
HAL Id: hal-03870945
https://normandie-univ.hal.science/hal-03870945

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Criteria to switch from tabulation to neural networks in
computational combustion

Z. Nikolaou, L. Vervisch, Pascale Domingo

To cite this version:
Z. Nikolaou, L. Vervisch, Pascale Domingo. Criteria to switch from tabulation to neu-
ral networks in computational combustion. Combustion and Flame, 2022, 246, pp.112425.
�10.1016/j.combustflame.2022.112425�. �hal-03870945�

https://normandie-univ.hal.science/hal-03870945
https://hal.archives-ouvertes.fr


Criteria to switch from tabulation to neural networks in

computational combustion

Z. Nikolaoua, L. Vervischa, P. Domingoa

aCORIA-CNRS, Normandie Université, INSA de Rouen Normandie, France.

Abstract

Motivated by the need to reduce computational costs, look-up tables are widely used

in numerical simulations of laminar and turbulent flames, for the thermodynamics

of the mixture, for detailed chemistry, and for turbulent combustion closures. At the

same time, there have been many studies where artificial neural networks have been

trained to replace the classic tabulation approach, and their performance against

tabulation typically evaluated a posteriori. In the majority of applications the focus

is on accuracy, and the objective is to obtain the best network structure which

minimises the inference error during training. Computational efficiency however is

also important and criteria are needed to decide whether or not it is worthwhile

in the first place to employ neural networks at all, and if so what the potential

bounds on the compute-time and memory gains (if any) over tabulation are. This

is examined analytically in this work by developing models for the computational

cost of tabulation and neural networks. A framework for effective decision-making

between adopting lookup tables or machine learning then emerges.

Email address: zacharias.nikolaou@insa-rouen.fr (Z. Nikolaou)

Preprint submitted to Combustion and Flame November 18, 2021



Nomenclature

t+, tx, to Time spent for a single operation

ta, tl Time spent for an activation function evaluation, a neural network layer evaluation

Ttab, Tann Time spent for tabulation inference, neural network inference

Mtab, Mann Memory used for tabulation, neural network

Np Number of look-up table input parameters

Nv Number of look-up table output variables (targets)

Ni Number of inputs to the network

No Number of outputs of the network

N Number of nodes in the hidden layers

L Total number of layers

lh Number of hidden layers

S umber of weights of the network

h table resolution spacing

N e
T Number of nodes below which any network structure with Np inputs

and Nv outputs is less expensive than tabulation in terms of computational time

N s
T Number of nodes above which any network structure with Np inputs

and Nv outputs is more expensive than tabulation in terms of computational time

NMT Number of nodes below which any network structure with Np inputs and

Nv outputs will have the memory gain over tabulation outweigh

the computational time loss

N∗p Number of input parameters for a given number of target variables

Nv and nodes N , above which tabulation is always slower than

any N -node fully-connected neural network

structure with N∗p inputs and Nv outputs.

2



1. Introduction

Tabulation is widely used in turbulent reacting flow simulations. In flamelet meth-

ods for instance with a presumed-pdf, to avoid solving the large number of transport

equations for each individual species in the chemical mechanism, a reduced number

of suitably defined variables such as the progress variable c̃, mixture fraction Z̃, and

their variances are solved for instead [1]. The species mass fractions and any other

unclosed terms appearing in the transport equations are then obtained from pre-

built look-up tables using as inputs the reduced set of variables/parameters solved

(or modelled for) during the actual Reynolds averaged Navier-Stokes (RANS) or

space filtered Large Eddy Simulation (LES). In another context, pre-computational

approaches have also been used to replace the expensive integration of the chemical

species source terms [2, 3, 4, 5, 6].

Irrespective of the context, the pre-built tables are typically constructed using

canonical 0D/1D problems (steady or unsteady). The computational cost of tab-

ulation is composed of two main actions: (a) table look-up, and (b) interpolation.

The resolution spacing of the tables for each tabulation parameter may be constant,

in which case we will refer to the tables as structured, or variable, in which case

we will refer to the tables as unstructured. If the table is structured, the table

look-up process is very fast but more points have to be included which increases

the memory requirements. If it is unstructured, bisection or some other table look-

up algorithm is typically used, which increases the computational time but reduces

the memory requirements. In terms of interpolation, multi-linear interpolation is

almost always used which is the fastest possible interpolation scheme. Overall, tab-

ulation methods using this classic approach have been very effective and have been

applied to several LES studies for different combustion modes and flow configurations

3



[7, 8, 9, 10, 11, 12, 13].

Nevertheless, the memory requirements for storing even medium resolution tables

can be significant. For instance, using four parameters to tabulate a single species

mass fraction with 100 points in each parameter space would require 0.8Gb of double

precision memory per variable. Extending this to all 55 species for example of the

GRI3 mechanism [14] would require 44Gb of memory per physical core, which is well

above current capabilities of most High Performance Computing (HPC) facilities

(max around 5Gb/physical core). Therefore the usual remedy is to reduce as much as

possible the resolution and/or the number of tabulation parameters even when using

unstructured tables. Neural networks on the other hand have shown great potential

for solving a wide range of regression problems both in reacting and non-reacting

flows [15, 16, 17, 18, 19, 20, 20, 21] and tabulation is no exception. For instance in

[22] two-layer networks were trained and applied to LES of a non-premixed piloted

methane-air flame. The inputs to the network consisted of the the mixture fraction,

its variance, and the scalar dissipation rate while the outputs consisted of the species

mass fractions, density, viscosity and temperature (a single network was trained for

each output variable). The largest network consisted of 34 neurons while the tables

were constructed based on three parameters with 200× 100 × 16 samples in each

parameter space. As a result, the overall ANN memory requirements were about

1300 smaller in comparison to tabulation. In terms of inference time, despite the

small number of neurons the authors found the networks to be about 1.3 times

slower. In a later study [23] an optimisation procedure was proposed for obtaining

the best network structure which minimises the training error. The same method

was later applied to develop suitable networks to replace tabulation in LES of a

bluff-body swirl-stabilised flame [24]. Despite similar (large) memory savings being

reported, in comparison to the coarser-resolution tables the ANNs were six times

4



slower than tabulation, and two times slower for the finest-resolution tables [23]. In

[25] a clustering pre-training processing step was proposed in an effort to reduce the

overall computational cost of the ANN approach. In order to further improve the

inference time of the networks, the evaluation of the exponential activation function

used in the networks was approximated by a truncated series expansion. The trained

networks were applied in LES of spray flames and in RANS of engine combustion

with overall good results. In contrast with the previous studies, the authors reported

an overall compute time speedup when using the networks: 8% for the LES case

and 37% for the RANS case. In [26] a different clustering approach namely Self-

Organising Maps (SOM) was used. In an effort to optimise the networks with regards

to accuracy, the network structure was fixed and the ratio of neurons in each layer

relative to the first layer was imposed. Then, through an iterative process the number

of neurons in the first layer was increased (as those in the next layers based on the

imposed rations) until sufficient accuracy was achieved. The trained network groups

were then implemented in LES and RANS and compared to classic tabulation. In

terms of total simulation computational time, the ANN-based approach was reported

to be (slightly) slower while the authors reported a significant gain in memory savings.

