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Abstract: The paper focuses on the study of a semi-activated system, based on a combination of two
movements of forced pitching and free-heaving motion. Therefore, quantifying with accuracy the
hydrodynamic forces applied on the hydrofoil seems to be crucial. This is investigated throughout
a numerical analysis of the hydrofoil dynamics. The deformable structure is oscillating in a low-
Reynolds number flow. In this study, a hydrofoil animated by a combined forced pitching and
heaving movements is considered. Various materials of the hydrofoil structure are studied, from
the rigid material to a more flexible one. A partitioned implicit coupling approach is applied in
order to consider the Fluid-Structure Interaction (FSI) effects, while the Navier–Stokes equations are
solved using the Arbitrary Lagrangian–Eulerian (ALE) method. Both the viscous incompressible
Navier–Stokes equations and the elasticity equation are solved using finite volume method. The
study is based on the analysis of the hydrodynamic loads acting on the structure. Therefore, the
induced dynamics and the power coefficient of the structure are investigated. It is shown that the
flexibility of the hydrofoil has an effect on its hydrodynamic behavior. Indeed it increases the load
fluctuations and the horizontal mean force component. Furthermore, the unsteady vortices around
the hydrofoil are highly impacted by its deformations. Finally, the structure deformations mostly
improve the device energy efficiency.

Keywords: renewable marine energy; fluid-structure interactions; deformable hydrofoil; oscillating
hydrofoil; NACA0015; CFD

1. Introduction

The wide variety of applications of oscillating structures in a fluid flow has drawn
a lot of interest in the past decades. Numerous academic and industrial investigations
have led to considerable advances in fluid dynamics and moving deformable structures [1].
Oscillating structures in a fluid flow can perform in two distinct modes: Power extrac-
tion and propulsion [2]. While the later has been widely investigated, among others,
for aerodynamics or propulsion of flying and aquatic species [3], the former remains a
recent application.

Recent interest in wind and tidal energies has led to various researches in order
to understand the dynamics of tidal and wind turbines, and underlying physics [4–7].
Indeed, heaving and pitching movements of submerged structures have been the subject of
numerical [4,8,9] and experimental analysis [3,5,10]. These works were actively interested
in optimizing the hydrodynamic performance of these structures, such as minimizing drag
or maximizing their thrust or lift, depending on their use [2,11,12]. However, most of
these studies are based on 2D modeling of immersed rigid solids. Therefore they do not
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take into account the Fluid-Structure Interactions (FSI) effects [1]. More recently, with the
advances in computing resources and numerical coupling methods in FSI, realistic and
efficient full-scale simulations are now possible [7].

Structure flexibility can enhance thrust and drag efficiency of a moving foil [6,13]. This
behavior has been observed in natural phenomena and since then, studied for propulsion
and energy extraction. Flexible flukes, for instance, boost the thrust efficiency of bottlenose
dolphins by around 20% [14]. Studies have shown that deformations of flexible structures
must be precisely anticipated since they have a significant influence on structural per-
formance [15]. Therefore, studies on the flexibility of blade materials have been carried
out to improve the efficiency of wind and water turbines. For both technologies, flexible
blades have been shown to act as a passive pitch control mechanism by making a dynamic
adjustment and can prevent the stall effect [16]. Moreover, the flexibility of the blades
provides higher thrust, lower normal forces, and minimal torque as well as reduced tur-
bine vibrations, leading to higher efficiency and a significant increase of the self-starting
capability [6,15,16].

Monolithic and partitioned approaches are two of the most well-known numerical
methods for handling FSI problems [17–19]. The monolithic method is more accurate
than partitioned approaches and unconditionally stable [20]. It is, however, more difficult
to implement. Therefore, it is often employed to solve simple FSI problems. Otherwise,
partitioned methods are widely adopted in practice due to their ease of implementation.
Indeed, by coupling with a dedicated interface, the conventional Computational Fluid
Dynamics (CFD) and Computational Solid Dynamics (CSD) programs, they can be utilized
for this purpose. In order to ensure the stability and accuracy of this approach for a
wide range of applications, various coupling schemes have been developed. In addition,
partitioned approaches allow the use of simplified models for the fluid or the structure,
independently of one another. For instance, the slender structure can be modeled with
beam theory [21,22].

While FSI numerical approaches for analyzing the dynamic response of embedded
deformable structures are commonly employed [23,24], taking into account, in addition to
deformations, large free or forced displacements of the structure remains an unexplored
field of investigation in the literature. Indeed, multiple sophisticated models are needed to
acquire a reasonable description of the fluid and structural dynamics, as well as the dynamic
mesh [19,25]. For any of these reasons, experimental investigations are more common in
this situation. They are, however, still complex and expensive to set up [3,5,11,26].

