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Abstract—Networks have provided a representation for a wide
range of real systems, including communication networks, money
transfer networks and biological systems. Communities repre-
sent fundamental structures for understanding the organization
of real-world networks. Uncovering coherent groups in these
networks is the goal of community detection. A community is
a mesoscopic structure with nodes heavily connected in their
groups by comparison to the nodes in other groups. Commu-
nities might also overlap as they may share one or multiple
nodes. This paper lays the foundation for an application on
transactional multigraphs (networks of financial transactions in
which nodes can be linked with multiple edges), through the
discovery of communities. Due to their complexity, our goal
is to find the most effective way of simplifying multigraphs to
weighted graphs, while preserving properties of the network. We
tested five weights’ calculation function and community detection
algorithms were applied. A comparison of the outputs based on
extrinsic and intrinsic evaluation metrics is then held.

Index Terms—Social Network Analysis, Overlapping com-
munity detection, multigraph, graph transformation, Financial
service.

I. INTRODUCTION

The framework of networks provides an exceptional tool for
the analysis of complex systems of interacting objects. Real
networks decompose into densely connected modules, also
called communities, with sparse ties between them. Communi-
ties correspond to behavioral or functional entities within the
network. Despite the progress achieved in the area, community
detection is still a complex task due to the lack of universal
definition of community. Every proposed approach defines its
own idea of a community related to the studied context [1],
[2]. There have been multiple studies in the literature targeting
community detection in social networks [3]. However, most of
them focused on single-relational networks.
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Motivated by an application around transactional data anal-
ysis, this paper studies graph transformation for overlapping
community detection. Transactions’ network is a directed
multigraph, where nodes represent users, edges represent
money transfers, and allowing multiple edges between a pair
of nodes. In practice, multigraphs haven’t been widely studied
in comparison to simple graphs. Simple graphs can be derived
from multigraphs, by collapsing the multiple edges between
two nodes into one simple edge. However, this process dis-
cards information from the original graph [4].

In this paper, we propose to compare different multigraphs
reduction operations based on different function of edges’
weights calculation. Our goal is to understand to what extent
the reduction of transactional multigraphs is beneficial to
the overall community detection quality and which type of
reduction is more efficient. In order to minimize the loss of
information caused by the graph transformation, the proposed
method consists in adding a weight on the simplified edge
using available information about the transactions. We aim to
generate different graphs, using different weighting functions.
In what follows, we will use the terms node, vertex, vertice,
and edge, link interchangeably.

The rest of the paper is organized as follows. Section II
presents the context of the study and preliminary definitions
about overlapping community detection and evaluation met-
rics. Section III illustrates the problem of multigraph reduc-
tion, and the contribution of this paper through the proposed
method. In section V our methodology is explained as well as
data deployed for the tests. Finally, in section VI tests results
are presented and discussed.

II. CONTEXT

A. Use case around financial data

In this paper, we consider a graph consisting of financial
transactions for a money transfer service where nodes repre-



sent users and edges represent transactions. For such a service,
transactions take place between customers for various reasons
such as sending money for family, transfers between friends,
salary payment, etc. Social network analysis has already been
successfully used on banking and money transfer data to
carry out socio-economic studies [5], uncover customer buying
habits [6], fight fraud [7], etc.

The social network established from transactions data has
two important features, namely link directedness and multi-
plicity what makes it a directed multigraph. More precisely, the
graph is directed because each transaction involves a sender
and a receiver. This network is a multigraph, given the fact that
between any pair of users, there can be several transfers (edges
in the graph) over a period of time. When these features are
ignored for community detection, there might be issues over
quality and accuracy of communities obtained [8]. Figure 1
displays a fraction of a transactional network.
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Example of transactions’ graph.

As depicted in figure 1, each pair of users (nodes) can
have multiple transactions (edges) one way or the other. In the
transactional graph, each edge is qualified by a set of attributes
such as the transaction amount, the date, the status (success or
failure), etc. In this work, we will rely on these attributes more
particularly transaction amount and date in order to convert the
multigraph on a weighted graph.