In [27] an alternative approach based on deep neural networks with skip connections

was employed. The authors reported a memory gain of about 55 when compared

to classic tabulation which is much lower than the memory gains reported in the

previous studies-perhaps due the increased complexity of the network. Overall, the

consensus between all studies in the literature is that the use of neural networks

reduces the memory requirements and can ease the solving of problems featuring

numerous degrees of freedom, for instance soot particle size distribution [28]. In

terms of inference time, only the work in [25] reports a reduction in comparison

to classic tabulation, as well as the work in [27], however it is not clear whether

5



the comparison in [27] was made on the same basis as with tabulation (the authors

reported that the networks were ran on a Graphics Processing Units (GPU) but it

is not clear whether the classic tabulation approach was also ran on a GPU).

The training of neural networks can be an expensive procedure as it first includes

the development of a database (which typically implies running a large number of

canonical simulations), data pre-processing and so on, and finally the training process

itself, which for large amounts of data requires the use of high-memory GPUs. The

training process may take hours to days depending on the size of the database and

the complexity of the network. Therefore it is important to be able to investigate a

priori whether training a neural network to replace tabulation would be beneficial or

not. More importantly, it is useful to quantify a priori the maximum possible gains

(if any) and under which conditions these can be achieved.

In order to do so and to effectively compare between the two approaches, an

analytical model is required and to the best of the authors knowledge, to date there

is no formal model-based comparison for the computational cost between the neural

network approach and the classic tabulation approach. For instance it is unclear

if a limit exists on the maximum achievable memory savings and/or the maximum

achievable inference time savings (if any) and how these are affected by (i) the number

of table parameters (look-up table dimension), (ii) the number of targets (table

outputs) and (iii) the network structure. As a result, there is no computational-

efficiency-based training strategy when developing networks to replace tabulation.

In this work we begin in section 2 by developing such models: (a) for fully-connected

neural networks, and (b) for classic structured tabulation, which is the simplest

tabulation case to analyse but also the fastest. We next proceed in section 3 to

investigate the effect of network structure on the computational cost. In section 4,

we derive bounds for three distinct cases when training neural networks.

6



2. Computational cost models

2.1. Tabulation

In the case of tabulation, let Np denote the number of tabulation parameters (i.e.

the table dimensionality) and Nv the number of target variables for which a single

table of dimension Np is stored. In addition, we make the following assumptions:

(a) The tables are constructed with a fixed resolution spacing hi = h for

i ∈ [1, Np].

(b) Multi-linear interpolation is used to infer values during run-time.

(c) The computational cost of floating point number addition and multi-

plication is the same i.e. t+ = tx = to.

Then, for a single linear interpolation of the form,

yi = yl +
xi − xl

h
(yh − yl) , (1)

where (xl, yl), (xh, yh) are the low and high values within which the variable falls,

in total five operations are required to interpolate at xi and retrieve yi. In the

multi-dimensional case, it is straightforward to show that the total number of lin-

ear interpolations required is
∑Np−1

r=0 2r = (2Np − 1). In order to obtain the upper

and lower indices for each table parameter (table look-up process) some additional

operations are required. The most straightforward way of doing so for structured

tables is to use il = floor(x/h) = [x/h] and ih = il + 1, i.e. in total three operations

are required per table parameter per target variable to obtain the upper and lower

bounds within which the value lies. The total compute time for all target variables

for all table parameters is given by,

7



Ttab =
(
3NpNv + 5Nv

(
2Np − 1

))
to (2)

With regards to memory requirements this depends on the table resolution and

can be calculated using,

Mtab = bNv

Np∏
r=1

nr (3)

where nr is the number of sample points in the tabulation of parameter r and b is

the memory requirement-typically this is 8 bytes (double precision).

2.2. Neural networks

Consider a fully-connected neural network. The output ylk from node k in layer

l is given by,

ylk = flk

(
Nl−1∑
j=1

wljkyl−1j + blk

)
,

where Nl is the number of nodes in layer l, and where in the most general case the

activation function is node and layer specific. We assume that the activation function

in the last layer is linear and that there is no bias in the last layer. Let ta denote

the time required to perform an activation function evaluation. Then, the compute

time for a single layer tl is given by,

tl = Nl(Nl−1 − 1)t+︸ ︷︷ ︸
matrix-vector additions

+ NlNl−1tx︸ ︷︷ ︸
matrix-vector multiplications

+ Nlta︸︷︷︸
function evaluations

+ Nlt+︸︷︷︸
bias additions

and for all the layers is,

8



Tann =
L−1∑
l=2

tl + NL(NL−1 − 1)t+ + NLNL−1tx (4)

In order to proceed we make the following assumptions:

(a) The matrix-vector multiplication is performed with the crudest of al-

gorithms (directly).

(b) ta = t+ = tx = to.

Note that the compute time cost of the activation function depends on its formu-

lation. The fastest and perhaps most popular activation function is the Rectified

Linear Unit (RELU) for which the compute time cost is approximately equal to the

cost of addition/multiplication as it involves essentially only a max(0.0, x) operation

where x is the input. In any case, assumption (b) ensures that the comparison with

tabulation is being made for the fastest activation function. Equation 4 then reduces

to,

Tann/to = (N −No) + 2
L∑
l=2

NlNl−1 = (N −No) + 2S (5)

where N =
∑L−1

l=2 Nl is the total number of nodes in the hidden layers, No the number

of outputs, and S =
∑L

l=2 NlNl−1 is essentially the total number of trainable weights

of the network, which directly relates to the network structure. In terms of memory

requirements, the ANN requires storage of all the weights and biases in each layer.

Therefore the memory requirements are given by,

Mann =
L−1∑
l=2

bNlNl−1︸ ︷︷ ︸
weights

+ bNl︸︷︷︸
biases

+ bNLNL−1︸ ︷︷ ︸
weights for last layer

= b (N + S) (6)

where b is the storage size required for a single variable.

