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Abstract: Graph edit distance (GED) is a powerful tool to model the dissimilarity between graphs.
However, evaluating the exact GED is NP-hard. To tackle this problem, estimation methods of GED
were introduced, e.g., bipartite and IPFP, during which heuristics were employed. The stochastic
nature of these methods induces the stability issue. In this paper, we propose the first formal study
of stability of GED heuristics, starting with defining a measure of these (in)stabilities, namely the
relative error. Then, the effects of two critical factors on stability are examined, namely, the number
of solutions and the ratio between edit costs. The ratios are computed on five datasets of various
properties. General suggestions are provided to properly choose these factors, which can reduce the
relative error by more than an order of magnitude. Finally, we verify the relevance of stability to
predict performance of GED heuristics, by taking advantage of an edit cost learning algorithm to
optimize the performance and the k-nearest neighbor regression for prediction. Experiments show
that the optimized costs correspond to much higher ratios and an order of magnitude lower relative
errors than the expert cost.

Keywords: graph edit distances; stability analyses; heuristic methods; edit cost learning

1. Introduction

Graphs provide a flexible representation framework to encode elements as well as the
relationships between them, enabling to capture the underlying structural information of
the data. Despite providing rich expressiveness, the complexity lying in graph structures
becomes its Achilles’ heel when applying machine learning methods for graph data, which
are mainly designed to operate on vector representations [1,2]. To leverage this flaw, several
approaches have been designed to learn models on graphs, representatives among which
include graph embedding strategy [3], graph kernels [4,5], and more recently graph neural
networks [6], some of which are closely connected with signal processing on graphs [7–12].
Despite their state-of-the-art performances, they seldom operate directly in a graph space,
hence reducing the interpretability of the underlying operations. To overcome these
issues and preserve the properties of a graph space, some (dis)similarity measure or
metric is usually assigned to that space, since most machine learning algorithms rely
on (dis)similarity measures between data. One of the most used dissimilarity measures
between graphs is the graph edit distance (GED) [13,14]. The GED of two graphs G1 and G2
is the minimal amount of distortion required to transform G1 into G2. This transformation
includes a series of six elementary edit operations, namely vertex and edge substitutions (vs
and es), removals (vr and er), and insertions (vi and ei), as shown in Figure 1. This sequence
of edit operations constitutes an edit path π. A non-negative cost c(e) can be assigned to
each edit operation e. The sum of all edit operation costs included within π is defined as
the cost associated with π. The minimal cost among all edit paths defines the GED between
G1 and G2.

Electronics 2022, 11, 3312. https://doi.org/10.3390/electronics11203312 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11203312
https://doi.org/10.3390/electronics11203312
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3834-1498
https://orcid.org/0000-0002-0292-3509
https://orcid.org/0000-0003-2649-112X
https://orcid.org/0000-0001-9980-2641
https://orcid.org/0000-0002-3042-183X
https://doi.org/10.3390/electronics11203312
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11203312?type=check_update&version=1


Electronics 2022, 11, 3312 2 of 10

C

B
A

A

C

B
A

A D

C

B

A D D

C

B

D

D

C

B

D D

C

B

D D

C

B

D

Figure 1. An illustration of graph edit operations. vi, vr, vs, ei, er, and es denote, respectively, the
insertions, removals, and substitutions of vertices and edges. Different letters along with colors
illustrate different vertex labels.

Evaluating exact GED is NP-hard even for uniform edit costs [15]. In practice, it
cannot be done for graphs having more than 12 vertices in general [16]. To avoid this
computational burden, strategies to approximate GED in a limited computational time
have been proposed [17,18] with acceptable classification or regression performances. Of
particular interest are the two famous methods, bipartite [19] and IPFP [20], where upper
and lower bounds are estimated as an approximation of GED. The computation of the
bounds relies highly on the design of the algorithm, as well as the randomness during the
procedure, which leads to a reduction of stability.

As this paper will illustrate, the stability of the GED heuristics is highly relevant to
the choice of heuristic method and their prediction performance. As GED is a widely
used similarity between graphs, the study of stability can be useful to help promote the
performance of GED in various tasks.

In this paper, it is the first time that the stability of GED heuristics has been formally
studied. We define the instability of a GED heuristic in terms of the variability of the GED
approximations over repeated trials. Methods that can potentially alleviate this problem
are proposed. For instance, by carrying out several local searches in parallel, the multi-start
counterparts of bipartite and IPFP, named mbipartite and mIPFP, respectively, may
acquire better approximation with higher stability [21]. Description and analyses of these
approximations and the root of randomness are presented in Sections 3 and 4.

