition with respect to the ground-truth.

V. CONCLUSION

Evaluating the accuracy of community detection results
is an important issue, which has received much attention.
Several evaluation metrics, specifically information recovery
metrics are proposed in the literature. However, real world
networks are generally composed of overlapping communities
and require adequate metrics. In this paper, we made a step
in this direction by presenting four metric definitions for
evaluating the similarity of potential overlapping partitions. We
tested our metrics on different synthetic data, and on a real-
world network. Results show that besides being more mean-
ingful, the proposed metrics present the advantage of being
comprehensible. Future work includes further improvement
of proposed measures as well as potential correlation with
intrinsic metrics.
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