B. Overlapping communities detection

Although no formal consensus was reached on a definition
that captures the gist of a community, it may be defined
as a cohesive group where nodes interact with each other
significantly more than they do with other nodes outside the
group [3], [9]. In this work, we are particularly interested in
overlapping communities. Overlapping community structure
is a natural phenomenon observed in real networks. Unlike
crisp communities, overlapping communities may share one
or more nodes: a node can simultaneously be part of multiple
communities of different scopes and levels, such as family,
friends, work, city, etc. Therefore, in the last years, there has
been a growing interest in identifying communities that are
not necessarily disjoint [8], [10], [11].

Overlapping communities are studied in the literature in
various contexts. In the context of e-commerce, [12] uses
overlapping communities in order to prove the significance
of overlapping nodes in viral marketing. They uncovered
that these nodes are the most influential nodes. In the same
framework, [13] studies reviews’ spammers (who post fake
reviews) based on overlapping community detection in the
reviews graph. Overlapping nodes are identified as highly
suspicious users. The authors have then developed a trust
rank algorithm based on community detection results. Sev-
eral tests have proven that their community rank algorithms
outperformed other existing methods.

Finally, in the context of mobile social networks, Kim and
Kim [8] studied overlapping communities in the network of
phone calls and texts exchanged between users. They studied
the detection of overlapping communities taking into consid-
eration real social network features such as nodes overlapping,
the weight and the direction of the edges, and the hierarchical
structure of the network. For a complete study of overlapping
community detection, we refer the reader to the works [11].

III. PROBLEM STATEMENT
A. From Multigraphs to weighted graphs

As data complexity increases, the classic definition of a
simple graph falls short to represent the complex semantics
of real world networks. More specifically, in these networks
we can observe multiple interactions describing the same or
different types of relationships between nodes. For example, a
group of users may have various communication channels like
phone calls, emails, messaging, and so on, or have multiple
exchanges of the same type. Graphs having several edges
connecting the nodes are called multigraphs.

In this paper, we consider the case were nodes have multiple
interactions of the same type. Most of the work regarding this
specific type of graphs is focused on multi-types edges, or
what is called multi-layers networks. However, multigraphs
can represent multiple real systems, like co-authorship col-
laboration networks [14], online social networks [15], com-
munication networks [16], etc. Despite the large amount of
interest in multigraphs, relatively little attention has been paid
to multigraphs with the same type of edges.

Although multigraphs exploitation in different applications
such as community detection provide rich information to the
analysis, their characteristics also intensify the complexity of
calculation and processing. Therefore multigraph reduction or
compression appears to be a solution to mitigate this scale-
up. The reduction of a multigraph consists in reducing the
number of edges or nodes existing in the network for a simpler
representation.

While multigraph’s reduction may lead to loss of informa-
tion and details, it allows to eliminate the noise that can be
present in the graph. We expect that the transition from a
multigraph into weighted graph would allow to restore the
information lost during the compression. Figure 2 shows an
example of an undirected multigraph reduction to a simple
undirected weighted graph.
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Fig. 2. Example of multigraph’s reduction to simple weighted graph.

Weighted graphs have been studied in different contexts as
many real world networks are intrinsically weighted. Their
edges having different strengths depict stronger or weaker ties
and flows between nodes. As any type of graphs, weighted
graphs have attracted attention for different application, espe-
cially for community detection [8], [17], [18]. These studies
have led to various algorithms for the detection of disjoint and
overlapping communities.

B. Notations

A graph G = (V, E) is a mathematical object, where V' =
{v1,v2,...,v,} denotes the set of vertices and £ C V x V
the set of edges. We define the neighborhood of a node v; of
G, or N(v;), as the set of nodes adjacent to v;. In a graph,
an edge e € E(G) may be undirected, or directed from the
sender node to the receiver node.

Let v; and v; be two vertices of G. We use p(v;, v;) to denote
the number of edges joining v; and v; in G.

Definition 1. A graph G is weighted, if it associates to every
edge e € I/ a weighting function that gives a real non negative
such that

Wi(e) >0

If the weighted graph is undirected, then its weighting function
is symmetric i.e. w(v;,v;) = w(v;,v;).