As previously shown, the efficiency of rotating wind and tidal turbines can be im-
proved by using flexible blades. While numerous numerical and experimental investi-
gations on rigid oscillating structures have been carried out in order to enhance their
hydrodynamic performances, only few of them have investigated the fluid-induced de-
formations effects on these systems [27]. In addition, most of these works focused on the
propulsive performances of the structure and not on the power extraction performances.
For example, Alben [28] employed an analytical model to establish that the thrust power of
a flexible and pitching structure has a series of resonant peaks as a function of its flexibility.
David et al. [29] present an experimental work on the study of the thrust generation of
a pitching and rigid foil with flexible flaps connected to its trailing edge. It has been
established that the flexible flap significantly improves the thrust performance.

However, there is a lack of knowledge in the literature on the hydrodynamic perfor-
mance of deformable heaving and pitching structures for energy extraction regime. For
example, Yin and Luo [30] investigated the effects of the wing inertia for a range of wing
stiffness on lift and drag performance and on energy consumption. It has been found that
both inertia-induced deformations and flow-induced deformations can improve the lift
of the structure. Furthermore, flow-induced deformations, as in the case of a low-mass
wing, creates less drag and leads to greater aerodynamic power efficiency. Tian et al. [31]
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studied the effects of the flexibility of a flapping plate flow energy harvester. They present
a strategy to enhance the energy extraction capability of the hydrofoil based on flapping
plate active control.

Finally, while the fluid-induced deformations are considered in these investigation, the
internal stresses and deformations of the structure are not resolved. Lately, Manjunathan
and Bhardwaj [27] have conducted a numerical analysis in which the plate’s internal
stresses are resolved. This study showed that the propulsion is optimal for a specific
pitching frequency. However, rigid plates outperform the flexible ones for large pitching
frequency. The objective of this work is to carry out a numerical analysis of the FSI effects
on a 2D flexible hydrofoil, subjected to a forced oscillating movement. A study of the
impact of structure flexibility on hydrodynamic forces and on the efficiency of the hydrofoil
are achieved.

In this paper, we first present the mathematical formulation of the problem in Section 2.
Section 3 outlines the numerical methods applied to solve the problem. Then, the numerical
validations and the obtained results are discussed in Section 4. Lastly, an overall conclusion
is drawn in Section 5.

2. Problem Formulation
2.1. Oscillating and Deformable Hydrofoil

A moving and flexible hydrofoil immersed in a fluid flow is considered (Figure 1).
The Reynolds numbers based on the hydrofoil’s chord is Re = 2000 (corresponding to the
upstream velocity U∞ = 0.002 m/s). The hydrofoil geometry is a 2D NACA0015 and its
chord length is c = 1 m. It oscillates sinusoidally, according to a forced pitching α(t) and
heaving h(t) motion, defined respectively by Equations (1) and (2):

α(t) = α0 sin(ωt) (1)

h(t) = h0 sin(ωt + ϕ). (2)

Figure 1. Oscillating hydrofoil in power extraction regime. Both the heaving h(t) and the pitching
α(t) motions are forced.

The center of rotation O is located at 1/3 of its chord (Figure 2). The heaving and
pitching amplitudes are α0 et h0 respectively. The angular frequency is ω = 2π f and
ϕ is the phase difference between the two motions. In the current study, ϕ = 90◦ is
kept constant. This choice is based on previous studies from the literature and ensures
maximal efficiency [2,32,33]. Several pitching amplitudes are studied, from α0 = 10◦ to
30◦ for one heaving amplitude corresponding to h0/c = 0.43. The oscillating frequency is
f ∗ = f h0/U∞ = 0.025.
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Figure 2. Partly deformable hydrofoil geometry, fluid, and solid domains boundaries: ΩLE (gray) is
non deformable and ΩTE (cyan) is deformable.

The hydrofoil is made up of two parts. The first one, named ΩLE (Figure 2), is
considered as non-deformable, whereas the second one, ΩTE, deforms under the effect
of the hydrodynamic forces. For this second part, three materials of different flexibilities,
whose parameters are summarized in Table 1, are studied and compared.

Table 1. Mechanical characteristics of the hydrofoil material for the domain ΩTE.

Mat1 Mat2 Mat3

Designation (−) hydrofoil 1 hydrofoil 2 hydrofoil 3
Density ρs (kg/m3) 1420 1420 1420

Young’s Modulus EY (GPa) 1.0 0.1 0.01
Poisson’s Coefficient ν (−) 0.35 0.35 0.35

2.2. Fluids Dynamics Equations

The incompressible and unsteady flow dynamics is described by the Navier–Stokes
equations (Equation (3)) given in Arbitrary Lagrangian–Eulerian (ALE) formulation.