Another essential ingredient of GED is the underlying edit cost function c(e), which
quantifies the distortion carried by any edit operation e. The values of the edit costs for
each edit operation have a major impact on the computation of GED and its performance,
including its stability [17,22]. Besides fixing costs provided a priori by domain experts for a
given dataset, methods are proposed to optimize these costs, e.g., by aligning metrics in
the graph to target spaces [23]. Analyzing the optimized edit costs helps further explore its
relevance to the stability of GED heuristics.

The remaining part of the paper is organized as follows: Section 2 introduces widely
used GED heuristics paradigms. Section 3 defines a measure of the (in)stability of these
heuristics, as well as two factors of critical influence. Then, Section 4 gives experiments
and analyses. Finally, Section 5 concludes the work and open perspectives.

2. Graph Edit Distances Heuristics

Over the years, many heuristics have been proposed to approximate GED. The au-
thors of [18] categorize these heuristics according to their underlying paradigms. As
milestones and baselines to many other heuristics, both bipartite and IPFP achieve high
performance [17]. Thereby, in the following sections, we focus on these two heuristics
and the related paradigms. First, we provide preliminary definitions of graphs and graph
edit distances.



Electronics 2022, 11, 3312 3 of 10

2.1. Graphs and Graph Edit Distances

A graph G = (V, E) is an ordered pair of disjoint sets, where V is the vertex set and
E ∈ V ×V is the edge set. A graph can have a label set L from a label space and a labeling
function ` that assigns a label l ∈ L to each vertex and/or edge.

Given a set G of N graphs, the Graph Edit Distance (GED) between two graphs Gi and
Gj ∈ G is defined as the cost of minimal transformation [19]:

ged(Gi, Gj) = min
π∈Π(Gi ,Gj)

C(π, Gi, Gj), (1)

where π(Gi, Gj) is a mapping between Vi ∪ ε and Vj ∪ ε encoding the transformation from Gi
to Gj, and ε represents a dummy element [20]. As described in Section 1, this transformation
consists of a series of six elementary operations: removing or inserting a vertex or an edge,
and substituting a label of a vertex or an edge by another. C(π, Gi, Gj) measures the cost
associated with π:

C(π, Gi, Gj) = ∑
v∈Vj

π−1(v)=ε

cv f i + ∑
v∈Vi

π(v)=ε

cv f r + ∑
v∈Vi

π(v) 6=ε

cv f s

+ ∑
e=(vi ,vj)∈Ej |
π−1(vi)=ε∨
π−1(vj)=ε∨

(π−1(vi),π−1(vj))/∈Ei

ce f i + ∑
e=(vi ,vj)∈Ei |

π(vi)=ε∨
π(vj)=ε∨

(π(vi),π(vj))/∈Ej

ce f r + ∑
e=(vi ,vj)∈Ei |

π(vi) 6=ε∧
π(vj) 6=ε∧

(π(vi),π(vj))∈Ej

ce f s, (2)

where cv f r, cv f i, cv f s, ce f r, ce f i, ce f s are the edit costs associated with the six edit operations:
respectively, vertex removal, insertion, substitution and edge removal, insertion, and
substitution. Without loss of generality, these costs are set to be constant for each edit
operation in the following part, denoted, respectively, as cvr, cvi, cvs, cer, cei, ces.

2.2. Paradigm LSAPE-GED and Heuristic Bipartite

GED can be approximated by solving a linear sum assignment problem with edition
or error correction (LSAPE). For any two sets V1 and V2, consider a transformation from V1
to V2, with elementary operations on each element i ∈ V1: substitution (i → j), insertion
(ε → j), and removal (i → ε), where j ∈ V2 and ε represents a dummy element. An
assignment with edition, also known as the ε-assignment [24], is a bijection between set
Vε

1 = V1 ∪ {ε} and set Vε
2 = V2 ∪ {ε} relaxed on ε, namely π : Vε

1 → Vε
2 , where |π(i)| = 1

for any i ∈ V1, |π−1(j)| = 1 for any j ∈ V2, and π(ε) = ε. We denote the set of all possible
ε-assignments from Vε

1 to Vε
2 as Π(V1, V2).

Each elementary operation in an ε-assignment π can be associated with a non-negative
cost c. Consequently, a cost C is associated with π, namely,

C(π) = ∑
i∈V1

π(i)=j

c(i, j) + ∑
j∈V2

π−1(j)=ε

c(ε, j) + ∑
i∈V1

π(i)=ε

c(i, ε), (3)

where each term on the right side successively represents substitutions, insertions, and
removals. The costs of all operations induced by π can be represented by a matrix
C ∈ R(|V1|+1)×(|V2|+1). LSAPE aims at minimizing this cost over all π ∈ Π, namely finding
C?(π?) = minπ∈Π(V1,V2)

C(π). We denote the set of all optimal solutions as Π?(V1, V2).
Variants of the Hungarian algorithm have been used to acquire an optimal solution [25,26].