Definition 2. The multiplicity of a vertex v; is given by

max

Vi, U5
Ujev\{vi}ﬂ( i)

p(vi) =
The multiplicity of a graph G is defined by
wG) = max p(v;)

A graph is said to be simple if it has multiplicity at most 1.
Otherwise, if a graph has multiple edges between any pair of
its nodes, it is called a multigraph.

Definition 3. For a given number k, we define a cover as a
family of k subsets of nodes C = {C},Cs,...,Cy} where
each C; is called a community.

The goal in community detection is to find a cover C' which
best describes the community structure of the graph. Namely,
communities are sub-graphs of a graph.

In this work, we are interested in identifying overlapping
communities, which can be defined as follows.

Definition 4. An overlapping community structure C' can
be defined as a cover of V in n communities C' =

{C1,Cs5,...,C,} where a node v; can participate in one or
more communities C; with a belonging factor « such that
0<a<l1,and

D ay, =1,Y; € V,VC; € C

In section V-B, we will refer to a result and ground
truth overlapping communities respectively as R =
RlaRQa"' 7Rna and G:G17G27"' aGWL‘

IV. PROPOSED METHOD

Our goal in this work is to simplify the structure of
the transactional graph by reducing the number of edges,
while preserving the graph properties, and the strength of
ties between nodes. Weights on edges will provide informa-
tion about the relation between two nodes. They will also
characterize the connection between these two nodes, based
on the exchanges they had. In our studied graph, each edge
e represent a financial transaction between a sender and a
receiver. A transaction carries a set of characteristics such
as the amount and the date which are converted into edge
attributes. A couple of nodes or users v;,v; can engage in
multiple transactions and thus be linked by multiple edges.
Reducing the graph consists on combining these edges in a
single edge with a weight w(v;,v;) We expect that reducing
the size of the multigraph would allow better understanding
of the graph patterns, as well as provide a better and faster
result for community detection algorithms. In the context of
this paper, we chose five methods to transform the multigraph
to an oriented weighted graph. For each method, the weight
of the edge will be calculated differently. These methods are
called according to the weighting functions: occurrence, sum,
mean, monthly mean and temporal score.

For all five methods, we proceed as follows: all the directed
edges from one sender node to a receiver node will be replaced
by one directed weighted edge. For a couple of nodes in the
graph, the weight scores of the resulted edges are calculated
as follows :

a) Occurrence: : The resulting edge weight represents
the number of edges between the two nodes before the
simplification.

'lU(’Ui,’Uj) :H(UZ‘,’U]‘) (1)

b) Sum: : The edge weight of the second method is
equal to the sum of transactions amounts T'A between the
transmitting node v; and the receptive node v; over the study
period;

#(TA)
w(v,v;) = Z transaction amount(v;, v;) 2)
i=1
where # (T A) is the number of transactions between v; and
Vj.



c) Mean: : The resulting edge weight is equal to the
mean of the transactions amounts exchanged over the study
period.

Zfi(lTA) transaction amount(v;, v;)
w(vg,v;) = == 3
/u'(viv vj)
d) Monthly mean: : The fourth method, similar to the two
previous methods, is based on temporal mean of transactions
over the study span.

Zi(lTA) transaction amount(v;, v;)
w(vi, ;) = > months @

e) Temporal score: : The last method of weight calcu-
lation is based on a score mixing transactions amounts and
temporal variables. The score is based on all the transactions
between the sender and the receiver taking into consideration
the gap between each couple of transactions and the amount of
each. The score calculation is based on a decreasing function
of power two, and a factor 7. The idea is that a transaction
looses its importance over time. After a given time 7, the score
of the transaction is half its initial value. For a couple of nodes,
the equation of this score is given by:

#(TA)
w(vs, vj) = Z transaction amount(v;, v;) * 27 7

i=1

&)

For a couple of nodes, this sum is calculated on the
basis of all the transactions exchanged with an amount
transaction amount,, ,;, where t is the date of each trans-
action, 7 is the date of the last exchanged transaction and 7
equals to 30 days.

