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ARTICLE

Multi-omics phenotyping of the gut-liver axis
reveals metabolic perturbations from a low-dose
pesticide mixture in rats
Robin Mesnage 1, Maxime Teixeira 2, Daniele Mandrioli 3, Laura Falcioni 3, Mariam Ibragim1,

Quinten Raymond Ducarmon4, Romy Daniëlle Zwittink 4, Caroline Amiel2, Jean-Michel Panoff2,

Emma Bourne5, Emanuel Savage5, Charles A. Mein5, Fiorella Belpoggi3 & Michael N. Antoniou 1✉

Health effects of pesticides are not always accurately detected using the current battery of

regulatory toxicity tests. We compared standard histopathology and serum biochemistry

measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides

frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imida-

cloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption,

body weight, histopathology and serum biochemistry showed little effect. Contrastingly,

serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism

were affected, which suggested activation of an oxidative stress response. This was not

reflected by gut microbial community composition changes evaluated by shotgun metage-

nomics. Transcriptomics of the liver showed that 257 genes had their expression changed.

Gene functions affected included the regulation of response to steroid hormones and the

activation of stress response pathways. Genome-wide DNA methylation analysis of the same

liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we

demonstrated that in-depth molecular profiling in laboratory animals exposed to low con-

centrations of pesticides allows the detection of metabolic perturbations that would remain

undetected by standard regulatory biochemical measures and which could thus improve the

predictability of health risks from exposure to chemical pollutants.
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Toxic effects of chemicals are not always accurately detected
using the current battery of regulatory toxicity tests.
Although Organization of Economic Co-operation and

Development (OECD) testing guidelines are well established to
measure acute toxic effects, they are not always sufficient to detect
metabolic and endocrine disturbances, which can lead to chronic
diseases, such as neurodegenerative disorders, diabetes, obesity
and childhood cancers1,2. A delay between the introduction of
new chemicals and the detection of their ill-effects in human
populations has been a frequent occurrence stretching back many
decades3.

Human exposure to pesticides has been linked to the devel-
opment of a large range of diseases caused by acute intoxication,
repeated occupational exposure or residential proximity to
pesticide use4,5. Furthermore, studies suggest that pesticides
are major contributors to the development of a wide range of
chronic diseases at environmental levels of exposure in human
populations6–12. Effects of mixtures of pesticides at regulatory
permitted levels are difficult, if not impossible, to predict by
testing isolated compounds with current testing guidelines13,14.
Although the assessment of the cumulative exposure of pesticides
on the thyroid and nervous system is currently in progress15, the
evaluation of effects of mixtures is not being performed in
government-led programmes. Among the different strategies to
study chemical mixtures16, some authors have proposed to esti-
mate toxic effects by simulating real-life exposures in laboratory
animals17.

The diet is a major route of exposure to pesticide residues15.
Dietary pesticide exposures mostly originate from the application
of pesticides on crops during cultivation18, but also from con-
tamination of soil and water19, as well as from post-harvest
applications during storage20. With this in mind, we present here
a study that tested the toxic effects resulting from subchronic
exposure to a mixture of the six most frequently detected pesti-
cide residues in EU foodstuffs15,21 in Sprague–Dawley rats. This
mixture consisted of azoxystrobin22, boscalid23, chlorpyrifos24,
glyphosate25, imidacloprid26 and thiabendazole27, all combined at
their respective regulatory acceptable daily intake (ADI) levels.

Glyphosate is the most frequently found herbicide residue in
EU foodstuffs21. It is used in broad-spectrum herbicides and acts
by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-
phosphate synthase28. Its residues are mostly found in cereals
because glyphosate-based herbicides are frequently sprayed
shortly before harvest to help crop desiccation and earlier
harvest29. Imidacloprid and chlorpyrifos are key ingredients used
in the two major categories of insecticides, neonicotinoids30 and
organophosphates31, respectively. The pesticide mixture also
included three fungicides: namely, azoxystrobin, a quinone out-
side inhibitor32; boscalid, a succinate dehydrogenase inhibitor33;
and thiabenbazole, a mitotic spindle distorting agent34.

The overall objective of our investigation was to identify
metabolic perturbations caused by low-dose pesticide exposure to
gain insight into mechanisms of toxicity, which could act as early
biochemical markers of chronic ill-effects. High-throughput
‘-omics technologies’ are increasingly used to evaluate the mole-
cular composition of complex systems to understand the mode of
action of chemicals and to provide metabolic signatures pre-
dictive of long-term health effects35–37. For instance, metabo-
lomics has become established as a reliable method to identify
biomarkers of numerous disease states38–40, as well as for real-
time diagnostics during surgery41. In contrast, best practice
standards for the use of metabolomics in regulatory toxicology
have only recently been proposed42. We employed a multi-omics
strategy, including metabolomics, in an effort to identify
metabolic perturbations, resulting from pesticide exposure.
Our multi-omics approach combined shotgun metagenomics and

metabolomics of caecum content, as well as serum metabolomics,
and liver transcriptomics and DNA methylation profiles. We
compared our multi-omics approach to standard clinical and
biochemical measures recommended in OECD guidelines for the
testing of chemicals, and followed by industry and government
regulatory agencies.

Our findings show that unlike standard OECD blood bio-
chemistry and organ histological analysis conducted for reg-
ulatory purposes, blood metabolomics, liver transcriptomics and
genome-wide DNA methylation analysis highlighted the adap-
tation to metabolic stress induced by exposure to the mixture of
pesticides. Our results suggest that the adoption of multi-omics as
part of regulatory chemical risk assessment procedures will result
in greater sensitivity, accuracy and predictability of outcomes
from in vivo studies, with positive public health implications.

Results
The aim of this study was to test the toxicity in vivo of a mixture
of pesticides, the residues of which are among those most fre-
quently found in the EU food chain. A group of 12 female
Sprague–Dawley rats were administered with a combination of
azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and
thiabendazole for 90 days via drinking water to provide the EU
ADI, and compared to an equivalent control group receiving
plain drinking water (Fig. 1A, B). No differences were observed
between the treatment and control groups of animals in terms of
water consumption (Fig. 1C), feed consumption (Fig. 1D) and
mean body weight (Fig. 1E) during the 90-day treatment period.
Histological analysis showed there was a non-significant increase
in the incidence of liver and kidney lesions (Fig. 2A, B). A serum
biochemistry analysis only detected a small reduction in creati-
nine levels (Fig. 2C).

In order to obtain insight into possible chronic effects of this
pesticide mixture, we used high-throughput molecular profiling
techniques to search for changes, which could predict the
development of disease. We first built orthogonal partial least
squares discriminant analysis (OPLS-DA) models to assess the
predictive ability of the different omics approaches used in this
study. Serum metabolomics (pR2Y= 0.001, pQ2= 0.001), liver
transcriptomics (pR2Y= 0.04, pQ2= 0.001) and to a lesser
extent the caecum metabolomics (pR2Y= 0.16, pQ2= 0.01),
discriminated the pesticide-treated group from the concurrent
control group (Table 1). Shotgun metagenomics in caecum and
genome-wide methylation in liver did not discriminate between
the two experimental groups.