9



3. Effect of network structure

From Eqs. 5 and 6 we observe that for a given number of inputs Ni, number

of outputs No, and total number of nodes in the hidden layers N , the time and

memory costs depend only on S, i.e. on the network structure. Of course there

are many possible network structures for N nodes: for at least p nodes to exist

in each of the lh hidden layers, the number of possible structures Q is Q(N, lh) =

(N − plh + lh − 1)!/((lh − 1)!(N − plh)!). For example for lh = 2 layers, N = 100

and p = 1, there are 99 different structures. For lh = 3 and p = 1, there are 4851

structures and so on. In any case, the “boundary” networks consist of the “column”

network i.e. having a single layer and N nodes, [Ni,N ,No], and the “serial” network,

having N layers with a single node in each one [Ni,1,1,1,1, ..., No]. The natural

question is then which network structure is the most efficient, and which is the least

efficient? The answer to this question will help to obtain bounds on the possible

compute time and memory savings over tabulation. In order to gain insight into this

we examine in the next section the case where the number of nodes N is a power of

2.

3.1. Illustration: the case N = 2p

Consider a network with N =
∑L−1

l=2 = 2p nodes in the hidden layers, p ∈ N,

and all possible network structures having 2k layers and 2p−k nodes/layer where

k ∈ [0, k]. For example this leads to networks with the following structures: 1 layer

x 2p nodes/layer namely the column network, 2 layers x 2p−1 nodes/layer and so on

down to the serial network with 2p layers and 1 node/layer. Then S for this network

structure can be shown to be,

S =
(Ni + No)2

p

2k
+ 22p

(
1

2k
− 1

4k

)
=

Sc

2k
+

Sc
2

(Ni + No)
2

(
1

2k
− 1

4k

)
,

10



where Sc = N(Ni +No) = 2p(Ni +No) is the cost for the column network. The above

equation can be recast as,

S

Sc

= −2p

a

(
1

2k

)2

+

(
1 +

2p

a

)
1

2k
,

where a = (Ni + No) which is a second-order equation in x=1/2k. Then it can be

shown that S/Sc ≥ 1 if,

0 ≤ k ≤ int

(
p− ln(a)

ln(2)

)
(7)

with S/Sc = 1 at the two ends and S/Sc maximised in the middle of the region.

The above result implies that the next most efficient network structure occurs for

the next integer larger than the upper bound in the equation above. For example let

N = 32 = 25 and a = 4. Then we have the following structures,

k = 0| 32

k = 1| 16,16

k = 2| 8,8,8,8

k = 3| 4,4,4,4,4,4,4,4

k = 4| 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

k = 5| 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

for k =0,1,2,3,4,5 respectively with k = 5 corresponding to the serial network. Let

us denote ∆S the variation of the number of trainable weights when modifying

the network structure. Then all networks of the above form for 0 ≤ k ≤ 3 will

have ∆S ≥ 0 with respect to k = 0 with ∆S = 0 for k = 3. Only the networks

corresponding to k ≥ 4 will be computationally more efficient than the column

network. This example shows that the column network is not necessarily the most

11



expensive network structure. The least expensive network structure in this case is

the serial network, and is also the least expensive structure in general, as we show

in the sections which follow. In order to examine the effect of any general network

structure on S we consider the effects of the following fundamental actions one may

perform on the network: (a) layer creation, and (b) shifting nodes between any two

adjacent layers of the network.

x1

x2

x3

y1

y2

x1

x2

x3

y1

y2

Fig. 1: Example of a single-node layer creation operation: [3,5,2]→[3,4,1,2]-such operations always

reduce S (in this case from S=25 to S=18).

3.2. Layer creation:

Consider three consecutive layers of a network having x, k and z nodes. A layer-

creation operation can be depicted as,

x, k, z → x, k − p, p, z ,

12



where k ≥ 2 and of course x, z ≥ 1. The change in S going from left to right can be

shown to be,

∆S = −p2 + p(k + z − x)− kz = −px + (k − p)(p− z) .

Then, in the case where a single-node new layer is created, i.e. for p = 1, ∆S

is always negative. This implies that starting from any network structure, we can

create iteratively new single-node layers from layers having more than two nodes

until we arrive at the (unique) serial network each time reducing S. Therefore the

serial network is by construction the network with the lowest S, i.e. the most efficient

network. Of course in practice experience shows that such networks do not perform

well because all inputs are fed to the single node of the first layer which produces a

single output. Nevertheless, having knowledge of the most efficient network structure

is still useful since we now have a bound on the fastest possible network structure

we could potentially train and compare with tabulation.

3.3. Node-shifting:

Consider four consecutive layers of a network having x, k, y and z nodes. A

node-shifting operation can be depicted as,

x, k, y, z → x, k − p, y + p, z ,

where k ≥ 2 and x, y, z ≥ 1. Then the change in S is given by,

∆S = p (Γ− p) = −p2 + Γp ,

where Γ = (k + z) − (x + y) and p ∈ [−(y − 1), (k − 1)]. The equation above is

second-order in p with a zero at p = 0 and at p∗ = Γ. At p∗ = Γ/2 it has a maximum

i.e. ∆Smax = Γ2/4 ≥ 0. The sign of Γ determines the behaviour of ∆S as follows,

13



x1

x2

x3

x4

y1

y2

y3

x1

x2

x3

x4

y1

y2

y3

Fig. 2: Example of a single-node shift operation: [4,5,6,3] → [4,4,7,3]-for this particular case S

reduces as Γ = (5 + 3)− (4 + 6) = −2. Going to [4,6,5,3] would increase S instead.

Γ



= 0,∀p∈ [−(y − 1), k − 1] and 6= 0 : ∆S < 0

> 0,∀p∈ [0,Γ] : ∆S ≥ 0

> 0,∀p/∈ [0,Γ] : ∆S < 0

< 0,∀p∈ [−Γ, 0] : ∆S ≥ 0

< 0,∀p/∈ [−Γ, 0] : ∆S < 0

14



In all cases we observe that provided all layers have at least two nodes, there

always exists a direction to reduce S by shifting nodes left or right until no such

operations are possible. On the other end, the maximum possible S is achieved by

shifting nodes such that each time S is increased. At the maximum point, no further

operations to increase S are possible. These operations can be applied collectively to

each group of four in a multi-layer network and the total change in S will be equal

to the sum of the individual changes. As we will demonstrate in the next section,

the node-shifting operations can be used to construct the most expensive network

structures given the number of layers.

3.4. The most expensive network structures

Consider a network with Ni inputs, No outputs, and N nodes in the hidden

layers. In the case L = 3, S3 = NNi + NNo. In the case L = 4 we seek the

structure which maximises S4. Let the structure be of the form Ni, x,N − x,No.