V. EXPERIMENTAL PROTOCOL
A. Methodology

The main purpose of this work is to investigate the impact
of simplifying a multigraph into a weighted graph, in the
context of overlapping communities detection. We aim to
identify the best method of simplification while testing dif-
ferent weighting functions. The assessment of this impact will
be achieved through the application of community detection
methods on both, the original multigraph, and the different
generated graphs, and through the examination of the structural
properties of the communities formed.

Our methodology is as follows: starting from the initial
multigraph, five weighted graphs will be created, using the
five weighting functions described in section IV. We will also
create a simple graph, where edges have equal weights of 1.
This graph will serve as a reference to test if weights are
as important as we anticipate. Three overlapping community
detection algorithms will be applied to each of these graphs.
The implemented algorithms are Aslpaw [19], Lswl-plus [20],
and wCommunity [21].

For our tests, the crucial factor for choosing an algorithm
is its ability to be applied on multigraphs, and the fact that it
takes into consideration edges directions ans weights.

The community detection algorithms will be applied to the
original multigraphs, as well as the simple graph and the
weighted graphs. The overlapping communities generated will
be then compared to the ground-truth communities, through
suitable evaluation metrics. Results will be subsequently com-
pared, in order to study the impact of transforming a multi-
graph to a simple graph in view of community detection.
We also will be able to validate the effectiveness of each
simplification method.

B. Evaluation metrics

One of the biggest difficulties related to community detec-
tion in social networks, is the ability to evaluate the obtained
results. Evaluation is a real issue for real networks, where
only little data are provided. In the last years, a lot of work
was performed regarding evaluating metrics for community
detection [22], [23]. Despite the large number of community
detection evaluation metrics in the literature, most of the work
is focused on disjoint communities. But an increasing attention
has turned to overlapping communities’ detection evaluation
over the last years [23], [24]. An adaptation of the most known
metrics to overlapping applications were introduced, even if
their efficiency is yet debatable. These metrics can formally be
classified into two categories: intrinsic and extrinsic metrics.

Intrinsic metrics evaluate structural properties of the iden-
tified communities. They assess how similar the elements of
each community are, and how they differ from elements in
other communities, given a specific metric. The most common
intrinsic quality metrics available for overlapping communities
are modularity [25], conductance [26], and the average internal
degree:

- Modularity. It is a chance corrected metric that measures
the difference between the number of within-communities
edges in the network, and the expected value of the same
quantity in a random network [25]. Modularity was introduced
in order to assess the relevance of a given community structure
compared to a random structure. A value over 0 indicates a
deviation from randomness, and values close to 1 indicates
a strong community structure. The most popular algorithms
of community detection such as Girvan-Newman [27] and
Louvain [28] are based on modularity maximization.

- Conductance. The conductance of a community is the ratio
between the number of edges that point outside the community
and the minimum between the number of edges with an
endpoint in the community or the number of edges that do not
have an endpoint in the community. Yang and Leskovec [29]
have shown that conductance is a good metric for evaluating
communities of real world graphs. The conductance value
varies between 0 and 1. A lower conductance indicates that
the community is more “well-knit”. The conductance of the
graph is the average of the conductance of each community.

- Average internal degree: Average degree is the average num-
ber of edges per node in the graph. It is given by the division of



the total number of edges by the number of nodes. The average
internal degree is the average degree within the community.
Hence, the internal average degree of communities’ partition
is given by the average of all the internal average degrees of
individual communities.

Extrinsic metrics on the other hand evaluate how the re-
sulted communities are comparable to a gold standard also
called ground-truth. These metrics are also called information
recovery metrics because they measure the ability of algo-
rithms to recover information from the ground-truth. For real-
world networks this ground-truth is not always available. In
such case, we consider that evaluation of the performance of
an overlapping community detection algorithm is less straight-
forward. Therefore, in this work we only consider synthetic
networks where the ground-truth is available. Thus, informa-
tion recovery metrics compare two sets of communities (not
necessarily the same number) based on different criteria. The
most popular information recovery metrics are the Normalized
Mutual Information (NMI) [30], and the F1-score [10].