The GED between two graphs G1 = (V1, E1) and G2 = (V2, E2) can be approxi-
mated by solving an LSAPE between vertex sets V1 and V2. Each row and column in the
cost matrix C respectively correspond to a vertex in V1 and V2; each entry π?(G1, G2) =
π?(V1, V2) ∈ Π?(G1, G2) represents a optimal feasible transformation from G1 to G2 as
in (1), and the optimal cost C? corresponds to the approximation of GED. This paradigm is
named LSAPE-GED.
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bipartite is a representative heuristic under the LSAPE-GED paradigm. It constructs
the cost matrix C by adding the cost of vertices and the cost of the edges adjacent to them.
After that, an optimal LSAPE solution for C and the corresponding cost are computed.

2.3. Paradigm LS-GED and Heuristic IPFP

The local search (LS-GED) paradigm is composed of two steps. First, the transformation
π and the cost C(π) are initialized randomly or by a heuristic, such as bipartite. Then,
starting at these initial results, a refinement procedure is carried out by a local search
method to search for improved transformation with a lower cost. With different strategies
applied in the second step, various heuristics have been designed. IPFP is a well-known
representative one.

GED can be modeled as a quadratic problem. The LSAPE-GED paradigm simplifies this
problem by only considering the linear part of GED, namely the costs of vertex transfor-
mations, where costs of edge transformations can only be implied as patches, as done by
bipartite. In contrast, the IPFP heuristic under the LS-GED paradigm provides a method
to extend LSAPE-GED, by including the edge transformations as a quadratic part of GED.

We define a binary matrix X ∈ {0, 1}(|V1|+1)×(|V2|+1) equivalent to an ε-assignment π.
As a result, the cost of the transformation π can be formalized as

C(x) = gx>Qx + c>x, (4)

where X is vectorized by the binary vector x = vec(X) ∈ {0, 1}(|V1|+1)(|V2|+1) by concate-
nating its rows, c = vec(C) is the edit cost vector, and the coefficient g is set to 0.5 if the
graphs are undirected and 1 otherwise [1].

The IPFP heuristic approximates the GED by adapting the integer projected fixed
point (IPFP) algorithm [27] designed for the quadratic assignment problem (QAP) [20,28].
The algorithm is first initialized randomly or by a heuristic such as bipartite, and then
updated by iterations. In each iteration, a linear approximation is computed by a LSAPE
solver. Then, the local minimum of the cost and the corresponding binary solution is
estimated by a line search [28].

3. Stability of GED Heuristics

The nature of the GED heuristics leads to a drop in computational stability, namely
different trials may lead to different results. In the following, we analyze this instability by
measuring the variability of the GED approximations over repeated trials. For instance,
in the LSAPE-GED paradigm, the cost matrix C may vary given vertex set with different
orders, which affects the solution of the LSAPE problem, furthermore causing the insta-
bility. Likewise, in the LS-GED paradigm, the instability can be traced back to the initial
procedure where a random transformation or a GED heuristic such as bipartite implying
stochasticity may be assigned.

3.1. Measure of (In)Stability

To measure the (in)stability of GED heuristics, we define a criterion named relative
error. Given a set of graphs G1, G2 . . . , GN , we compute the GED with a heuristic between
each pair of graphs Nt times (trials). The relative error Er is then defined as

Er =
1

N2

Nt

∑
k=1

∑N
i,j=1 ‖(ged(k)(Gi, Gj)− ged0(Gi, Gj)‖

1
2

(
∑N

i,j=1 ged
(k)(Gi, Gj) + ged0(Gi, Gj)

) , (5)

where ged(k)(Gi, Gj) is the approximation of the GED in the k-th trial using a GED heuristic
such as Algorithm 1, and ged0(Gi, Gj) is the exact GED between Gi and Gj. As evaluating
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ged0 is normally impractical, we replace it with the minimum approximation over all trials,
namely

ged
0
(Gi, Gj) = min

16k6Nt

(k)
ged(Gi, Gj).

The relative error Er measures the average ratio between the offsets and the exact
GEDs over trials and pairs of graphs. A smaller value indicates higher stability.

3.2. Influential Factors of Stability

Low stability can degrade the performance of GED heuristics, which implies a broader
range of the confidence interval in a prediction task such as regression and classification,
or instability of the produced graphs in a pre-image task [29]. A straightforward method
to mitigate this problem is repeating the GED computation. The minimum cost over
repetitions is then chosen as the GED approximation. Strategies have been proposed to
refine this method. Well-known ones are the mbipartite and mIPFP, which are the multi-
start counterparts of bipartite and IPFP [21]. These two heuristics start several initial
candidates simultaneously to acquire tighter upper bounds. The stability is concurrently
ameliorated. As examined in Section 4, the relative error can be reduced by up to four
orders of magnitude. Algorithm 1 presents the procedure of mIPFP as an example.