ρ ∂u
∂t + ρ[(u− ug) · ∇]u = −∇p + µ∆u− ρḧ

∇ · u = 0

u = u∞ on Γi

u = ξ̇ on Γ f s
⋂

ΓLE

ut=0 = u∞ on Ω f

p = 0 on Γo

(3)

with u = (u , v) as the fluid velocity vector, ug as the fluid domain velocity vector,
u∞ = (U∞, 0), p as the fluid pressure, ρ as the fluid density, and µ as the fluid viscos-
ity. The unit normal vector n points out of the fluid boundaries. ξ̇ is the local structure
velocity vector and the fluid domain boundaries Γi, Γo, and Γ f s are respectively the inlet,
the outlet, and the fluid-structure interface (Figure 2).

A heaving reference frame method is implemented. This choice is motivated by the
desire to ease the mesh displacements. Therefore, no mesh displacements and deformations
is required for modeling the large heaving displacement of the structure [2,34]. The
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reference frame is associated with the center of rotation of the structure. This leads to
the addition of a driving force, reduced in this case to ρḧ, where ḧ represents the vertical
acceleration of the structure in the fixed reference frame. Thus, the heaving motion is taken
into account by introducing a source term in the Navier–Stokes equations (Equation (3))
and imposing the condition u = u∞ − ḣ on the domain boundaries, where u∞ is the
upstream velocity in the fixed reference frame.

Finally, the arbitrary velocity of the fluid domain is given by the solution of the diffusion
equation (Equation (4)), where d is the distance from the fluid-structure boundaries [35]:

∇ · (λ∇ug) = 0
ug = 0 on Γi ∩ Γo
ug = ξ̇ on Γ f s ∩ ΓLE
λ = 1

d2

. (4)

2.3. Structure Dynamics Equations

The following conservation equation (Equation (5)) describes the deformations of
the structure. 

ρs
∂2ξ
∂t2 = −∇ · σs + fs

σ f · n = σs · n on Γ f s
⋂

ΓLE

ξt=0 = 0

ξ̇t=0 = 0

(5)

with ρs as the structure mass density, ξ as the structure local displacement vector, σs as the
Cauchy stress tensor, and f s as the body forces acting on the structure.

In the framework of the non-linear Saint Venant–Kirchhoff model, the conservation
equation in Equation (5) can be written as follows [36]:

ρs
∂2ξ
∂t2 = ∇ · [(2µs + λs)∇ξ]+

∇ · [−(µs + λs)∇ξ + µs∇Tξ+

λstr(∇ξ)I]+
∇ · [µs(∇ξ ·∇Tξ)+

1
2 λstr(∇ξ ·∇Tξ)I]+

∇ · [Σ ·∇ξ]

(6)

where the stress tensor Σ, the strain tensor E, and the Lame’s coefficients are given by the
Equations (7)–(9) respectively [36]:

Σ = 2µsE + λstr(E)I (7)

E =
1
2
(∇ξ +∇Tξ +∇ξ · ∇Tξ) (8)

µs =
EY

2(1 + ν)
λs =

νEY
(1 + ν)(1− 2ν)

. (9)

2.4. Fluid-Structure Interaction Coupled Problem

Equations (10) and (11) define the FSI coupling conditions. These conditions are
required at the fluid-structure interface for the fluid and structure dynamic equations
(Equations (3) and (5)) respectively [23].

σ f · n|Γ f s
= σs · n|Γ f s

(10)

u|Γ f s
= ξ̇|Γ f s

(11)
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where, u|Γ f s
and ξ̇|Γ f s

are respectively the fluid and solid velocity fields at the fluid-structure
interface Γ f s.

3. Numerical Resolution

A second order finite-volume discretization is used to solve the fluid equations
(Equation (3)) with the Foam-Extend library while the time discretization for both fluid
and structure equations is carried out with an implicit and second-order accurate scheme.
The pressure-velocity coupling is resolved with the PISO algorithm, which requires a
Courant number less than 1.

The numerical code used to solve the structure dynamics equations is based on the
finite volume discretization method [24,36–39].

The FSI coupled problem is solved using an implicit coupling scheme (Figure 3).
The coupling convergence is defined by ||ri||2 < εFSI,tol . For each coupling iteration
i, the residual vector ri is defined at the fluid-structure interface (Equation (12)). Here,
εFSI,tol = 10−6 is the chosen convergence criteria.

ri = d|Γ f s ,i − ξ f s,i (12)

where, d|Γ f s,i and ξ f s,i are the fluid and solid meshes displacements at the fluid-structure
interface respectively. Further details about this method can be found in the literature [13,36,40].

t−∆t
Fluid mesh

update
Fluid solver

Structure
solver

FSI
convergence

?

||ri|| > εFSI,tol

t+∆t

no

yes

Figure 3. FSI implicit coupling scheme.