Analysis of the host–gut microbiome axis using metabolomics
revealed effects on the tryptophan–nicotinamide pathway
(Table 2). A decrease in serum tryptophan levels, and its break-
down product indoleacetate, suggested that this amino acid is
channelled to nicotinamide synthesis. The three metabolites
nicotinamide N-oxide, 1-methylnicotinamide and nicotinamide
all increased. In addition, the decrease in pyridoxal can also be
linked to changes in nicotinamide metabolism (Table 2) as it is an
important co-factor necessary for the synthesis of nicotinamide
adenine dinucleotide.

Since the gut microbiome has known roles on nicotinamide
metabolism, we analysed the composition and function of the
caecum microbiome through shotgun metagenomics and meta-
bolomics. The most discriminant metabolites between control
and treatment groups of animals are glycerophospholipids, which
accumulated in the caecum (Table 3). In addition, the increased
levels of serotonin, which has both neurotransmitter and hor-
mone functions and is synthesized from tryptophan, as well as the
increased levels of pyridoxal and nicotinamide riboside, suggested
that the effects of the pesticide mixture in the caecum
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microbiome are linked to the observed disruption in serum
metabolite levels (Tables 2 and 3).

Shotgun metagenomics (Fig. 3A) showed that the caecum
metagenome of the Sprague–Dawley rats was dominated by Fir-
micutes and Bacteroidetes. No species were detected in a negative
extraction control, which was included to ensure that no bacterial
contamination was introduced by laboratory reagents and pro-
cedures. Permutational ANOVA (PERMANOVA) analysis of the
differences between Bray–Curtis distances calculated from the
abundance determined with IGGsearch, did not show an effect of
the pesticide treatment (Fig. 3C). No differences in species
abundance were identified with a range of shotgun metagenomics
taxonomic classifiers, such as IGGsearch, MetaPhlan2 or Kaiju
(Supplementary Data 1). There was a large intragroup variability
by comparison to the variability observed between the two groups
of rats (species-level operational taxonomic units of IGGsearch
shown in Fig. 3B), which prevented reaching definitive conclu-
sions. This was also the case when we measured pathway abun-
dances for tryptophan (Fig. 3D) and nicotinamide metabolism
(Fig. 3E).

Since the low levels of pesticides that comprise the mixture
studied here had limited effects on gut microbiome composition,
we further evaluated if the mixture and the tested pesticide
individually affected bacterial growth in vitro at a broad range of
concentrations. We used two strains of Escherichia coli and two

strains of Lactobacillus rhamnosus, which are found in the human
intestinal microbiota (Fig. 4). When the six pesticide active
ingredients were tested individually, they did not affect the
growth of the four bacterial strains (Figs. S1 and S2). However,
when the bacterial strains were exposed to the mixture of all six
pesticides, growth inhibition was detected in a strain-dependent
manner. Although L. rhamnosus LB5 (Fig. 4A) and E. coli EC4
(Fig. 4C) had their growth inhibited by the pesticide mixture,
L. rhamnosus LB6 (Fig. 4B) and E. coli EC2 (Fig. 4D) were not
affected.

Mammals mostly produce the vitamin nicotinamide (a form of
vitamin B3) from tryptophan in the liver before it is distributed to
non-hepatic tissues. In order to understand if the changes in the
gut and blood metabolome we observed are associated with dis-
turbance in liver function, we compared transcriptome profiles in
the liver of the two groups of rats by RNA sequencing (Supple-
mentary Data 2). The results showed that the expression of 121
genes was increased and 117 genes had their expression decreased
(Fig. 5A) by exposure to the pesticide mixture (adj-p < 0.05). A
total of 96 Gene Ontology (GO) terms were enriched among the
differentially expressed genes. Most of them were involved in the
regulation of response to hormones (adj-p= 0.0003) and parti-
cularly to steroids (adj-p= 0.0004). The liver transcriptome also
reflected the activation of stress response pathways (adj-p= 0.02).
Interestingly, the two genes with the lowest p values had their

Fig. 1 General toxicity assessment of a mixture of glyphosate, azoxystrobin, boscalid, chlorpyrifos, imidacloprid and thiabenzadole at their acceptable
daily intake in Sprague–Dawley rats. A Study design. Groups of 12 female rats were administered via drinking water with a mixture of six pesticides at the
EU ADI for 90 days. Analyses following sacrifice are also shown (illustration created with BioRender.com). B Molecular structures of pesticide active
ingredients tested. (Chemical structure from pubchem.com). Water consumption (C), feed consumption (D) and body weights with their 95% confidence
interval band (E) remained unchanged (controls, black; pesticide-exposed, red).
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expression increased (Fig. 5B) and coded the nuclear receptor
subfamily 1 group D member 1 (Nr1d1, adj-p= 3.2e−17) and 2
(Nr1d2, adj-p= 1.9e−18), which play a role in carbohydrate and
lipid metabolism, as well as in regulation of circadian rhythms.
We finally compared our transcriptome findings to a list of gene
expression signatures collected from various rat tissues after
treatment with various drugs from the drugMatrix tox-
icogenomics database (Table S2). The alterations in the liver
transcriptome we observed correlated well with those of livers
from a study in which nicotinamide was administered to rats at a

dose of 750 mg/kg (adj-p= 1.6e−7). This correlates well with the
changes in the biochemical composition of the serum–gut
microbiome axis.

Reduced representation bisulfite sequencing (RRBS) of the liver
samples was also performed to assess if alterations in epigenetic
(DNA methylation) status may be responsible at least in part for
the treatment-related changes in gene expression patterns. There
were no differences in the percentage of methylated cytosines in
CpG islands (42.0 ± 1.6% for controls vs 42.2 ± 2.2% for pesticide-
exposed rats). We also analysed the distribution of the percentage

Fig. 2 Analysis of regular clinical and biochemical markers provided limited insight into the effects of a mixture of pesticides at their acceptable daily
intake in Sprague–Dawley rats. Incidence in signs of anatomical pathologies in liver and kidneys (A). Focal inflammation of moderate to severe grade
localized in the pelvic area in a rat exposed to the pesticide mixture; magnification ×100 (B). Standard serum biochemistry analysis showed only a decrease
in creatinine levels (C).

Table 1 Predictive ability of high-throughput omics approaches to evaluate the effects of a pesticide mixture in rats.