Then S4 = −x2 +x(N +Ni−No)+NNo which is maximised at x = (N +Ni−No)/2

i.e. max(S4) = (N + Ni −No)
2/4 + NNo. Since the nodes are integer numbers two

possible cases exist: (a) if the numerator is even, a single structure with maximum

S exists, and (b) if the numerator is odd, there are two possible structures with

maximum (and same) S. Note that if N is even, the maximum possible value is

always attained while if N is odd, the maximum value is never attained. Also, in

the case where N + Ni − No ≤ 1, the most expensive network structure is the one

which has a single node in the first hidden layer, and if N + Ni −No ≥ 2N − 1 the

most expensive structure is the one having N − 1 nodes in the second layer. In both

of these cases, S is less than max(S4) i.e. less than (N + Ni −No)
2/4 + NNo. As a

result, the supremum of the set of all possible max(S4) values occurs if N +Ni−No

is even, and if (N + Ni − No)/2 lies in the interval [1, N − 1]. Overall, the most

15



expensive 4-layer structure can be written compactly as follows,

max(S4)



2 ≤ N+Ni −No ≤ 2(N− 1) :

(N+Ni −No) even :

Ni,
N+Ni−No

2
, N+No−Ni

2
, No

(N+Ni −No) odd:

Ni, [
N+Ni−No

2
], N − [

(N+Ni−No
2

], No

Ni, [
N+Ni−No

2
] + 1, N − [N+Ni−No

2
]− 1, No

N+Ni −No ≤ 1 :

Ni, 1, N − 1, No

N+Ni −No ≥ 2N− 1 :

Ni, N − 1, 1, No

Another interesting result is that in the cases where max(S4) is attained, then

provided the following inequality holds,

Ni + No − 2
√

NiNo < N < Ni + No + 2
√

NiNo ,

the 3-layer network is always more expensive than the 4-layer network. At the end-

points of the interval above, the most expensive 3 and 4-layer structures have equal

S and outside of the range above, the 4-layer network is always more expensive.

In the case of a 5-layer network the same process can be applied. Let the 5-layer

structure be denoted as Ni, x, y,N−x−y,No. Then S5 = −y2 +y(N−No)+x(Ni−

No)+NNo. The relationship between x and y depends on the number of nodes in the

last layer. Let N−x−y = p. Then S5 = −y2+y(N−Ni)+(N−p)(Ni−No)+NNo.

For a given number of nodes p in the third hidden layer, S5 is maximised for y =

(N −Ni)/2. If Ni > No then S5 is decreasing in p and over all maximum values for

given p, the one for p = 1 will be the highest of all. If Ni = No, then the choice of p

(and x) does not matter and many possible maxima exist–the exact number can be

found from the possible permutations of the remaining N − (N − Ni)/2 nodes. In

16



the case where Ni < No, analogous statements apply i.e. S5 is maximised for x = 1,

while y remains the same and swapping Ni with No. In the case where N −Ni < 0

S5 is maximised by setting x = N − 2 if Ni > No or p = N − 2 otherwise. Similar

arguments hold for the N −No case. In any of these cases however, as in the case of

the 4-layer network, the maximum S5 attained will be less than for the cases above.

Overall we have for the 5-layer network,

17



max(S5)



Ni > No :

(N−Ni) ≤ 1 :

Ni, N − 2, 1, 1, No

(N−Ni) ≥ 2 :

(N−Ni) even:

Ni,
N+Ni

2
− 1, N−Ni

2
, 1, No

(N−Ni) odd:

Ni, N − [N−Ni
2

]− 1, [N−Ni
2

], 1, No

Ni, N − [N−Ni
2

]− 2, [N−Ni
2

] + 1, 1, No

Ni < No :

(N−No) ≤ 1 :

Ni, 1, 1, N − 2, No

(N−No) ≥ 2 :

(N−No) even:

Ni, 1,
N−No

2
, N+No

2
− 1, No

(N−No) odd:

Ni, 1, [
N−No

2
], N − [N−No

2
]− 1, No

Ni, 1, [
N−No

2
] + 1, N − [N−No

2
]− 2, No

Ni = No :

(N−Ni) ≤ 1 :

Ni, N − 2, 1, 1, No

Ni, 1, 1, N − 2, No

(N−Ni) ≥ 2 :

(N−Ni) even:

Ni, a,
N−Ni

2
, b, No : a, b ∈ {a+ b = N − N−Ni

2
}

(N−Ni) odd:

Ni, a, [
N−Ni

2
], b, No : a, b ∈ {a+ b = N − [N−Ni

2
]}

Ni, c, [
N−Ni

2
] + 1, d,No : a, b ∈ {c+ d = N − [N−Ni

2
]− 1}

Table 1 shows a few examples for each case which may be verified either by

running a few simulations and sorting the networks based on S or by using the node-

shifting rules defined in the previous section. For instance if we take the first case

18



Ni No N S3 4 S4 5 S5

4 8 30 272 [4,13,17,8] 409 [4,1,11,18,8] 357

8 4 25 132 [8,14,11,4], [8,15,10,4] 310 [8,16,8,1,4],[8,15,9,1,4] 268

8 15 6 210 [8,1,5,15] 88 [8,1,1,4,15] 73

23 11 31 594 [23,22,9,11], [23,21,10,11] 803 [23,26,4,1,31] 717

127 43 54 7783 [127,53,1,43] 6827 [127,52,1,1,43] 6700

7 7 11 126 [7,6,5,7], [7,5,6,7] 107 [7,a,2,b,7] a+b=9 81

5 5 20 125 [5,10,10,5] 200 [5,a,7,b,5], [5,c,8,d,5] a+b=13, c+d=12 156

Table 1: Examples of most expensive 4-layer and 5-layer structures for various num-

ber of inputs, outputs and number of nodes in the hidden layers.

in the table [4,13,17,8], we have ∆ = 13 + 8− 4− 17 = 0, so any node we move left

or right reduces S, therefore it is a maximum. For the five layer case [4,1,11,18,8]

∆1 = 4 and ∆2 = 0. However we can not move nodes from the single-node layer to

the right, while any node movement from the second quartet will reduce S. Therefore

we cannot increase S further and it is therefore a maximum.

From table 1, we observe that the most expensive 4-layer structures are always

more expensive than the most expensive 5-layer structures. This is not a coincidence

and applies in general as we now prove. The most expensive 5-layer structure(s)

always contain at least one layer with a single node. Based on the layer-creation rules

S always decreases when creating a k + 1 layer structure from a k-layer structure by

creating a single-node new layer. Therefore there always exists a 4-layer structure

which is always more expensive than the most expensive 5-layer structure. As a

result, the most expensive 4-layer structure is always more expensive than the most

expensive 5-layer structure.