3.1. Heaving Reference Frame Validation

The study of a non-deformable 2D cylinder in a forced sinusoidal heaving motion is
then performed in order to validate the structure heaving motion model. In this case, the
flow regime is considered as laminar with a Reynolds number of Re = 500, depending on
the cylinder diameter D = 1 m. The heaving amplitude is ∆h = 2 · h0 with h0/D = 0.25
and the dimensionless oscillation frequency is f ∗ = f D/U∞ = 0.228. A relative deviations
of about 3.75% and 0.84% are obtained respectively for the mean drag coefficient 〈CD〉 and
the maximal lift coefficient ĈL compared to the results of Blackburn and Henderson [34].
Thus, a good agreement on the force predictions is achieved (Table 2). Therefore, this
heaving modeling strategy is employed for the whole study.

Table 2. Comparison of mean drag coefficient 〈CD〉 and peak lift coefficient ĈL for a non-deformable
heaving cylinder obtained with the spectral element method [34] and CFD code predictions [2], for
Re = 500, f ∗ = 0.228, and h0/D = 0.25.

Solvers Cells Time Steps/Cycle 〈CD〉 ĈL

Blackburn & Henderson [34] 422 2000 1.414 1.776
Kinsey & Dumas [2] 65,600 2000 1.412 1.755

Present 75,000 2000 1.467 1.761
Relative deviations with [34] - - 3.75% 0.84%



Energies 2021, 14, 4370 7 of 19

3.2. FSI Implicit Coupling Scheme Validation

First, the validation of the FSI implicit coupling scheme available in the OpenFoam FSI
package is carried out [13,36,38]. Thus, the FSI problem of a 3D deformable cantilevered
NACA0015 immersed in a turbulent fluid flow is solved and analyzed. This study is based
on an experimental work carried out in a hydrodynamic channel [41]. The fluid-induced
deformations of the structure are analyzed. The hydrofoil’s angle of attack is α = 8◦, its
chord is c = 100 mm, and its spanwise dimension is e = 191 mm. The flow is considered as
turbulent with a Reynolds number of Re = 3.0 · 105. The lift and drag coefficients, CL and
CD respectively, the angle of attack deviation ∆α between the embedded and the free face
of the hydrofoil, as well as the maximum leading edge displacement dy are summarized in
Table 3. Numerical results obtained with the Openfoam code are compared to experimental
data [41] and to numerical results obtained with the commercial code Ansys [23]. A
relative deviation of less than 10%, compared to experimental data, is obtained for the lift
coefficient, the angle of attack variation, as well as the maximal deformation. On the other
hand, the drag coefficient value is overestimated compared to the experimental one. The
corresponding relative deviation is about 22%. However, the same deviation is obtained for
the same test case in the literature [23]. This large error could be explained by the use of the
turbulence model k− ε. Overall, a good agreement with the experimental data is achieved.

Table 3. Numerical and experimental hydrodynamic coefficients CL et CD, angle of attack deviation
∆α, and maximal strain dy for a 3D deformable cantilevered NACA0015. The relative deviations are
based on the numerical results.

CL (-) CD (-) ∆α (◦) dy [mm]

Experiment [41] 0.80 0.045 0.2 1.48
Numerical—Ansys [23] 0.85 0.058 0.17 1.5
Numerical—OpenFoam 0.74 0.058 0.22 1.35

Relative deviations with [41] 7.5% 22% 10% 8.5%

In order to develop a full heaving and pitching deformable hydrofoil model with the
consideration of heaving and pitching motions, a preliminary model was implemented
and validated. This focused on the modeling of a pitching deformable plate [40]. The
same approach is employed in this study to model the pitching motion of the hydrofoil.
Therefore, it is possible to analyze the fluid-induced deformations of the structure while
forcing its motion. In the present work, the previous study is extended by adding the
heaving motion to the pitching deformable hydrofoil.

3.3. Mesh and Time Step Convergence Analysis

Fluid’s domain meshing influence on the numerical results is investigated. The energy
efficiency η is calculated for the pitching amplitudes α0 = 10◦, 15◦, and 15◦ (that are
outlined in Section 2.1), using four different mesh refinements. The hydrodynamic power
CP (Equation (14)) and thus the energy efficiency η (Equation (13)) are calculated from CY
(Equation (15)) and Cm (Equation (16)):

η = CP
c

h0
(13)

CP = CY
ḣ

U∞
+ Cm

α̇c
U∞

(14)

CY =
FY

1
2 ρSU2

∞
(15)

CM =
M

1
2 ρScU2

∞
. (16)
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It can be seen in Table 4 that from the space discretization Mesh 3 (Figure 4a), the
numerical results remain the same and become independent of the fluid domain mesh.
Indeed, the energy efficiency values do not evolve for a finer discretization. Therefore, this
discretization is used for the rest of the study.

Figure 4. (a) Fluid mesh. (b) Structure mesh.

Table 4. Power efficiency η (%) for coarse to refine mesh for hydrofoil 1, f ∗ = 0.025 and ∆h = 0.8 m,
as a function of pitching amplitude α0.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

α0 = 10◦ 0.189 0.220 0.219 0.219
α0 = 15◦ 2.26 2.26 2.27 2.27
α0 = 20◦ 3.91 3.72 3.75 3.75

The time step value used for the simulations corresponds to 2000 time steps per
oscillating period. This choice is also employed in the literature [2,32].