Omics technology n R2X R2Y Q2 pR2Y pQ2

Serum metabolome 749 0.34 0.99 0.80 0.001 0.001
Caecum metabolome 744 0.34 0.86 0.46 0.16 0.01
Caecum metagenome 2466 0.72 0.99 0.71 0.85 0.3
Liver transcriptome 18,170 0.48 0.97 0.49 0.04 0.001
Liver genome-wide methylation 136,555 0.06 0.88 0.00 0.4 1

OPLS-DA models were performed for each set of omics data. We show estimates of the total explained variation (R2X), variations between the different groups (R2Y) and the average prediction
capability (Q2). We assessed the significance of our classification using permutation tests. The number of variables investigated (n) is also shown. New estimates of R2Y and Q2 values were calculated
from this 1000 times permuted dataset (p values pR2Y and pQ2 for permuted R2Y and Q2, respectively).
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methylation per base. Since a given base is generally either
methylated or not in a given cell, it is expected that the dis-
tribution of percentage DNA methylation per base has a bimodal
distribution, which is the case in our study (Fig. 6A). We also

annotated the methylation calls. DNA methylation patterns in
relation to gene transcription start sites (TSS) showed that CpG
dinucleotides near TSS tend to be unmethylated, which confirmed
that our RRBS analysis is of a good quality (Fig. 6B). We

Table 2 Serum metabolomics of host–gut microbiota interactions in rats exposed to a pesticide mixture reveals alterations in
multiple metabolic pathways.

Compound Pathway FC P FDR VIP

Pipecolate Lysine metabolism −6.5 3.5 × 10−7 0.0002 2.79
3-Methylglutaconate Leucine, isoleucine and valine metabolism −4.1 1.1 × 10−5 0.0027 2.64
4-Hydroxyphenylacetate Phenylalanine metabolism −4.1 1.7 × 10−5 0.0028 2.47
1-Methylnicotinamide Nicotinate and nicotinamide metabolism*** 1.9 2.1 × 10−4 0.0167 2.29
Glutarate (C5-DC) Fatty acid, dicarboxylate** −3.3 2.4 × 10−4 0.0167 2.29
Nicotinamide N-oxide Nicotinate and nicotinamide metabolism*** 3.1 1.9 × 10−4 0.0167 2.28
3-Hydroxyadipate* Fatty acid, dicarboxylate** −4.2 2.6 × 10−4 0.0167 2.27
Mevalonate Mevalonate metabolism −2.8 3.2 × 10−4 0.0167 2.24
Alpha-ketoglutarate TCA cycle −3.0 2.9 × 10−4 0.0167 2.24
N-Methyl-GABA Glutamate metabolism −2.5 6.5 × 10−4 0.0281 2.17
Eicosanedioate (C20-DC) Fatty acid, dicarboxylate** −3.2 6.0 × 10−4 0.0281 2.13
3-Dehydrocholate Secondary bile acid metabolism 3.9 1.0 × 10−3 0.0371 2.12
Nicotinamide Nicotinate and nicotinamide metabolism*** 1.5 1.2 × 10−3 0.0386 2.12
Pyridoxal Vitamin B6 metabolism −3.2 1.4 × 10−3 0.0390 2.11
Indoleacetate Tryptophan metabolism −3.2 1.4 × 10−3 0.0390 2.09
Perfluorooctanesulfonate Chemical −2.5 9.8 × 10−4 0.0371 2.07
Taurine Methionine, cysteine and taurine metabolism 1.1 1.2 × 10−3 0.0386 2.06
5-Methyluridine (ribothymidine) Pyrimidine metabolism, uracil containing −2.5 1.5 × 10−3 0.0390 2.05
Tryptophan Tryptophan metabolism −2.3 1.7 × 10−3 0.0405 2.02
Hexadecenedioate (C16:1-DC) Fatty acid, dicarboxylate** −4.2 2.5 × 10−3 0.0524 2.01
Methionine Methionine, cysteine and taurine metabolism −2.3 1.6 × 10−3 0.0390 2.00

We presented fold changes (FC) for the metabolites that were found to have their variable importance in projection (VIP) scores > 2 in the OPLS-DA analyses. P values from a Welch’s t test (P) are
presented with the FDR. The statistical significance of a pathway enrichment analysis is also presented (*p < 0.05; **p < 0.01; ***p < 0.001).

Table 3 Caecum metabolomics of host–gut microbiota interactions in rats exposed to a pesticide mixture reveals alterations in
multiple metabolic pathways.

Compound Pathway FC P FDR VIP

Serotonin Tryptophan metabolism 1.6 0.003 0.28 2.50
Citrulline Urea cycle; arginine and proline metabolism 1.6 0.002 0.25 2.46
Stearoyl sphingomyelin (d18:1/18:0) Sphingomyelins** 3.9 0.008 0.47 2.46
Hexadecanedioate (C16-DC) Fatty acid, dicarboxylate 1.9 0.003 0.28 2.44
1-Palmitoyl-2-oleoyl-GPG (16:0/18:1) Phosphatidylglycerol (PG)* 2.2 0.001 0.25 2.43
1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) Phosphatidylethanolamine (PE)*** 2.2 0.001 0.25 2.41
1-(1-Enyl-stearoyl)-2-arachidonoyl-GPE Plasmalogen* 3.5 0.01 0.47 2.40
Nicotinamide riboside Nicotinate and nicotinamide metabolism 1.4 0.01 0.47 2.35
Pantothenate Pantothenate and CoA metabolism 1.4 0.02 0.47 2.31
1,2-Dioleoyl-GPE (18:1/18:1) Phosphatidylethanolamine (PE)*** 2.8 0.0005 0.25 2.28
1-Palmitoyl-2-oleoyl-GPC (16:0/18:1) Phosphatidylcholine (PC)* 2.3 0.03 0.54 2.26
Pyridoxal Vitamin B6 metabolism 1.3 0.007 0.47 2.24
1-(1-Enyl-palmitoyl)-2-arachidonoyl-GPE Plasmalogen* 2.5 0.04 0.55 2.16
N-Acetylarginine Urea cycle; arginine and proline metabolism 1.3 0.02 0.50 2.16
Palmitoyl sphingomyelin (d18:1/16:0) Sphingomyelins** 2.2 0.02 0.47 2.15
1-Palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) Phosphatidylcholine (PC)* 2.2 0.04 0.55 2.15
1-Stearoyl-2-oleoyl-GPC (18:0/18:1) Phosphatidylcholine (PC)* 2.5 0.05 0.62 2.13
Glycerophosphoglycerol Glycerolipid metabolism −3.7 0.04 0.55 2.12
N-Carbamoylaspartate Pyrimidine metabolism, orotate containing 1.7 0.02 0.49 2.10
Heptadecanedioate (C17-DC) Fatty acid, dicarboxylate 1.3 0.09 0.66 2.07
1-Stearoyl-2-arachidonoyl-GPE (18:0/20:4) Phosphatidylethanolamine (PE)*** 2.6 0.03 0.54 2.06
Heptanoate (7:0) Medium chain fatty acid 1.6 0.008 0.47 2.06
Palmitoyl dihydrosphingomyelin (d18:0/16:0) Dihydrosphingomyelins* 2.7 0.02 0.50 2.06
Glutamate Glutamate metabolism 1.3 0.07 0.65 2.03
1-Stearoyl-2-oleoyl-GPE (18:0/18:1) Phosphatidylethanolamine (PE)*** 1.8 0.05 0.63 2.02