We also observe that in the case Ni > No, the most expensive network structures

are the ones which have the nodes gathered closest to input side and vice versa if

No > Ni. In the case Ni = No gathering the nodes to either side amounts to the

19



same result since the networks obtained are reflections of one another. For instance

[5,10,7,3,5] has the same maximum S as [5,3,7,10,5]. For networks with more than 5

layers some experimentation by running different test-cases, and varying Ni, No, N

while finding the corresponding most expensive structure for a given number of layers,

reveals that the same pattern applies: nodes are gathered towards the input side if

Ni > No and the output side otherwise, and in addition at least one layer exists with a

single node for the most expensive structure. Therefore, based on experimentation we

deduce that for k ≥ 4 the most expensive k-layer structure is always more expensive

than the k+1-layer structure. Practically, in order to obtain the k+1 most expensive

structure from the k-layer structure, we may proceed as follows: if for instance

Ni > No then create a new layer from the rightmost layer of the k-layer network

which contains at least two nodes, and then perform node-shifting operations until

S can no longer increase. For instance in order to obtain the most expensive 5-layer

network structure from the [8,15,10,5] case in Table 1 we proceed as follows,

8, 15, 10, 4→ 8, 15, 9, 1, 4(∆1 = −1,∆2 = −2)

→ 8, 16, 8, 1, 4

8, 16, 8, 1, 4→ 8, 16, 7, 1, 1, 4(∆1 = 2,∆2 = −9,∆3 = −3)

→ 8, 15, 8, 1, 1, 4(∆1 = 0,∆2 = −7,∆3 = −4)

and we have obtained the most expensive 6-layer structure and so on. Having found

the most expensive and least expensive network structures we now have bounds to

compare against tabulation.

4. ANN/Tabulation comparison

The ratios Ttab/Tann and Mtab/Mann depend on the network structure and are

bounded by the minimum and maximum S-value of the network, which as shown in

20



the previous section depends on the network structure. The least expensive network

structure was shown to be the serial network, which is also expected to be the least

accurate. The most expensive network structure is either the column network or a

4-layer network depending on the number of inputs (parameters), number of outputs

(variables) and number of nodes. The compute time and memory bounds are then

given by,

re =
3NpNv + 5Nv(2

Np − 1)

T e
Ann

≤ Ttab

Tann

≤ 3NpNv + 5Nv(2
Np − 1)

3N + Nv + 2(Np − 1)
= rs , (8)

qe =
Nv

∏Np

r=1 nr

M e
Ann

≤ Mtab

Mann

≤ Nv

∏Np

r=1 nr

2N + Nv + (Np − 1)
= qs , (9)

where S-value of the serial-network has been applied for the upper bounds. It is

important to stress that re and rs depend only on N,Np and Nv, while qe, qs depend

additionally on the table resolution. The lower bounds can be found using the

results in section 3 (a small piece of code has been developed specifically for this

task). Equations 8 and 9 can be used to calculate a priori the maximum possible

gains/losses in compute time and memory requirements of fully-connected artificial

neural networks over tabulation. For example suppose Np=4, Nv =8, N = 50 and

that the table resolution is 50x100x50x100. Then we find using the analysis in section

3 that the most expensive structure is the four-layer network [4,23,27,8]. Under these

conditions we have 0.37 ≤ Ttab/Tann ≤ 4.24 and 204290.1 ≤Mtab/Mann ≤ 1801801.8.

Therefore the fastest 50-node network structure (serial network) will be at most

4.24 times faster than tabulation. At the other extreme, if the most expensive 50-

layer network structure is used ([4,23,27,8]) it will be 1/0.37=2.7 times slower than

tabulation.

In terms of memory, we see that for both extremes the memory gain over tab-

ulation is quite substantial even for the most expensive network structure. At the

21



time of writing the maximum available memory in HPC clusters per physical core is

around 5Gb. In practice, not all of this memory will be allocated for the table alone

since the code itself may also requires a substantial amount of memory. If 1Gb of

memory is allocated for the tabulation alone, which is a more reasonable choice for

most applications, then we can calculate the bounds for a given number of nodes, in-

put parameters, and targets. These are shown in tables 3 and 4 for the compute-time

and memory bounds respectively for N = 100. In any case, the equations above can

be used to derive case-specific bounds for conditions different than the ones in the

tables. From the values in the tables, we observe that for increasing Np and/or Nv

the lower time bounds increase, which implies that ANNs become more favourable

over tabulation in terms of compute time. The opposite is true for the memory gain,

however the memory gains are so large that remain relatively un-affected by the in-

crease in Np and/or Nv. The exact number of parameters and variables for which

ANNs become more favourable than tabulation in terms of compute time, depends

on the total number of nodes N in the hidden layers.

Working backwards, and requiring Ttab/T
e
ann > 1, we can find the corresponding

number of threshold values N∗p for a given number of variables Nv, above which

any network structure will be faster than tabulation. The exact values of N∗p have

been calculated for up to twenty variables/targets and for N ranging from 25-200

and are shown in Table 2. For instance, we observe that for Nv = 5, then provided

Np ≥ N∗p =9, tabulation is always slower than any 100-node neural network. The

values in Table 2 can be used as a guideline in cases where the objective is to develop

networks which are faster than tabulation.

22



Nv/N 25 50 75 100 125 150 175

1 7 9 10 11 11 12 12

2 6 8 9 10 10 11 11

3 6 7 8 9 10 10 11

4 5 7 8 9 9 10 10

5 5 7 8 8 9 10 10

6 5 6 7 8 9 9 10

7 5 6 7 8 9 9 10

8 4 6 7 8 8 9 9

9 4 6 7 8 8 9 9

10 4 6 7 8 8 9 9

11 4 6 7 7 8 8 9

12 4 6 7 7 8 8 9

13 4 6 6 7 8 8 9

14 4 5 6 7 8 8 9

15 4 5 6 7 8 8 9

16 4 5 6 7 8 8 8

17 4 5 6 7 7 8 8

18 4 5 6 7 7 8 8

19 4 5 6 7 7 8 8

20 4 5 6 7 7 8 8

Table 2: Number of parameters N∗p above which the compute time cost of tabulation

first exceeds that of the most expensive network structure having N nodes. For

Np ≥ N∗p tabulation is always slower than any N -node network structure.