In order to overcome the shortcomings of existing metrics,
we proposed four information recovery metrics in a previous
submitted work, for comparing communities that overlap.
More specifically, we presented metrics that aim to compare
the similarity of an overlapping community detection result, to
a given ground-truth. These metrics are the inclusion rate, the
coverage rate, the overlapping rate, and the distribution rate,
which will be detailed just below. All the proposed metrics
vary between minimum 0 and maximum 1. The used extrinsic
metrics are:

- ONMI: The Overlapping Normalized Mutual Information
(ONM)D) is an adjustment of the Normalized Mutual Infor-
mation (NMI) for overlapping communities. The NMI metric
has become one of the most popular metrics when it comes to
evaluate the relevance of communities [30]. Based on infor-
mation theory, the NMI measures the similarity between two
partitions. NMI value varies between 0 and 1. Lancichinetti et
al. [31] proposed a variation of normalized mutual information
fitted to overlapping communities, namely ONMI.

- Average Fl-score: The average F1 score is the mean of
the Fl-scores of the best matching ground-truth community
to each detected community and the Fl-scores of the best-
matching detected community to each ground-truth commu-
nity [10]. The F'1 score is given by the harmonic mean of
Precision and Recall.

- Inclusion rate: The inclusion rate is a metric that is meant to
measure the embeddedness of result communities into ground-
truth communities. The basic idea behind this metric was the
need of a measure that estimates the amount of representative-
ness of the result communities compared to the ground-truth
ones. For a given result community R;, the individual inclusion
rate is given by the maximum precision rate:

Inclusion rate(R;) = max(precision(R;, G;))
j

_ RiNG; ) ©)
B ( | R

The overall inclusion rate is then defined by the ratio of a
weighted sum of the individual inclusion rates divided by the
sum of the resulting communities sizes. The weight we chose
for the sum is the size of individual result communities:

- Coverage rate. While the inclusion rate regards similarity
from the result communities perspective, the coverage rate
considers it from the ground-truth angle. Our purpose was to
identify two complementary metrics, that account for analo-
gous similarity perspectives. As the inclusion rate is based on
the maximum of the precision, the coverage rate is a function
of the maximum recall. For a given ground-truth community
G, the individual coverage rate is given by the maximum
recall rate:

Coverage rate(G;) = max(recall(R;, G;))

- RiNG, @)
- mf"‘( G, )

The overall coverage rate is then defined by the ration of a
weighted sum of the individual coverage rates by the sum
of the ground-truth communities sizes. We chose the size of
ground-truth communities to weight the sum:

- Overlapping rate. The overlapping rate is a metric that
calculates the total number of overlapping nodes between
communities. For every pair of communities, the overlapping
rate is calculated by dividing the number of common nodes
they share by the smallest size between the two communities.
The overlapping rate for a couple of result communities for
example is given by:

ICi N C;
min(|Cy, |Cy])

For a given partition, the overlapping rate is given by the
mean of the overlapping rates of the pairs of communities it
contains. Since our metric is an information recovery metric,
the overlapping rate between two partitions R and G, is given
by the equation 9 below:

Overlapping rate(R;, R;) = (8)

Overlapping rate(R,G) =
1 — |Overlapping rate(R) — Overlapping rate(G)| (9)

- Distribution rate. The distribution rate compares the number
of communities each node belongs to in the result communities
and in the ground-truth. For each node i, the distribution rate
is given by:

Distribution rate; = |ngy(i) — n,. (i) (10)

Where n, and n, are the number of communities in the
ground-truth and the result to which the node ¢ belongs. The
distribution rate is given by:

>, Distribution rate; )

Distribution rate = exp (— i

(1)



- Average score: Each one of our proposed metric considers
a structural aspect of the communities acquired by the com-
munity detection algorithm. Accordingly, we impose that a
good set of result should have good scores for all the four
metrics. All four metrics must be considered concurrently to
fully understand the results, as some metrics may give good
scores on some bad results. Therefore, an average score of the
inclusion rate, the coverage rate, the overlapping rate and the
distribution rate should be computed.