We presented fold changes (FC) for the metabolites that were found to have their variable importance in projection (VIP) scores > 2 in the OPLS-DA analyses. P values from a Welch’s t test (P) are
presented with the FDR. The statistical significance of a pathway enrichment analysis is also presented (*p < 0.05; **p < 0.01; ***p < 0.001).
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identified 4255 differentially methylated CpG sites (FDR < 0.05)
with a modest methylation difference (>10%) between the group
of rats exposed to the pesticide mixture and the control animals
(Fig. 6C, D and Supplementary Data 3). They were mostly located
in intergenic regions (50.1%) and introns (37.0%), and to a lesser

extent in exons (6.2%) and promoters (6.6%), at an average
distance of 56 kb from TSS. Only 114 CpG sites presented dif-
ferences in methylation levels over 25% (max 31.6%). A
total of 24 differentially methylated CpG sites were present in
promoters (Table 4). Interestingly, the lowest p value was for

Fig. 3 Shotgun metagenomics shows no alterations in the caecum microbiota composition upon exposure to the mixture of six pesticides. A Gut
caecum microbiota composition profiles at the phylum level. B Classification of samples from the most frequently found species-level operational
taxonomic units with IGGsearch failed to show any alterations in different bacterial populations in response to the pesticide mixture. C Principal
coordinates analysis plot using the NMDS ordination of Bray–Curtis distances. Pathway analysis shows reduction in tryptophan (D) and nicotinamide
(E) metabolism potential.

Fig. 4 Effects of the pesticide mixture on L. rhamnosus and E. coli in vitro. Bacterial growth of the strain L. rhamnosus (LB5) (A) is inhibited after an
exposure at ten times the ADI (10×) for the mixture, while another strain of L. rhamnosus (LB6) (B) was not inhibited at the same dose. Similarly, E. coli
(EC4) growth (C) was inhibited at lower doses in comparison with the other E. coli strain (EC2) (D).
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hypermethylation of the promoter of the gene coding coenzyme
Q10A, a protein attenuating high-fat diet-induced non-alcoholic
fatty liver disease43. We also evaluated the correlation between
gene expression and DNA methylation. There was no correlation
between the fold changes in gene expression and percentage
methylation changes, and it was thus not possible to attribute
changes in gene expression caused by the mixture to change in
DNA methylation at their promoters (Fig. S3). However, as gene
regulatory elements can be present within introns and at distantly
located enhancers, changes in DNA methylation status in non-
promoter regions as we have found can also in principle impact
their function and alter levels of expression.

Our various omics analyses suggested oxidative stress resulting
from exposure to the pesticide mixture. We therefore also
assessed oxidative damage to liver DNA as measured by the rate
of apurinic/apyrimidinic (A/P) site formation. Our results show
that A/P site formation was unchanged between control and test
groups of animals (Fig. S4).

Overall, exposure to the mixture of pesticides tested altered the
gut–liver axis and caused changes in metabolites from the
tryptophan–nicotinamide conversion pathway, which reflects a
metabolic adaptation to oxidative stress.

Discussion
We report here the first direct comparison of standard histo-
pathology and serum biochemistry measures and multi-omics
analysis of multiple physiological compartments of rats exposed
to a mixture of six pesticides (azoxystrobin, boscalid, chlorpyrifos,
glyphosate, imidacloprid and thiabendazole) that are most

frequently found in EU foodstuffs. Each pesticide was adminis-
tered at its regulatory permitted EU ADI, and thus the expecta-
tion was that no effects or signs of toxicity would be observed.
However, our results show that the low-dose mixture of pesticides
we tested caused metabolic alterations in the caecum and blood
metabolome, with consequences on liver function, which was
mostly reflected by changes in the conversion of tryptophan to
nicotinamide. Notably, these metabolic alterations were not
detected by regular clinical and biochemical analyses as currently
recommended in OECD guidelines and required by government
regulatory agencies, but with the new generation of high-
throughput ‘omics’ methodologies.

Unlike standard blood biochemical and organ histological
analysis, an in-depth molecular profiling using a combination of
high-throughput ‘-omics’ methods revealed metabolic effects of
the mixture of six pesticides. Histological analysis showed a non-
significant increase in liver and kidney lesions (Fig. 2A, B).
Considering the relatively short duration of exposure (90 days),
and the limited number of animals per test group, we cannot rule
out the possibility that these non-statistically significant increases
were attributable to the treatment. Animal bioassays are generally
extended to 12 months and performed on a larger number of
animals (OECD Test Guideline 452: Chronic Toxicity Studies) to
detect chronic toxicity from exposure to a given chemical. More
studies are needed to determine if a longer treatment period with
the pesticide mixture leads to adverse health effects.

Our results show that the inclusion of ‘omics’ high-throughput
approaches in the battery of tests used to study the effects of
chemicals promises to substantially heighten their sensitivity and

Fig. 5 Liver transcriptomics of Sprague–Dawley rats exposed for 90 days to the mixture of six pesticides. Genes were considered as differentially
expressed if their count were found to be statistically significant after an analysis with DESeq2. A A volcano plot showing the fold changes and statistical
significance in the expression of genes affected by exposure to the pesticide mixture. B The effect size for the 50 most affected transcripts. Log10-
normalized abundances from the DESeq2 analysis were used to facilitate the visualization of differences (red dots, pesticide treated; black dots, untreated
controls).
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accuracy. This in turn will enhance the ability of such tests to
predict risks of toxicity for regulatory decision-making
purposes44,45. This could ultimately reduce the duration of ani-
mal bioassays and the number of animals needed, which would be
in accord with ongoing efforts to improve animal welfare in
research and testing. Omics methods first found a place in the
field of toxicology when the US National Research Council
published a vision and strategy statement on toxicity testing in
2007 calling for a transition toward high-throughput predictive
and mechanistic chemical toxicity assessment46. This was mostly
reflected by the development of adverse outcome pathways
(AOPs), which are sequences of molecular and cellular events
known to reflect the development of a pathological process47.
Some omics technologies such as transcriptomics can be used to

predict key events and outcomes in networks of AOPs48. Con-
temporary toxicology is increasingly using artificial intelligence
models to predict toxicological properties49. These models can be
based on pathway perturbations identified using omics data as
suggested by a recent study, showing that the training of a
machine learning algorithm on the transcriptome changes caused
by different endocrine disruptors in fish ovaries, adequately
identified anti-androgenic properties of the herbicide linuron50

Although caecum metabolomics showed that there was an
effect on gut microbial pathways involved in tryptophan and
serotonin metabolism (Table 3), shotgun metagenomics failed to
show an effect on gut microbiome functional potential (Fig. 3).
Gut microbiome metagenomics and metabolomics are part of an
emerging field of research and results from studies can be

Fig. 6 Reduced representation bisulfite sequencing of liver samples from Sprague–Dawley rats exposed for 90 days to the mixture of six pesticides.
A Percentage DNA methylation profile shows a bimodal distribution of methylation calls for each sample. B CpG methylation decreases around
transcription start sites. C Circos plot shows that differentially methylated CpG sites (blue track, hypomethylated; red track, hypermethylated) are
scattered around the genome. D Volcano plots of differentially methylated CpG sites shows that a large number of CpG loci are differentially methylated
across the rat liver genome with moderate methylation changes.
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confounded by a large number of factors51. This could be
amplified in our case by the housing of three rats per cage, since
rats are coprophagous and thus exchange their gut microbiota52.
It is also not clear if the gut microbiome is mediating the effects of
this pesticide mixture, or if the change in liver metabolism is
influencing gut microbiome composition and function. The gut
microbiome and the liver evidently influence each other, and a
large number of studies have shown a bidirectional commu-
nication involving bile acids, antimicrobial molecules or dietary
metabolites53. It is also possible that the pesticide mixture tested
here had an effect on bacterial metabolism, which did not affect
growth properties. This possibility is supported by a recent study
of the soil filamentous fungus Aspergillus nidulans54. This study
found that exposure to the glyphosate-based herbicide Roundup
GT+ caused alterations in secondary metabolism at a con-
centration that, however, caused no change in growth.