23



N
p
/N

v
1

2
3

4
5

6
7

1
(1
.5
1
e-
0
3
,2
.6
6
e-
0
2
)

(2
.9
6
e-
0
3
,5
.3
0
e-
0
2
)

(4
.3
6
e-
0
3
,7
.9
2
e-
0
2
)

(5
.7
1
e-
0
3
,1
.0
5
e-
0
1
)

(7
.0
1
e-
0
3
,1
.3
1
e-
0
1
)

(8
.2
7
e-
0
3
,1
.5
7
e-
0
1
)

(9
.4
7
e-
0
3
,1
.8
2
e-
0
1
)

2
(3
.8
9
e-
0
3
,6
.9
3
e-
0
2
)

(7
.6
4
e-
0
3
,1
.3
8
e-
0
1
)

(1
.1
3
e-
0
2
,2
.0
7
e-
0
1
)

(1
.4
7
e-
0
2
,2
.7
5
e-
0
1
)

(1
.8
1
e-
0
2
,3
.4
2
e-
0
1
)

(2
.1
3
e-
0
2
,4
.0
9
e-
0
1
)

(2
.4
5
e-
0
2
,4
.7
6
e-
0
1
)

3
(8
.0
0
e-
0
3
,1
.4
4
e-
0
1
)

(1
.5
7
e-
0
2
,2
.8
8
e-
0
1
)

(2
.3
2
e-
0
2
,4
.3
0
e-
0
1
)

(3
.0
4
e-
0
2
,5
.7
1
e-
0
1
)

(3
.7
3
e-
0
2
,7
.1
2
e-
0
1
)

(4
.4
0
e-
0
2
,8
.5
2
e-
0
1
)

(5
.0
5
e-
0
2
,9
.9
0
e-
0
1
)

4
(1
.5
5
e-
0
2
,2
.8
3
e-
0
1
)

(3
.0
5
e-
0
2
,5
.6
5
e-
0
1
)

(4
.5
0
e-
0
2
,8
.4
5
e-
0
1
)

(5
.9
0
e-
0
2
,1
.1
2
e+

0
0
)

(7
.2
6
e-
0
2
,1
.4
0
e+

0
0
)

(8
.5
6
e-
0
2
,1
.6
7
e+

0
0
)

(9
.8
3
e-
0
2
,1
.9
5
e+

0
0
)

5
(2
.9
8
e-
0
2
,5
.5
0
e-
0
1
)

(5
.8
6
e-
0
2
,1
.1
0
e+

0
0
)

(8
.6
5
e-
0
2
,1
.6
4
e+

0
0
)

(1
.1
3
e-
0
1
,2
.1
8
e+

0
0
)

(1
.3
9
e-
0
1
,2
.7
2
e+

0
0
)

(1
.6
5
e-
0
1
,3
.2
5
e+

0
0
)

(1
.8
9
e-
0
1
,3
.7
8
e+

0
0
)

6
(5
.7
3
e-
0
2
,1
.0
7
e+

0
0
)

(1
.1
3
e-
0
1
,2
.1
3
e+

0
0
)

(1
.6
6
e-
0
1
,3
.1
9
e+

0
0
)

(2
.1
8
e-
0
1
,4
.2
4
e+

0
0
)

(2
.6
9
e-
0
1
,5
.2
9
e+

0
0
)

(3
.1
7
e-
0
1
,6
.3
2
e+

0
0
)

(3
.6
5
e-
0
1
,7
.3
5
e+

0
0
)

7
(1
.1
1
e-
0
1
,2
.1
0
e+

0
0
)

(2
.1
8
e-
0
1
,4
.1
8
e+

0
0
)

(3
.2
2
e-
0
1
,6
.2
5
e+

0
0
)

(4
.2
3
e-
0
1
,8
.3
0
e+

0
0
)

(5
.2
1
e-
0
1
,1
.0
3
e+

0
1
)

(6
.1
6
e-
0
1
,1
.2
4
e+

0
1
)

(7
.0
7
e-
0
1
,1
.4
4
e+

0
1
)

T
ab

le
3:

T
im

e
ga

in
b

ou
n
d
s
T
ta
b
/T

a
n
n
:
N

=
10

0,
m

em
or

y
=

1.
0G

b

N
p
/N

v
1

2
3

4
5

6
7

1
(4
.6
3
e+

0
4
,6
.2
2
e+

0
5
)

(4
.5
5
e+

0
4
,6
.1
9
e+

0
5
)

(4
.4
6
e+

0
4
,6
.1
6
e+

0
5
)

(4
.3
8
e+

0
4
,6
.1
3
e+

0
5
)

(4
.3
0
e+

0
4
,6
.1
0
e+

0
5
)

(4
.2
3
e+

0
4
,6
.0
7
e+

0
5
)

(4
.1
5
e+

0
4
,6
.0
4
e+

0
5
)

2
(4
.5
5
e+

0
4
,6
.1
9
e+

0
5
)

(4
.4
6
e+

0
4
,6
.1
6
e+

0
5
)

(4
.3
9
e+

0
4
,6
.1
3
e+

0
5
)

(4
.3
1
e+

0
4
,6
.1
0
e+

0
5
)

(4
.2
3
e+

0
4
,6
.0
7
e+

0
5
)

(4
.1
6
e+

0
4
,6
.0
4
e+

0
5
)

(4
.0
9
e+

0
4
,6
.0
1
e+

0
5
)

3
(4
.4
6
e+

0
4
,6
.1
6
e+

0
5
)

(4
.3
9
e+

0
4
,6
.1
3
e+

0
5
)

(4
.3
1
e+

0
4
,6
.1
0
e+

0
5
)

(4
.2
4
e+

0
4
,6
.0
7
e+

0
5
)

(4
.1
7
e+

0
4
,6
.0
4
e+

0
5
)

(4
.1
0
e+

0
4
,6
.0
1
e+

0
5
)

(4
.0
3
e+

0
4
,5
.9
8
e+

0
5
)

4
(4
.3
8
e+

0
4
,6
.1
3
e+

0
5
)

(4
.3
1
e+

0
4
,6
.1
0
e+

0
5
)

(4
.2
4
e+

0
4
,6
.0
7
e+

0
5
)

(4
.1
7
e+

0
4
,6
.0
4
e+

0
5
)

(4
.1
0
e+

0
4
,6
.0
1
e+

0
5
)

(4
.0
3
e+

0
4
,5
.9
8
e+

0
5
)

(3
.9
7
e+

0
4
,5
.9
5
e+

0
5
)

5
(4
.3
0
e+

0
4
,6
.1
0
e+

0
5
)

(4
.2
3
e+

0
4
,6
.0
7
e+

0
5
)

(4
.1
7
e+

0
4
,6
.0
4
e+

0
5
)

(4
.1
0
e+

0
4
,6
.0
1
e+

0
5
)

(4
.0
3
e+

0
4
,5
.9
8
e+

0
5
)

(3
.9
7
e+

0
4
,5
.9
5
e+

0
5
)

(3
.9
1
e+

0
4
,5
.9
2
e+

0
5
)

6
(4
.2
3
e+

0
4
,6
.0
7
e+

0
5
)

(4
.1
6
e+

0
4
,6
.0
4
e+

0
5
)

(4
.1
0
e+

0
4
,6
.0
1
e+

0
5
)

(4
.0
3
e+

0
4
,5
.9
8
e+

0
5
)