Regarding the solid’s domain discretization, the same mesh size used in [40] is em-
ployed in this paper (Figure 4b). This mesh density is considered as sufficient because
smaller deformations are expected compared to those obtained in [40]. Indeed, the width-to-
length ratio of the NACA0015 hydrofoil is twice as large as the one of the plate. Moreover,
stiffer materials are used for the hydrofoil than for the plate.

4. Results and Discussion
4.1. Analysis of the Flow in the Wake of the Hydrofoil

Two characteristic behaviors of the flow can be observed with respect to the pitching
amplitude of the hydrofoil. Indeed, for this specific oscillating frequency ( f ∗ = 0.025),
large pitching amplitude cases generate some dynamic-stall vortex shedding. Conversely,
small pitching amplitude cases do not generate vortex. Both behaviors are illustrated
by the instantaneous vorticity fields (Equation (17)) for the cases α0 = 10◦ and α0 = 40◦

respectively, represented in Figures 5 and 7 for the hydrofoils 1, 2, and 3.
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Hydrofoil 1

t∗ = 0

t∗ = 0.25

t∗ = 0.5

t∗ = 0.75

Hydrofoil 2 Hydrofoil 3

Figure 5. Instantaneous vorticity fields ωz around the oscillating hydrofoil for the hydrofoils 1, 2,
and 3, α0 = 10◦, f ∗ = 0.025, ∆h = 0.8 m, and t∗ = 0, 0.25, 0.5, 0.75.

The snapshots are made at characteristic times t∗ = 0, 0.25, 0.5, 0.75, defined as
t∗ = (t− nT)/T where n = 0, 1, 2, 3, ... and T corresponds to the period number and the
period value respectively:

ωz =
∂v
∂x
− ∂u

∂y
. (17)

For a small pitching amplitude (α0 ≤ 20◦), no vortex is generated in the flow by
the hydrofoil dynamics, as seen in Figure 5. This applies to all flexible materials of the
hydrofoil. For a non-deformable hydrofoil under the same conditions, the similar flow
behavior has already been observed and discussed in the literature [2]. Indeed, it is shown
that this is typical for a low oscillation frequency (in our case, f ∗ = 0.025) and a low
pitching amplitude.

For this case, the flow around the hydrofoil is slightly affected by the flexibility of
the hydrofoil materials. However, small differences do appear and can be seen in the
vorticity fields (Figure 5). These differences are imperceptible along the leading edge of
the structure up to about 2/3 of its chord. This is because the first third of the structure
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is non-deformable from the leading edge to its center of rotation, located at 1/3 of the
chord (Figure 2). On the other hand, notable differences appear from the last third of the
hydrofoil, especially up to the trailing edge, and propagate into the wake. For t∗ = 0,
a positive vorticity is generated at the trailing edge of the hydrofoils 2 and 3 cases. The
generated vorticity is more important for the more flexible hydrofoil (hydrofoil 3), which
is the most flexible hydrofoil. However, there is no vortex generation in the less flexible
hydrofoil case (hydrofoil 1). The opposite phenomenon is observed for t∗ = 0.5, where a
negative vorticity is generated at the trailing edge. This flow disturbance is then propagated
into the wake and amplified according to the hydrofoil material flexibility. It is then more
important in the case of hydrofoil 3.

Dynamic-stall vortex shedding appears when the pitching amplitudes increases. The
vorticity amplitude increases with the hydrofoil pitching amplitudes, as shown in Figure 6.
For example, at t∗ = 0.75, a leading edge vortex is generated along the hydrofoil upper
surface for α0 ≥ 20◦. In addition, for α0 ≥ 25◦, a trailing edge vortex is generated along the
hydrofoil upper surface.

For the large pitching amplitude (α0 ≥ 20◦), the flow along the hydrofoil surface, from
the leading edge up to the 1/3 of its chord, does not show any variation according to the
three materials (Figure 7). This is also observed for the case of α0 = 10◦ and for all times.
This is because of the rigidity of this part of the hydrofoil (see Figure 2).

α0 = 20◦ α0 = 25◦ α0 = 30◦

Figure 6. Instantaneous vorticity fields ωz around the oscillating hydrofoil 2, α0 = 20, 25 and 30◦,
f ∗ = 0.025, ∆h = 0.8 m, and t∗ = 0.75.