C. Data description

In the scope of this study, we are provided with a high
volume of data. However, due to the sensitive nature of
financial data, and the strict organisation internal policies to
protect users confidentiality, we cannot disclose any informa-
tion about users. Therefore simulated data will be used for our
experiments. Simulated data are self-sufficient data aspiring to
have comparable statistical properties as real one. Simulation
is also useful to assess the outcome of tested algorithms, before
applying them on real data.

Real data may be random and the lack of a ground-truth
leads to a limited understanding of community structure in
such networks. Therefore, testing community detection algo-
rithms on real-world networks may not be conclusive due to
the lack of the ground-truth. The generated network contains
10,000 nodes and more than 350,000 transactions over a
one-year span. The ground truth includes 3,626 communities
having an average size of 20 nodes.

VI. EXPERIMENTATION
A. Results

In order to compare different reduction methods, as pre-
viously mentioned, we apply three overlapping community
detection algorithms (Aslpaw, Lswl-plus, and wCommunity)
on the synthetic data.

The results of extrinsic and intrinsic metrics applied on the
communities generated are showed in tables I to III. In these
tables are displayed metrics’ results for the multigraph and for
the five reduced graphs.

For Aslpaw (table I) the extrinsic metrics show that the com-
munity detected on the multigraph yields good results when
compared to the ground truth. The inclusion and coverage rates
are both high. This indicates that communities found by the
algorithm are an acceptable match of the ground truth. On
the other hand, the results of our proposed metrics on the
simple graph present the best the results, when compared to
the multigraph, and to the other reduced graphs. The simple
graph has the best NMI score. The multigraph has the best
fl-score.

For Lswl-plus table (II), results show disparate behaviors
on the multigraph compared to the reduced graphs. For multi-
graph, the inclusion and coverage rates are both high which
imply an acceptable community structure discovered relative
to the ground truth. For the reduced graphs, we observe a low
inclusion rates and very high coverage rates. This suggests that
discovered communities present a case of under-segmentation.

This occurs when the algorithm generates communities that
combine multiple ground-truth communities into one extensive
community. The distribution rate has the best value with the
simple graph. The overlapping rates are very close, but the
best value is met with the multigraph. The multigraph has
also the best average score. The simple graph has the highest
NMI result, and the multigraph has the best fl-score result.

For the last algorithm wCommunity, results, displayed in
(III), show a comparable behavior to Aslpaw. The inclusion
and coverage rates are both relatively high. The simple graph
has the best average score, but with close results to the
occurrence and the mean graphs. The multigraph has the best
NMI and fl-score values.

From a structural perspective, if we consider the conduc-
tance and the overlapping modularity results, we observe that
the reduced graphs score generally better than the multigraph.

B. Discussion

In the previous section, we presented the results of intrinsic
and extrinsic evaluation metrics applied on result commu-
nities of three different overlapping communities detection
algorithms. The goal of our experiments is twofold. The first
aim is to determine if a multigraph reduction allows to reach
better results regarding the detection of overlapping commu-
nities. Since we consider different reduction approaches based
on different calculations of edges weights, the second goal
of the experiments is to identify which reduction method
achieves better overlapping community detection results. The
first observation that can be drawn from the results is that the
algorithm Lswl-plus produces better scores for the multigraph
compared to the other reduced graphs. This may be an
indication that this community detection algorithm is more
efficient on multigraphs than on weighted graphs and has been
specifically designed for multigraphs and not weighted graphs.
For extrinsic evaluation metrics, while the multigraph has the
bigger inclusion rate, the reduced graphs have for the major
part a better coverage rate which means that the ground truth
communities are better represented in the result communities.

One of the reason that led us to propose new evaluation met-
rics, is the lack of coherence and the difficulty of interpretation
wen it comes to standard metrics such as NMI and fl-score.
Communities with quite different structures and distribution,
can have close or the same NMI measures. Consequently, it is
necessary to analyze the topological properties of community
structure.