(3
.9
7
e+

0
4
,5
.9
5
e+

0
5
)

(3
.9
1
e+

0
4
,5
.9
2
e+

0
5
)

(3
.8
5
e+

0
4
,5
.9
0
e+

0
5
)

7
(4
.1
5
e+

0
4
,6
.0
4
e+

0
5
)

(4
.0
9
e+

0
4
,6
.0
1
e+

0
5
)

(4
.0
3
e+

0
4
,5
.9
8
e+

0
5
)

(3
.9
7
e+

0
4
,5
.9
5
e+

0
5
)

(3
.9
1
e+

0
4
,5
.9
2
e+

0
5
)

(3
.8
5
e+

0
4
,5
.9
0
e+

0
5
)

(3
.7
9
e+

0
4
,5
.8
7
e+

0
5
)

T
ab

le
4:

M
em

or
y

ga
in

b
ou

n
d
s
M

ta
b
/M

a
n
n
:
N

=
10

0,
m

em
or

y
/p

h
y
si

ca
l

co
re

=
1.

0G
b

24



Np/Nv 1 2 3 4 5 6 7

1 (2,3,296) (3,5,352) (4,8,389) (4,10,417) (4,12,440) (4,15,460) (4,17,478)

2 (4,7,377) (5,13,448) (7,20,495) (7,27,531) (8,33,561) (8,40,587) (9,47,609)

3 (6,14,453) (9,28,539) (11,42,596) (13,57,640) (14,71,676) (15,85,707) (16,100,734)

4 (9,27,537) (13,56,639) (17,85,707) (20,113,759) (22,142,802) (24,171,839) (25,199,871)

5 (13,54,635) (20,111,756) (25,167,836) (29,223,898) (32,280,949) (35,336,993) (38,392,1032)

6 (19,108,752) (29,219,894) (36,329,990) (42,440,1063) (48,551,1124) (52,661,1176) (56,772,1222)

7 (28,215,891) (43,433,1060) (53,652,1173) (62,870,1261) (70,1088,1333) (76,1307,1395) (83,1525,1449)

Table 5: Node bounds (N e
T , N

s
T , NMT ) assuming 1.0E09 Gb of memory/physical core

is dedicated for tabulation (double precision for each variable). Any N -node network

structure with N < N e
T will be faster than tabulation. Any N -node network structure

with N > N s
T will be slower than tabulation. Any N -node network structure with

N < NMT will have the memory gain over tabulation outweigh the time loss.

An alternative way to use these results is to find the corresponding number of

nodes, given Np and Nv, such that tabulation will always be slower. This can be

accomplished as before if we calculate N such that re ≤ 1 for the first time, call this

N e
T . Then, any network structure with N < N e

T will be faster than tabulation. At the

other extreme, there is an upper bound for the least expensive network structure and

a corresponding upper bound N s
T for the number of nodes. Putting both together

we have the following results:

-If N < N e
T then any N -node network structure will be faster than tabulation

(from the most expensive down to the least expensive).

-If N > N s
T then no N -node network structure is faster than tabulation (including

the fastest structure, i.e. the serial network).

-If N e
T < N < N s

T then some network structures might be faster than tabulation.

In terms of memory, similar bounds, say N s
M , above which any network structure

will be more memory-intensive than tabulation, can be found. This however is not

25



very useful given the large memory gains observed for ANNs. A more useful perhaps

bound is the point at which the memory gain outweighs the compute time loss.

This puts a limit NMT for the most expensive network structure. Then any network

structure with N < NMT will have the memory gain outweigh the time loss. If

this limit is exceeded, the memory gain does not outweigh the time loss and there

is no benefit in using ANNs over tabulation. All of the above three bounds are

shown in Table 5 in the case where 1Gb of memory is dedicated to tabulation (the

corresponding resolution for each number of parameters is adjusted accordingly).

5. Conclusions

Models for the computational cost (computational time and memory) of fully-

connected artificial neural networks and structured tables (fixed resolution spacing)

have been developed in order to compare between the two approaches, and in order to

derive theoretical bounds on the maximum possible time and memory gains/losses

of neural networks over tabulation. Even though the context is in reacting flow

applications, the results of this work are general and can be applied to a plethora

of applications where tabulation and/or neural networks are used to solve regression

problems. The main conclusions of this work are as follows:

(i) The computational time and memory requirement ratios of tabulation

over neural networks Ttab/Tann and Mtab/Mann are bounded as given by

Eqs. 8 and 9 respectively. These bounds correspond to the computa-

tionally most expensive and least expensive neural network structures.

The time bounds depend on the number of nodes in the hidden layers N ,

the number of inputs Np, and number of outputs Nv, while the memory

bounds additionally depend on the table resolution. The upper bounds

26



are straightforward to calculate using these equations. In order to obtain

the lower bounds (time and memory), the most expensive network struc-

ture must first be identified, and the computational time and memory

requirements of that structure obtained. This can be done as follows,

(1) Calculate the number of trainable weights, S3 = N(Np + Nv), for the

3-layer network: [Np,N ,Nv].

(2) Identify the most expensive 4-layer network structure with Np inputs,

N nodes and Nv outputs, using the rules in section 3, and then calculate

the corresponding S4 for the identified network structure.

(3) Take max(S3, S4) to obtain the most expensive structure, and use

equations 4 and 6 to calculate the lower bounds in Eqs. 8 and 9.

(ii) There exists a number of parameters N∗p for a given number of target

variables Nv and nodes N , above which tabulation is always slower than

any N -node fully-connected neural network structure with N∗p inputs and

Nv outputs. In such cases neural networks may be the preferred choice

and tabulation otherwise if computational time is the only criterion.

(iii) There exists a number of nodes N e
T , which depends on Np and Nv,

below which any N -node fully-connected neural network structure with

Np inputs and Nv outputs is faster than tabulation. This limit is rela-

tively low, and the trained network may be of poor accuracy, however if

in the event that the regression problem is such that the network is of

sufficient accuracy, then the neural-network approach should be preferred

over tabulation.

(iv) There exists a number of nodes N s
T , which depends on Np and Nv,

27



above which any fully-connected neural network structure with Np in-

puts and Nv outputs is slower than tabulation. If the sole criterion is

computational time this limit should never be exceeded.

(v) There exists a limit on the number of nodes NMT , which depends on

Np, Nv N , and the table resolution, below which the memory gain of the

network over tabulation will outweigh the computational time loss over

tabulation. NMT is not necessarily large then N s
T , and this limit should

never be exceeded.

A small piece of code for calculating the computational time and memory bounds

but also for calculating N∗p , N e
T , N s

T and NMT is given as supplementary material.