As shown previously, the material flexibility in the case of α0 ≤ 20◦ has a small
impact on the flow dynamics. Conversely, for α0 ≥ 20◦, this has a significant impact.
First, large vortices are now observed, due to the higher value of the angle of attack. At
the time t∗ = 0, the flow along the upper surface of hydrofoil stalls earlier for the less
flexible flexible hydrofoil (hydrofoil 1). Conversely, it never stalls for the most flexible
hydrofoil (hydrofoil 3). On the lower surface, the opposite phenomenon occurs to a lesser
extent. In fact, the flow almost stalls at the trailing edge for hydrofoil 3 while it never stalls
for hydrofoil 2 and therefore for = hydrofoil 1. At t∗ = 0.5, a similar phenomenon, but
symmetrical with respect to the chord, appears. In this case, the stall is observed along the
lower surface of hydrofoils 1 and 2 and along the upper surface of hydrofoil 3.

Moreover, for t∗ = 0.25, a positive vortex is generated at the leading edge. The more
flexible the hydrofoil material is, the faster the vortex is released. Indeed, at the same time,
the vortex is completely detached from hydrofoil 3, while it is about to be released from
hydrofoil 2 and is still attached to hydrofoil 1. It is then advected by the flow. At t∗ = 0.75,
the same phenomenon is observed on the extrados but a positive vortex becomes negative,
and vice versa.
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Hydrofoil 1

t∗ = 0

t∗ = 0.25

t∗ = 0.5

t∗ = 0.75

Hydrofoil 2 Hydrofoil 3

Figure 7. Instantaneous vorticity fields ωz around the oscillating hydrofoil for the hydrofoils 1, 2,
and 3, α0 = 40◦, f ∗ = 0.025, ∆h = 0.8 m, and t∗ = 0, 0.25, 0.5, 0.75.

4.2. Flexibility Influence on the Hydrodynamic Forces

The qualitative fluid flow analysis in the previous section shows that the wake of
the structure becomes increasingly disturbed as the flexibility of the hydrofoil increases.
These flow disturbances has a significant impact on the hydrodynamic forces and therefore
on the power extraction efficiency. The hydrodynamic coefficients CX (Equation (18)), CY
(Equation (15)), and CM (Equation (16)) are analyzed in this section. The pitching moment
coefficient CM is calculated with respect to the structure center of rotation:

CX =
FX

1
2 ρSU2

∞
. (18)

Figure 8 shows the time variations of hydrodynamic loads for the three hydrofoil
materials and pitching amplitude ranging from α0 = 10◦ to α0 = 40◦. The hydrodynamic
loads are almost periodic for all pitching amplitudes. Thus, a single oscillating period T
is represented.
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Figure 8. Hydrodynamic coefficients CY , CM, and CX and hydrofoil vertical velocity ḣ/U∞ versus time, for α0 =

10◦, 20◦, 30◦, and 40◦ and f ∗ = 0.025, ∆h = 0.8 m and for the three materials.

Firstly, for low pitching amplitude (α0 = 10◦), the coefficient CY remains relatively
low (Figure 8). Nevertheless, the amplitude of CY increases with the flexibility of the
structure. A similar behavior is observed for the coefficient CM. The average value of
these two coefficients is almost zero for all materials. This can be explained by the fact
that the heaving and the pitching motions are symmetrical. On the other hand, the mean
value of the coefficient CX is equal to 0.1 for all the hydrofoils. However, the amplitude
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of this coefficient increases with the flexibility of the structure. This is probably due to
the increase of the hydrofoil projected area in the plane perpendicular to the fluid flow
direction. Finally, additional oscillations can be observed on the coefficient curve. This is
due to the deformation of the structure.

For α0 = 20◦, the hydrodynamic coefficients of hydrofoils 1 and 2 are almost the same.
However, the coefficient amplitudes for the most flexible hydrofoil (3) are larger than for
hydrofoils 1 and 2. For this and a higher pitching amplitude, flexibility has less impact than
for α0 = 10◦. However, for high pitching amplitudes, a phase advance of the coefficients is
generated. For example, the maximum value of CX for α0 ≥ 20◦ is always obtained earlier
for the most flexible materials.

There is a significant increase in the hydrodynamic forces for the pitching amplitude
α0 ≥ 30◦ compared to α0 ≤ 20◦ (Figure 8). The mean value of the coefficient CX is also
significantly higher for these cases. This is consistent with the vortex generation and the
pitching amplitude increase.

Finally, for the pitching amplitude α0 ≥ 30◦, quite significant vibrations appear for
all coefficients. This seems consistent with the appearance of vortices (Figure 7). These
vibrations are maximal for 0.25 < t∗ < 0.5 and 0.75 < t∗ < 1, when the angle of attack
is decreasing, from its maximum value (10◦ to 40◦) to its mean value (0◦). It also occurs
when the leading edge vortices break away from the structure. On the other hand, these
disturbances tend to disappear for 0 < t∗ < 0.25 and 0.5 < t∗ < 0.75, when the angle of
attack increases. Indeed, for t∗ = 0 and t∗ = 0.5, the vortices have been advected and are
therefore already in the wake of the structure. These remarks are valid for all hydrofoils.