Changes in caecum and serum metabolome and liver tran-
scriptome profiles were very consistent, and suggested that the
mixture of pesticides tested in this study triggered an oxidative
stress response. Low levels of pyridoxal, a form of vitamin B6, are
known to be associated with changes in tryptophan levels and to
cause inflammation55,56. This also explains the increase in nico-
tinamide levels, which is considered to be a marker for the gen-
eration of ROS57. Nicotinamide is a form of vitamin B3, which
can act as a stress signal mediating compound, released when
DNA-strand breakage is caused by oxidative damage58. Nicoti-
namide has been shown to protect from hepatic steatosis by
increasing redox potential59. An improvement in hepatic trans-
aminase concentration is detectable when hypertriglyceridemic
patients are treated with nicotinamide60. Overall, this suggests
that the increase in nicotinamide levels we observe reflects a
metabolic adaptation to oxidative stress induced by exposure to
the mixture of pesticides.

The changes in serum metabolite levels we see in this study do
not reflect a diseased state, but probably metabolic adaptation,
which can lead to the development of a pathological state if the
damage produced exceeds the capacity for repair. The conversion

of tryptophan to nicotinamide is known to decrease in rats pre-
senting a steatotic liver59, which is the opposite to what we
observed. Similarly, pipecolate levels are known to be increased in
patients with liver disease, with the level of increase being pro-
portional to the severity of liver damage61. In our study, pipe-
colate serum levels displayed the opposite trend; that is, they were
decreased in animals exposed to the pesticide mixture (Table 2).
This could reflect the establishment of a state of hormesis,
a phenomenon by which mild-induced stress can give rise to a
positive physiological counter-response inducing maintenance
and repair systems62. This is well described for the effect of
pesticides for both target63 and non-target64 species. Other
known hormetic stressors include exercise65 and fasting66,67.
Although physiology may initially improve by initiating protec-
tive measures in the face of exposure to mild stressors, this can
ultimately give rise to a pathological status if the intensity of the
stimulation exceeds cellular capacity for homoeostasis68. A hor-
metic response may explain why changes in redox status did not
result in increased DNA damage (Fig. S4). If damage was caused
to DNA, it would have been repaired.

A dose–response study to identify the point of departure for
these effects could inform on whether metabolic perturbations
exceed cellular capacity for homoeostasis. In addition, because the
liver is a sex-dimorphic organ with sex differences in liver
metabolism and in the sensitivities to liver diseases69, the results
of this study in females cannot be extrapolated to males. This is
supported by the results of another study which revealed the
sexually dimorphic obesogenic and diabetogenic effects of a low-
dose pesticide mixture using a combination of omics methods14.
Although rats exposed to the pesticide mixture in this study
presented more signs of pathology than animals in the control
group, a longer period of exposure would be needed to determine
if liver and/or kidney function will ultimately be impaired. In
support of this possibility are findings from other studies, which
showed changes in oxidative stress markers or inflammation
profiles after exposure to low doses of pesticides with different
profiles between 6, 12 and 18 months of administration70,71.

Table 4 Differentially methylated CpG sites located at gene promoters.

Chr Coordinates Strand P FDR % Diff Gene name

Chr7 2,787,189 − 5E−57 5E−53 15.4 Coenzyme Q10A
Chr3 57,717,495 + 8E−55 5E−51 −11.6 Cytochrome b reductase 1
Chr14 4,250,209 + 8E−50 1E−46 13.5 Uncharacterized LOC102551276
Chr7 138,705,521 + 4E−39 2E−36 11.1 PC-esterase domain containing 1B
Chr1 219,852,329 − 6E−33 2E−30 10.8 Leucine-rich repeat and fibronectin type III domain containing 4
ChrX 134,538,342 + 3E−32 7E−30 −11.4 Similar to CXXC finger 5
Chr5 159,427,478 + 2E−28 3E−26 −10.1 Peptidyl arginine deiminase 2
Chr15 33,120,272 + 4E−27 7E−25 −11.6 RRAD and GEM like GTPase 2
Chr3 147,818,650 − 3E−25 5E−23 −10.3 Tribbles pseudokinase 3
Chr17 80,793,952 + 1E−24 2E−22 19.2 Uncharacterized LOC102550536
Chr20 3,350,268 + 3E−23 4E−21 16.9 Alpha tubulin acetyltransferase 1
Chr19 40,616,367 + 2E−21 2E−19 −11.7 Uncharacterized LOC103694327
Chr20 4,362,151 + 1E−19 1E−17 12 Advanced glycosylation end product-specific receptor
Chr13 53,571,396 − 4E−19 4E−17 13.6 Uncharacterized LOC102547588
Chr1 87,044,466 + 5E−17 3E−15 16.8 Galectin 7
Chr8 70,015,572 − 1E−16 9E−15 13.3 Uncharacterized LOC102548470
Chr2 53,310,072 − 5E−16 3E−14 10.8 Growth hormone receptor
Chr6 28,234,694 + 4E−15 2E−13 11 DNA methyltransferase 3 alpha
Chr5 154,524,190 + 1E−11 4E−10 −11.7 E2F transcription factor 2
Chr14 45,398,591 − 1E−11 3E−10 −11.1 Uncharacterized LOC102552762
Chr10 107,157,939 + 2E−11 6E−10 −10.7 Uncharacterized LOC103693482
Chr1 220,883,570 − 2E−09 3E−08 −13.3 Melanoma-associated antigen G1 like
Chr5 172,527,225 − 9E−08 1E−06 10.3 Uncharacterized LOC108351067
Chr9 4,547,982 + 9E−06 6E−05 10.7 Uncharacterized LOC108351871

Reduced representation bisulfite sequencing was performed on liver samples. Differentially methylated CpG sites present in promoters were filtered and their variations summarized.
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In conclusion, our study reveals that metabolic effects follow-
ing exposure to a pesticide mixture, which can be typically found
in EU foodstuffs, and administered at the ADI, can be detected
using caecum and serum metabolomics, and liver transcriptomics
and DNA methylation profiling. Crucially, these molecular bio-
logical and metabolic changes would not be detected using con-
ventional biochemical and histopathological investigations, which
regulators currently rely upon for chemical risk assessment. Thus
our results highlight the advantages of incorporating high-
throughput ‘-omics’ methods into OECD Guidelines for the
Testing of Chemicals72. Although additional studies are needed to
determine if longer exposure to the pesticide mixture we tested
leads to adverse effects, our results demonstrate that high-
throughput ‘omics’ analyses as applied herein can reveal mole-
cular perturbations, which can potentially act as more sensitive
and accurate predictors of long-term health risks arising from
pesticide exposures. This in turn can lead to more appropriate
regulatory public health protection measures.