The results of this work can be used a priori in order to obtain estimates of the

possible gains of neural networks over tabulation (if any) and thus to determine

which approach to take (neural networks/tabulation). Furthermore, they can be

used as a guideline to help choose the training strategy and/or the number of nodes

and/or network structure(s) for the specific needs, which may for instance involve

optimising in memory rather than compute time.

Acknowledgement

The REDAFLOW project has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant agreement No 101019855.

References

[1] N. Peters. Laminar diffusion flamemelt models in non-premixed turbulent com-

bustion. Prog. Energy Combust. Sci., 10:319–339, 1984.

28



[2] F.C. Christo, A.R. Masri, and E.M. Nebot. Artificial neural network implemen-

tation of chemistry with pdf simulation of H2/CO2 flames. Combust. Flame,

106:406–427, 1996.

[3] S. B. Pope. Computationally efficient implementation of combustion chemistry

using in situ adaptive tabulation. Combust. Theory Modelling, 1:41–63, 1997.

[4] J.A. Blasco, N. Fueyo, C. Dopazo, and J. Ballester. Modelling the temporal

evolution of a reduced combustion chemical system with an artificial neural

network. Combust. Flame, 113:38–52, 1998.

[5] B.A. Sen, E.R. Hawkes, and S. Menon. Large eddy simulation of extinction

and reignition with artificial neural networks based chemical kinetics. Combust.

Flame, 157:566–578, 2010.

[6] K. Wan, C. Barnaud, L. Vervisch, and P. Domingo. Chemistry reduction using

machine learning trained from non-premixed micro-mixing modeling: Applica-

tion to DNS of a syngas turbulent oxy-flame with side-wall effects. Combust.

Flame, 220:119–129, 2020.

[7] A.D. Cook, J.J. Riley, and G. Kosaly. A laminar fiamelet approach to subgrid-

scale chemistry in turbulent flows. Combust. Flame, 109:332–341, 1997.

[8] C.D. Pierce and P. Moin. Progress-variable approach for large-eddy simulation

of non-premixed turbulent combustion. J. Fluid Mech., 504:73–97, 2004.

[9] B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha. Approx-

imating the chemical structure of partially premixed and diffusion counterflow

flames using fpi flamelet tabulation. Combust. Flame, 140:147–160, 2005.

29



[10] M. Ihme, C.M. Cha, and H. Pitsch. Prediction of local extinction and re-ignition

effects in non-premixed turbulent combustion using a flamelet/progress variable

approach. Combust. Flame, 30:793–800, 2005.

[11] P. Domingo, L. Vervisch, and D. Veynante. Large-eddy simulation of a lifted

methane jet flame in a vitiated coflow. Combust. Flame, 152:415–432, 2008.

[12] E. Knudsen, H. Kolla, E.R. Hawkes, and H. Pitsch. LES of a premixed jet flame

dns using a strained flamelet model. Combust. Flame, 160:2911–2927, 2013.

[13] S. Popp, S. Hart, D. Butz, D. Geyer, A. Dreizler, and L. Vervisch and

C. Hasse (2021). Assessing multi-regime combustion in a novel burner configu-

ration with large eddy simulations using tabulated chemistry. Proc. Combust.

Inst., 38(2):2551–2558, 2021.

[14] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Gold-

enberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski,

and Z. Qin. Technical report, 1999. http://www.me.berkeley.edu/gri-mech/.

[15] M. Milano and P. Koumoutsakos. Neural network modelling for near wall tur-

bulent flow. J. Comput. Phys., 182:1–26, 2002.

[16] M. Schoepplein, J. Weatheritt, R. Sandberg, M. Talei, and M. Klein. Applica-

tion of an evolutionary algorithm to LES modelling of turbulent transport in

premixed flames. J. Comput. Phys., 374:1166 – 1179, 2018.

[17] K.T. Carlberg, A. Jameson, M.J. Kochenderfer, J. Morton, L. Peng, and F.D.

Witherden. Recovering missing cfd data for high-order discretizations using

deep neural networks and dynamics learning. J. Comput. Phys., 395:105–124,

2019.

30



[18] C.J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot. Train-

ing convolutional neural networks to estimate turbulent sub-grid scale reaction

rates. Combust. Flame, 203:255–264, 2019.

[19] A. Seltz, P. Domingo, L. Vervisch, and Z. Nikolaou. Direct mapping from LES

resolved scales to filtered-flame generated manifolds using convolutional neural

networks. Combust. Flame, 210:71–82, 2019.

[20] Z. M. Nikolaou, C. Chrysostomou, L. Vervisch, and S. Cant. Progress variable

variance and filtered rate modelling using convolutional neural networks and

flamelet methods. Flow Turb. Combust., 103:485–501, 2019.

[21] Z. Nikolaou, Y. Minamoto, and L. Vervisch. Unresolved stress tensor model-

ing in turbulent premixed v-flames using iterative deconvolution: An a priori

assessment. Phys. Rev. Fluids, 4:063202, 2019.

[22] F. Flemming, A. Sadiki, and J. Janicka. LES using artificial neural networks

for chemistry representation. Progr. Comp. Fluid Dynamics, 5:375–385, 2005.

[23] M. Ihme, A. Marsden, and H. Pitsch. Generation of optimal artificial neural

networks using a pattern search algorithm: Application to approximation of

chemical systems. Neural Comp., 20:573–601, 2008.

[24] M. Ihme, C. Schmitt, and H. Pitsch. Optimal artificial neural networks and

tabulation methods for chemistry representation in LES of a bluff-body swirl-

stabilized flame. Proc. Combust. Inst., 32:1527–1535, 2009.

[25] O. Owoyele, P. Kundu, M. Ameen, T. Echekki, and S. Som. Application of

deep artificial neural networks to multi-dimensional flamelet libraries and spray

flames. Intern. J. Engine Res., 21:151–168, 2020.

31



[26] R. Ranade, G. Li, S. Li, and T. Echekki. An efficient machine-learning approach

for pdf tabulation in turbulent combustion closure. Combust. Sci. Tech., 193

(7):1258–1277, 2021.

[27] M. Hansinger, Y. Ge, and M. Pfitzner. Deep residual networks for

flamelet/progress variable tabulation with application to a piloted flame with

inhomogeneous inlet. Combust. Sci. Tech., 0:1–27, 2020.

[28] A. Seltz, P. Domingo, and L. Vervisch. Solving the population balance equation

for non-inertial particles dynamics using pdf and neural networks: Application

to a sooting flame. Phys. Fluids., 33(013311), 2021.

32


	Introduction
	Computational cost models
	Tabulation
	Neural networks

	Effect of network structure
	Illustration: the case N=2p
	Layer creation:
	Node -shifting:
	The most expensive network structures

	ANN/Tabulation comparison
	Conclusions