The horizontal force coefficient CX is not taken into account for the calculation of the
energy extraction efficiency. However, mitigating the horizontal force component would
reduce interactions with the hydrofoil support structures of the hydrofoil, and therefore
enables more reliable and cheaper tidal turbines. The fluctuations of the horizontal forces
have already been discussed (Figure 8). Here, the mean horizontal force coefficient CX is
plotted in Figure 9 for all pitching amplitudes α0. It can be seen that it increases with both
the pitching amplitude α0 and the flexibility of the hydrofoil. Indeed, the more flexible
the material, the larger the mean horizontal forces. This is true for all pitching amplitudes.
However, for low pitching amplitudes (α ≤ 25◦), the flexibility has very little effect on
mean horizontal forces.

10 20 30 40
0

0.25

0.5

0.75

1

α0 (◦)

C
X

(−
)

Hydrofoil 1 ; Hydrofoil 2 ; Hydrofoil 3

Figure 9. Mean hydrodynamic coefficient CX versus pitching amplitude α0 for f ∗ = 0.025,
∆h = 0.8 m, and for the three materials.
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Conversely, for a higher α0, the flexibilty effects are more visible and tend to increase
the gap between the three hydrofoils. Finally, CX increases linearly up to α0 = 30◦ for
hydrofoils 1 and 2, while it increases linearly up to α0 = 25◦ for hydrofoil 3.

4.3. Flexibility Influence on the Power Extraction Efficiency of the Hydrofoil

As shown in Figure 10, the instantaneous hydrodynamic power coefficient exhibits two
distinct behaviors with respect to the pitching amplitudes. Firstly, for small pitching am-
plitude, such as α0 = 10◦ and α0 = 20◦, the power coefficient oscillates quasi-sinusoidally
around its mean value. The higher the pitching amplitude, the higher the mean power
coefficient value. Indeed, it is almost zero for α0 = 10◦ and around 0.04 for α0 = 20◦

(Figure 10). For a very low pitching amplitude, such as α0 = 10◦, the power coefficient
amplitudes increase with the flexibility of the structure. Conversely, for a medium pitching
amplitude (α0 = 20◦), the power coefficient is less impacted by the flexibility. However, the
flexibility tends to generate a phase lag, which is especially observable for hydrofoil 3. This
is also observed for a higher pitching amplitude such as α0 ≥ 30◦. For these large pitching
amplitudes, the instantaneous power coefficient remains periodic but no longer oscillates
sinusoidally. For hydrofoil 1 and 2, two peaks are observed at t∗ = 0.25 and t∗ = 0.75,
corresponding to a maximum angle of attack.
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−5

0

5

·10−2

t∗

C
P
(−

)
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0 0.25 0.5 0.75 1
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)
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Figure 10. Power coefficient CP and hydrofoil vertical velocity ḣ/U∞ versus time, for α10 to α40,
f ∗ = 0.025, ∆h = 0.8 m, and for three materials.
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Table 5 summarizes the power extraction efficiency for each hydrofoil and pitching
amplitude. It can be seen that the efficiency increases with the pitching amplitude for all
hydrofoils. Indeed, its value is very low (<1%) for α0 = 10◦ and reaches a peak of 20.45%
for hydrofoil 3 at α0 = 40◦.

Table 5. Power extraction efficiency η (%) for f ∗ = 0.025, ∆h = 0.8 m, and for the three materials.

Hydrofoil 1 Hydrofoil 2 Hydrofoil 3

α0 = 10◦ 0.2197 0.2567 0.3166
α0 = 15◦ 2.279 2.442 2.878
α0 = 20◦ 3.746 4.026 4.374
α0 = 25◦ 5.088 6.119 6.070
α0 = 30◦ 8.258 8.655 13.72
α0 = 35◦ 12.87 15.75 21.66
α0 = 40◦ 13.99 17.84 20.45

Moreover, the hydrofoil flexibility has a significant impact on its power extraction
efficiency. Overall, flexibility tends to increase the efficiency. However, two behaviors are
noticeable. Indeed, the efficiency increases with the flexibility of the hydrofoil for the lowest
and the highest pitching amplitudes. For example, it can be seen that for α0 = 10◦, the
efficiency shows a relative improvement of 44% between hydrofoils 1 and 3, while it shows
a relative improvement of 46% for α0 = 40◦. For these pitching amplitudes, hydrofoil 2
generates a higher efficiency than hydrofoil 1 and a lower one than hydrofoil 3.

On the other hand, for moderate pitching amplitudes 20◦ ≤ α0 ≤ 30◦, flexibility seems
to have less impact on the efficiency. For example, there is no increase in power extraction
efficiency between hydrofoils 2 and 3 for α0 = 25◦ and between hydrofoils 1 and 2 for
α0 = 30◦.