Methods
Experimental animals. The experiment was conducted according to Italian law
regulating the use and humane treatment of animals for scientific purposes
(Decreto legislativo N. 26, 2014. Attuazione della direttiva n. 2010/63/UE in
materia di protezione degli animali utilizzati a fini scientifici.—G.U. Serie Generale,
n. 61 del 14 Marzo 2014). Before starting the experiment, the protocol was
approved and formally authorized by the ad hoc commission of the Italian Ministry
of Health (authorization N. 447/2018-PR). The experiment was conducted on
young adult female Sprague–Dawley rats (8 weeks old at the start of treatment).

Animal management. Female Sprague–Dawley rats from the Cesare Maltoni
Cancer Research Center breeding facility were used. Female animals were chosen in
order to make the results of this investigation comparable to our previous
studies73–75. The animals were generated in-house following an outbreed plan and
were classified as conventional (minimal disease) status. All the experimental
animals were identified by ear punch according to the Jackson Laboratory system.
After weaning, and before the start of the experiment, animals were randomized in
order to have at most one sister per litter of each group; homogeneous body weight
within the different groups was ensured. Animals of 6 weeks of age were accli-
matized for 2 weeks before the start of the experiment.

Rats were housed in polycarbonate cages (41 × 25 × 18 cm) with stainless wire tops
and a shallow layer of white wood shavings as bedding. The animals were housed in
the same room, three per cage, maintained at the temperature of 22 ± 3 °C and relative
humidity of 50 ± 20%. Lighting was provided by artificial sources and a 12-h light/
dark cycle was maintained. No deviations from the above-mentioned values were
registered. Cages were identified by a card indicating study protocol code,
experimental and pedigree numbers, and dosage group. The cages were periodically
rotated on their racks to minimize effects of cage positions on animals.

Diet and treatments. Experimental groups consisted of 12 female Sprague–Dawley
rats of 8 weeks of age, treated for 90 days. Female animals were chosen to make the
results of this investigation comparable to our previous studies, showing that the long-
term exposure to a glyphosate-based herbicide was associated with the development
of liver disease73,74. Animals received ad libitum a rodent diet supplied by SAFE
(Augy, France). The feed was analysed to identify possible contaminants or impurities
and these were found to be below levels of detection for all substances tested (Sup-
plementary Data 4). The treatment group of animals was administered daily with a
mixture of glyphosate (0.5 mg/kg bw/day)25, azoxystrobin (0.2 mg/kg bw/day)22,
boscalid (0.04 mg/kg bw/day)23, chlorpyrifos (0.001mg/kg bw/day)24, imidacloprid
(0.06mg/kg bw/day)26 and thiabenzadole (0.1mg/kg bw/day)27, via drinking water.
The concentration of pesticides in tap water to give a dose equivalent to the ADI was
calculated weekly on the basis of mean body weight and mean daily water con-
sumption. Tap water from the local mains water supplier was administered, alone or
with the test compounds, to animals in glass bottles ad libitum. Every 24 h, drinking
water was discarded and the bottles cleaned and refilled. The presence of pesticides
was not measured in the tap water. The regulation in the EU has maximum residue
limits for a given pesticide in tap water of 0.1 µg/l, and up to a maximum of 0.5 µg/l
for all pesticides that may be present. Given these low legal tolerance limits, it was not
deemed necessary to analyse tap water for pesticide contamination, since if present
would be extremely low and unlikely to have any physiological consequences on the
experimental animals. Glyphosate, azoxystrobin, boscalid, chlorpyrifos, imidacloprid
and thiabenzadole were purchased from Merck KGaA (Sigma Aldrich®, Germany)
with a purity ≥95%.

Although the study was performed on 12 animals per group, it was originally
conceived to analyse 10 animals per group with 2 animals used as a contingency in
case of unexpected death, as recommended by OECD guidelines for the testing of

chemical toxicity. All animals survived and 12 animals per group were analysed for
clinical biochemistry, histopathology, transcriptomics, methylation profiling and
shotgun metagenomics, while ten animals per group were randomly chosen for the
metabolomics analyses.

Clinical observations. Animals were checked for general status three times a day,
7 days a week, except non-working days when they were checked twice. Status,
behaviour and clinical parameters of experimental animals were determined weekly
beginning 2 weeks prior to commencement of treatments until the end of the
experiment (at 90 days). Before final sacrifice and after ~16 h in a metabolic cage,
water consumption was registered for each animal. Body weight, water and food
consumption of experimental animals were measured before the start of the
treatment and then weekly for 90 days. All the experimental animals were weighed
just before sacrifice.

Histopathology evaluation. Each animal was anesthetized by inhalation of a
mixture of 70% CO2 and 30% O2 and sacrificed by exsanguination from the vena
cava. All sacrificed animals were subjected to complete necropsy. The gross
necropsy was performed by initial physical examination of external surfaces and
orifices followed by an internal in situ examination of tissues and organs. The
examination included cranial cavity and external surfaces of the brain and spinal
cord, thoracic abdominal and pelvic cavities with their associated organs and tis-
sues, and muscular/skeletal carcass.

Liver and kidneys were alcohol-fixed, trimmed, processed and embedded in
paraffin wax. Sections of 3–6 μm were cut for each specimen of liver and kidneys,
and stained with haematoxylin and eosin. All slides were evaluated by a pathologist
and all lesions of interest were reviewed by a senior pathologist.

The histopathological nomenclature of lesions adopted was in accord with
international criteria; in particular non-neoplastic lesions were classified according
to the international nomenclature INHAND (International Harmonization of
Nomenclature and Diagnostic Criteria) and RITA (Registry of Industrial
Toxicology Animal Data). Incidence of non-neoplastic lesions was evaluated with a
Fisher’s exact test (one- and two-tailed; one-sided results were also considered,
since it is well established that only an increase in incidence can be expected from
the exposure, and incidences in the control group are almost always 0).

Blood biochemical analysis. At the time of sacrifice, ~7.5ml of blood was collected
from the vena cava. The blood collected from each animal was centrifuged in order to
obtain serum, which was aliquoted into labelled cryovials and stored at −70 °C.
Serum biochemistry was performed under contract by IDEXX BioAnalytics (Stuttgart,
Germany), an ISO 17025 accredited laboratory. Briefly, sodium and potassium levels
were measured by indirect potentiometry. Albumin was measured by a photometric
bromocresol green test. ALP was measured by IFCC with AMP-buffer method,
cholesterol by Enzymatic colour test (CHOD-PAP), blood urea nitrogen by enzymatic
UV-Test, gamma-glutamyl-transferase by Kinetic colour test International Federation
of Clinical Chemistry (IFCC), aspartate and alanine aminotransferase by kinetic UV-
test (IFCC+ pyridoxal-5-phosphate), creatinine by kinetic colour test (Jaffe’s
method), lactate dehydrogenase by IFCC method and triglycerides using an enzy-
matic colour test (GPO-PAP) on a Beckman Coulter AU 480.