As for intrinsic quality metrics, results highlight a structural
disparity between communities generated from the multigraph,
as opposed to the communities generated from weighted
graphs. The values of the average internal degrees indicate
that the multigraph communities are bigger than the rest
of the communities. However, the overlapping modularity
values (and some conductance values) are overall superior for
the reduced graphs, which underlines a stronger community
structure.

Based on the experimental results, the first conclusion
that can be drawn is that the choice of the algorithm has



TABLE I
EXTRINSIC AND INTRINSIC METRICS FOR Aslpaw

‘ Aslpaw

\ Multigraph ~ Simple  Occurrence Sum Mean Monthly-mean  temporal-score
Inclusion rate | 0.837 0.706 0.789 0.785 0.748 0.773 0.783
Coverage rate | 0.506 0.675 0.535 0.519 0.606 0.551 0.447
Distribution rate | 0.074 0.073 0.077 0.077 0.075 0.078 0.082
Overlapping rate \ 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Average score | 0.602 0.611 0.598 0.593 0.605 0.598 0.576
ONMI | 0.230 0.278 0.188 0.172 0.222 0.190 0.125
Fl-score ‘ 0.266 0.235 0.246 0.245 0.245 0.244 0.233
Average internal degree \ 29.16 3.65 4.01 3.81 4.79 3.99 2.99
Conductance | 0.321 0.460 0.521 0.54 0.42 0.52 0.62
Overlapping modularity | 0.0109 0.0952 0.0407 0.0318  0.0504 0.0381 0.0187

TABLE II

EXTRINSIC AND INTRINSIC METRICS FOR Lswi-plus

‘ Lswl — plus

\ Multigraph ~ Simple  Occurrence Sum Mean Monthly-mean  temporal-score
Inclusion rate | 0.719 0.202 0.194 0.187 0.183 0.194 0.223
Coverage rate | 0.521 0.825 0.816 0.818 0.816 0.814 0.813
Distribution rate ‘ 0.0678 0.107 0.0166 0.012  0.00891 0.017 0.0316
Overlapping rate ‘ 0.998 0.997 0.992 0.992 0.991 0.993 0.993
Average score ‘ 0.576 0.533 0.505 0.502 0.500 0.505 0.515
ONMI | 0.151 0.217 0.153 0.168 0.155 0.157 0.159
Fl-score | 0.23 0.077 0.068 0.066 0.063 0.068 0.077
Average internal degree ‘ 23.21 5.17 9.35 9.38 9.49 9.15 9.23
Conductance | 039 0.23 0.15 0.15 0.15 0.16 0.16
Overlapping modularity |  0.069 0.14 0.057 0.058 0.0517 0.055 0.060

an important influence on the comparison of overlapping
communities detection on a multigraph versus a weighted
graph. For this reason, one of our future works as part of
this PhD will be based on the development of an adequate
overlapping community detection algorithm centered on the
edges’ weights.

While the reduction of the multigraphs may allow to sim-
plify the calculations (dividing the number of edges by five)
and to implement community detection algorithms that do not
operate on multigraphs, it doesn’t necessarily lead to the best
result due to information loss.

The comparison of the different reduction methods and
different edge weights computations suggest that their per-
formances are quite comparable. Thereafter, the usage of one
of these reduction methods would depend on the goal of the
study and the type of data explored.

Finally, it can be asserted that in order to ensure better
results, we need to consider the overlapping community de-
tection algorithm, the reduction method, and the evaluation
metrics concurrently.

VII. CONCLUSION

In this paper, we addressed the question of multigraph
reduction into weighted graph. A multigraph is a special type
of graph where nodes could have multiple edges connecting
them. The multigraph studied on this paper is an example
of synthetic transactional network where nodes represent cus-
tomer, and edges represent the transactions’ connecting them.
The comparison based on intrinsic and extrinsic metrics on
the result of overlapping community detection applied on
the multigraph as well as on six weighted graphs show that
communities of weighted graphs are on general more similar
to the ground truth and are structurally better than those of the
multigraph. Nevertheless, we highlight that the choice of the
weighting function should rely on the context and the purpose
of the study.
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