4.4. Fluid Pressure and Vorticity Fields Analysis

As discussed previously, the power extraction coefficient CP and the horizontal force
component are highly dependent on the hydrofoil material flexibility. It has been shown
that the well-known leading edge vortex (LEV) phenomenon, which is frequently investi-
gated when studying an oscillating structure in a fluid flow, can significantly increase the
performances of oscillating foil [2]. In the present study, LEV phenomenon is observed for
a pitching amplitude α0 greater or equal to 25◦ and higher amplitudes. This is illustrated in
Figures 6 and 11. Since the hydrofoil heaving displacements are symmetrical, it is expected
to observe the same CP coefficient values during downward displacements (0 ≤ t∗ ≤ 0.5)
as during upward ones (0.5 ≤ t∗ ≤ 1). Furthermore, it can be seen in Figure 10 that
flexibility mainly influences the power coefficient in the first halves of the downward
(0 ≤ t∗ ≤ 0.25) and upward (0.5 ≤ t∗ ≤ 75) heaving phase.

In Figure 11, the instantaneous vorticity and pressure fields are presented at four times,
as marked in Figure 10. First, it is recalled that the vortex structures are similar in shapes
for all the materials and for a specific pitching amplitude. This was already discussed in
Section 4.1. Therefore, it is not surprising to observe similar pressure distributions around
the hydrofoils. The pressure and vorticity around hydrofoil 1 (Figure 11a) give an example
to understand the relationship between these flow fields and the power coefficient CP. As
the hydrofoil is pitching and heaving downward, a LEV is generated (t∗ = 0.1875) along
the downstream surface of the hydrofoil, along with a low pressure region. As the LEV is
thickening, the power coefficient is increasing. Then, as it is convected by the fluid flow
(t∗ = 0.25), the power coefficient starts decreasing.
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t∗ = 0.0625 t∗ = 0.125 t∗ = 0.1875 t∗ = 0.25

a) Hydrofoil 1

b) Hydrofoil 2

c) Hydrofoil 3

Vorticity

Pressure

Vorticity

Pressure

Vorticity

Pressure

Figure 11. Vorticity and pressure fields around the oscillating hydrofoils (1–3) for α0 = 40◦, f ∗ = 0.025, and ∆h = 0.8 m, at
times t∗ = 0.0625, 0.125, 0.1875, and 0.25.
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The greater deformation of the more flexible hydrofoils (Figure 11b,c) causes a lower
pressure load on the downstream surface and higher pressure load on the upstream surface
of the hydrofoil. In addition, the LEV is generated and detached earlier. This phenomenon
was also observed by Tian et al. [31]. This causes a higher maximum value of the power
coefficient (Figure 10) for the more flexible structure. Furthermore, as the LEV appears
earlier, the maximum value of CP is generated earlier. It is close to t∗ = 0.1875 and
t∗ = 0.125 for hydrofoils 2 and 3, respectively.

5. Conclusions

A numerical investigation of a deformable hydrofoil in forced heaving and pitching
motion for energy production is presented in this study. The effects of both the material
flexibility and the pitching amplitude on the hydrodynamic performances are investigated
for one oscillation frequency and one heaving amplitude. The FSI effects are considered
using a partitioned implicit coupling approach.

Thus, for this specific oscillation frequency, it has been shown that the efficiency is
mostly improved with the flexibility of the structure. For a low pitching amplitude, no
LEV has been observed. However, for higher pitching amplitudes, LEV occurs and has a
significant impact on the hydrofoil performance. Indeed, the relationship between LEV,
the low pressure region, and power extraction coefficient have been presented. Flexibility
tends to lower the pressure drop and therefore to increase the power extraction coefficient.
In addition, LEV stalls earlier for flexible material, which is coherent with the fact that
the maximum CP value is earlier for the most flexible material. A maximum relative
improvement of 46% between the most and least flexible hydrofoil has been obtained for
α0 = 40%.

Finally, this study shows that the consideration of the hydrofoil deformations is
necessary since it can have a huge benefit on its performances. This work should be
completed by a complete parametric study taking into account different heaving amplitudes
and different oscillation frequencies.
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u = (u, v) Flow velocity [m/s]
U∞ Free-stream velocity [m/s]
ωz Vorticity in z-direction [1/s]
p Flow pressure [Pa]
ρ Density [kg/m3]
Re Nombre de Reynolds [-]
α Angle of attack [◦]
h Vertical position [m]
T Motion period [s]
c Hydrofoil chord length [-]
CX Dimensionless x-projection of the hydrodynamic forces [-]
CY Dimensionless y-projection of the hydrodynamic forces [-]
CM Dimensionless torque of the hydrodynamic forces [-]
CP Dimensionless extracted power [-]
η Efficiency [-]
f ∗ Dimensionless oscillating frequency [-]
t∗ Dimensionless time [-]
ρs Mass density
ξ Structure local displacements
EY Young’s modulus
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