DNA and RNA extraction. DNA and RNA were extracted from rat liver tissue
excised at the time of sacrifice and which had been stored at −70 °C, using the All-
Prep DNA/RNA/miRNA Universal Kit (Qiagen, Hilden, Germany), using the man-
ufacturer’s instructions for ‘Simultaneous purification of genomic DNA and total
RNA from animal and human tissues’ with no alterations. Tissue weight used was
≤30mg, and samples were eluted in 30 μl RNase-free water. RNA samples were
quantified with the Nanodrop 8000 spectrophotometer V2.0 (Thermo Scientific,
USA) and integrity was checked using the Agilent 2100 Bioanalyser (Agilent Tech-
nologies, Waldbronn, Germany). All samples had RNA integrity numbers (RIN)≥ 7.
DNA quantity was measured using the Qubit® 2.0 Fluorometer (Life Technologies)
with the dsDNA broad range reagent, followed by quality assessment using the
Agilent 2200 Tapestation and Genomic DNA screentape (Agilent Technologies).
Samples displayed high molecular weight with DINs (DNA integrity score) ranging
from 7.5 to 10, and average concentrations from 370 ng/µl. All samples showed a
majority of high molecular weight material and all were taken forward for processing.

Transcriptomics analysis. For RNA-seq transcriptomics, 100 ng of total RNA was
used for each sample for library preparation. The mRNA libraries were prepared
using the NEBNext® Poly(A) mRNA Magnetic Isolation Module in combination
with the NEBNext® Ultra™ II Directional RNA Library Prep Kit and indexed with
NEBNext® Multiplex Oligos for Illumina® (96 Index Primers; New England Bio-
labs, Ipswich, MA, USA). Fragmentation was carried out using incubation condi-
tions recommended by the manufacturer for samples with a RIN ≥ 7 to produce
RNA sizes ≥ 300 bp (94 °C for 10 min) with first strand synthesis carried out by
incubation at 42 °C for 50 min. Modification of the manufacturer’s conditions was
used when enriching Adaptor-Ligated DNA for libraries with a size of 300 bp and
13 cycles of PCR were performed for final library enrichment. Resulting libraries
were quantified using the Qubit 2.0 spectrophotometer (Life Technologies, Cali-
fornia, USA) and average fragment size assessed, using the Agilent 2200
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Tapestation (Agilent Technologies, Waldbronn, Germany). Sample libraries were
combined in equimolar amounts into a single pool. The final library pool was
sequenced twice on the NextSeq 500 at 1.1 pM and 75 bp paired-end reads were
generated for each library using the Illumina NextSeq®500 v2.5 High-output 150
cycle kit (Illumina Inc., Cambridge, UK). A total of 319,920,579 reads (average of
13,330,024 ± 3,068,802 reads per sample) were generated for the 24 liver samples.

Reduced representation bisulfite sequencing. A total of 100 ng of total DNA
was diluted and processed using the Premium RRBS Kit (Diagenode, Denville, NJ,
USA) as per the manufacturer’s instructions. Briefly, DNA was digested with MspI
prior to end repair, adapter ligation and size selection. Products were then
amplified by qPCR and pooled in equal amounts. Pooled libraries were bisulphite
converted and PCR enriched following a second qPCR amplification. Libraries
were quantified using the Qubit® 2.0 Fluorometer (Life Technologies) followed by
quality assessment using the Agilent 2200 Tapestation and DS1000 screentape
(Agilent Technologies). Pooled libraries were loaded at 1.1 M with 20% standard
PhiX library (Illumina, CA, USA) and sequenced to 75 base pair single end on a
NextSeq 500 (Illumina, CA, USA). Data were aligned to the rat reference genome
Rn6 with Bismark76. A total of 407,904,185 reads (average of 16,996,008 ±
4,648,420 reads per sample) were generated for the 24 liver samples.

Metabolomics. Metabolomics analysis was conducted under contract with Meta-
bolon Inc. (Durham, NC, USA) on four independent instrument platforms, as
previously described77: two different separate reverse phase ultrahigh performance
liquid chromatography-tandem mass spectroscopy analysis (RP/UPLC-MS/MS)
with positive ion mode electrospray ionization (ESI), a RP/UPLC-MS/MS with
negative ion mode ESI, as well as by hydrophilic interaction chromatography
(HILIC)/UPLC-MS/MS with negative ion mode ESI.

All UPLC-MS/MS methods utilized a Waters ACQUITY UPLC and a Thermo
Scientific Q-Exactive high-resolution/accurate mass spectrometer interfaced with a
heated electrospray ionization (HESI-II) source and Orbitrap mass analyser
operated at 35,000 mass resolution. The sample extract was dried and then
reconstituted in solvents compatible to each of four methods used. Each
reconstitution solvent contained a series of standards at fixed concentrations to
ensure injection and chromatographic consistency. One aliquot was analysed using
acidic positive ion conditions, chromatographically optimized for more hydrophilic
compounds. In this method, the extract was gradient eluted from a C18 column
(Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using water and methanol,
containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA).
Another aliquot was also analysed using acidic positive ion conditions,
chromatographically optimised for more hydrophobic compounds. In this method,
the extract was gradient eluted from the same afore-mentioned C18 column using
methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an
overall higher organic content. Another aliquot was analysed using basic negative
ion optimised conditions using a separate dedicated C18 column. The basic
extracts were gradient eluted from the column using methanol and water, with 6.5
mM ammonium bicarbonate at pH 8. The fourth aliquot was analysed via negative
ionization following elution from a HILIC column (Waters UPLC BEH Amide
2.1 × 150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile with
10 mM ammonium formate, pH 10.8. The MS analysis alternated between MS and
data-dependent MSn scans using dynamic exclusion. The scan range varied slightly
between methods but covered 70–1000m/z. Raw data were extracted, peak-
identified and QC processed, using Metabolon’s hardware and proprietary
software. Peaks were quantified using area-under-the-curve.

Shotgun metagenomics. Samples of caecum content were collected at the time of
sacrifice in two vials of 100mg each and stored at−70 °C to perform evaluation of the
gut microbiome. DNA was extracted from 100mg caecum content using the Quick-
DNA Faecal/Soil Microbe Miniprep Kit (Zymo Research, Irvine, CA, USA) with
minor adaptations frommanufacturer’s instructions78. Adaptations were bead beating
was performed at 5.5m/s for three times 60 s using a Precellys 24 homogenizer
(Bertin Instruments, Montigny-le-Bretonneux, France) and 2.50 µl elution buffer was
used to elute the DNA, following which the eluate was run over the column once
more to increase DNA yield. One negative extraction control (no sample added) and
one positive extraction control (ZymoBIOMICS Microbial Community Standard;
Zymo Research) were processed in parallel during the DNA extraction procedures
and subsequently sequenced. DNA was quantified using the Qubit HS dsDNA Assay
kit on a Qubit 4 fluorometer (Thermo Fisher Scientific, Horsham, UK).

Shotgun metagenomics was performed by GenomeScan (Leiden, The
Netherlands). The NEBNext® Ultra II FS DNA module (cat# NEB #E7810S/L) and
the NEBNext® Ultra II Ligation module (cat# NEB #E7595S/L) were used to
process the samples. Fragmentation, A-tailing and ligation of sequencing adapters
of the resulting product was performed, according to the procedure described in
the NEBNext Ultra II FS DNA module and NEBNext Ultra II Ligation module
Instruction Manual. The quality and yield after sample preparation were measured
with the fragment analyzer. The size of the resulting product was consistent with
the expected size of ~500–700 bp. Clustering and DNA sequencing using the
NovaSeq6000 (Illumina inc.) was performed, according to manufacturer’s

protocols. A concentration of 1.1 nM of DNA was used. NovaSeq control software
NCS v1.6 was used.

The shotgun metagenomics data were pre-processed using the pre-processing
package v0.2.2 (https://anaconda.org/fasnicar/preprocessing). In brief, this package
concatenates reads, to remove Illumina adapters, discard low-quality (quality < 20
or >2 Ns) or too short reads (<75 bp), remove phiX and rat genome sequences, and
finally sorts and splits the reads into R1, R2 and UN sets of reads.

Cleaned shotgun metagenomics reads were then processed for taxonomic and
pathway profiling. Since there is no gold standard for computational analyses of
shotgun metagenomics, we used a combination of approaches. We inferred the
taxonomy with the RefSeq database on the metagenomics RAST server79,
IGGsearch (iggdb_v1.0.0_gut database)80, MetaPhlAn version 2.9 (ref. 81) and
Kaiju 1.0.1 (ref. 82).

In vitro study of bacterial growth. Azoxystrobin, boscalid, chlorpyrifos, imida-
cloprid and thiabendazole were diluted in dimethylsulfoxide (Merck, Feltham, UK)
to obtain stock solutions. Glyphosate was diluted in water. Bacterial strains were
provided by the Université de Caen Microbiologie Alimentaire (Caen, France)
culture collections (Table S1). The broth dilution method was used to determine
how pesticides modify bacterial growth under aerobic conditions. Bacteria from
overnight broth cultures were re-suspended to OD600 nm= 0.3 (L. rhamnosus) or
OD600 nm= 0.2 (E. coli) and further diluted 1000-fold in MRS without peptone for
L. rhamnosus, or ABTG for E. coli broth, to obtain ~105 CFU/ml as confirmed in
each experiment by plating cell suspension on agar plates incubated aerobically at
37 °C. Plates were incubated under aerobic conditions at 37 °C and inspected after
24 and 48 h. All experiments were performed in triplicate.

DNA damage. DNA damage was measured as the formation of AP sites in liver
genomic DNA. AP sites are common DNA lesions caused by oxidative damage. We
used the DNA Damage Assay Kit (AP sites, Colorimetric; Abcam, ab211154;
Abcam plc, Cambridge, UK), according to manufacturer’s instructions.

Statistics and reproducibility. The statistical analysis was performed using R ver-
sion 4.0.0 (ref. 83). Metabolome peak area values were median scaled, log transformed
and any missing values imputed with sample set minimums, both on a per bio-
chemical basis, and separately for each metabolome dataset. Statistical significance
was determined using a Welch’s two-sample t test adjusted for multiple comparisons
with FDR methods using the R package ‘qvalue’ version 2.17.0 (ref. 84).

For the shotgun metagenomics, a compositional data analysis approach was
used since gut metagenomics datasets are typically zero-inflated85. We used ALDEx
version 2 (ALDEx2) for differential (relative) abundance analysis of proportional
data86. Statistical analysis for taxa abundance was performed on a dataset corrected
for asymmetry (uneven sequencing depths) using the inter-quartile log-ratio
method, which identifies features with reproducible variance. A multivariate
analysis consisting of a non-metric multidimensional scaling (NMDS) plot of
Bray–Curtis distances between samples. Statistical significance of the sample
clustering was evaluated with a PERMANOVA analysis on the Bray–Curtis
distances with adonis() from vegan v2.4-2.

We also used OPLS-DA to evaluate the predictive ability of each omics
approach. OPLS-DA is an extension of PLS methods, which includes an orthogonal
component distinguishing the variability corresponding to the experimental
perturbation (here the effects of the pesticide mixture) from the portion of the data
that is orthogonal; that is, independent from the experimental perturbation. The R
package ropls version 1.20.0 was used87. This algorithm uses the non-linear
iterative partial least squares algorithm. Prior to analysis, experimental variables
were centred and unit-variance scaled. Since PLS-DA methods are prone to
overfitting, we assessed the significance of our classification using permutation tests
(permuted 1000 times).

RNA-seq data were analysed with Salmon88. This tool was used to quantify
transcript abundance by mapping the reads against a reference transcriptome
(Ensembl Release Rattus Norvegicus 6.0 cDNA fasta). Mapping rate was 82.0 ±
4.4% on a rat transcriptome index containing 31,196 targets. The Salmon output
was then imported in R using the Bioconductor package tximport. We created a
transcript database containing transcript counts, which was used to perform a
differential gene expression analysis using DESeq2 (ref. 89). We finally used goseq
to perform a GO analysis accounting for transcript length biases90. We also
compared our transcriptome findings to a list of gene expression signatures
collected from various rat tissues after treatments with various drugs, using the
drugMatrix toxicogenomics database91 with EnrichR92.

DNA methylation calls from RRBS data were extracted with Bismark76. The
output from Bismark was then imported in R and analysed with Methylkit93. DNA
methylation calls were annotated using RefSeq gene predictions for rats (rn6
release) with the package genomation94. Other annotations were retrieved using
the genome-wide annotation for rat tool org.Rn.eg.dbR package version 3.8.2.
Statistical analysis was performed with logistic regression models fitted per CpG
using Methylkit functions. P values were adjusted to Q values using SLIM
method95.

Statistical analyses of in vitro tests on bacterial growth were performed using
GraphPad Prism version 8.0.1 (GraphPad Software, Inc, CA, USA). Differences
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between treatment groups at different concentrations and the negative control were
investigated using Kruskal–Wallis one-way ANOVA with Dunn’s multiple
comparison post-test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Metabolomics raw data are available in Metabolights, with the accession number
MTBLS138. Shotgun metagenomics raw data are available from the National Center for
Biotechnology Information (NCBI), with BioProject accession no. PRJNA609596. Liver
methylation raw data from the RRBS analysis is available at GEO accession no.
GSE157551. The raw data from the transcriptomics analysis is available at GEO accession
no. GSE157426. All other data are available from the corresponding author (or other
sources, as applicable) on reasonable request.

Code availability
The code used to perform the statistical analysis was compiled as an R Markdown
document and made available (Supplementary Data 5). All data are freely available from
a public GitHub repository (https://github.com/mesnage/MixtureTox/).
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