Algorithm 1 Approximation of GED using mIPFP

Input: Graphs G1 = (V1, E1) and G2 = (V2, E2).
Vertex edit cost cv, edge edit cost ce. The number of solutions m.

Output: An approximation C? of GED between G1 and G2.
1: Initialize cost C? = C0 = ∞.
2: Let j = 0.
3: while j < m do
4: Approximate a new cost Cj+1 with the IPFP heuristic.
5: if C? > Cj+1 then
6: C? = Cj+1.
7: end if
8: j = j + 1.
9: end while

10: ged(Gi, Gj) = C?.

Another factor that significantly influences the stability of GED heuristics turns out
to be the relative values of vertex and edge edit costs. When vertex costs are markedly
larger than edge costs, the GED stability often shows an observable improvement. This
phenomenon is detailed in Section 4. When optimized edit cost values are applied, the
relative error can be reduced by up to around 30 times compared to using the worst
cost values.

Based on the aforementioned information, we analyze the stability with respect to
two factors. The first one is the number of random initial candidates of the GED heuristics,
namely “# of solutions”. For mbipartite and mIPFP, it is equal to the parameter m, as in
Algorithm 1. The second factor is the ratio between vertex and edge edit costs. Let cv f s,
cv f i, cv f r, ce f s, ce f i, ce f r ∈ R+ be the cost functions associated with, respectively, vertex
substitutions, insertions, removals and edge substitutions, insertions, and removals. Then,
the ratio is defined as

Rec =
average(cv f i, cv f r, cv f s)

average(ce f i, ce f r, ce f s)
, (6)

where average(·) computes the average value of its inputs.



Electronics 2022, 11, 3312 6 of 10

4. Experiments

In this section, we conduct experimental analyses on the GED stability. First, the
influence of the two factors introduced in Section 3.2 is examined, and then the relevance
of stability and prediction performance of GED heuristics is verified, taking advantage of a
state-of-the-art edit costs learning strategy.

Five well-known public datasets are applied in the experiments: Alkane and Acyclic
are composed of acyclic molecules modeled respectively as unlabeled and vertex-labeled
graphs, while MAO, Monoterpens, and MUTAG consist of cycles-included molecules repre-
sented as graphs labeled on both vertices and edges. The sizes of datasets vary from 68 to
286 (https://brunl01.users.greyc.fr/CHEMISTRY/, accessed on 9 September 2022).

We exploit two multi-start heuristics, mbipartite and mIPFP, to evaluate the stability
as described in Section 2. The former induces randomness by permuting vertices and
consequently the cost matrix for each graph. The two heuristics employ respectively the
implementation in the graphkit-learn [30] and GEDLIB [31] libraries.

4.1. Effects of the Two Factors

Figure 2 shows the effect of the two factors, namely “# of solutions” and the ratio
between vertex and edge edit costs Rec, on the relative error Er defined in (5), considering
the mbipartite and mIPFP heuristics on five datasets. The Figure 2a,c on the left side
exhibit how Er drops with the increase of the “# of solutions” m. In most cases, Er drops
rapidly when the solution number increases from 1 to around a certain number N, and
reaches at a relatively small value; the tendency mitigates afterwards. N is around 20 for
mbipartite and 10 for mIPFP. Take datasets Alkane and Acyclic for examples. When using
mbipartite, Er’s on these two datasets drop respectively from 0.23 to 0.08, and from 0.12
to 0.03, as m increases from 1 to 100; when using mIPFP, Er’s drop respectively from 0.08 to
5× 10−6, and from 0.03 to 7.2× 10−7. This result indicates that an adequately large number
of solutions is necessary, thus a trade-off decision between stability and time complexity
needs to be made for different applications.

The Figure 2b,d on the right side reveal the relation between Er and the ratio Rec. The
edge costs are set to 1 and the vertex costs to be the ratio value (for insertions, removals,
and substitutions). The removal costs of vertices (resp. edges) are set to 0 if vertices (resp.
edges) are not labeled. For both mbipartite and mIPFP, Er is relatively large when the
ratio is smaller than 1, namely when edge costs are bigger than vertex costs, and drops
with the increase of the ratio. We can observe that a larger ratio leads to higher stability.
Take datasets Alkane and Acyclic for examples. When using mbipartite, Er’s on these two
datasets drop respectively from 0.5 to 0.16, and from 0.34 to 0.07, as Rec increases from
0.1 to 10; when using mIPFP, Er’s drop respectively from 0.03 to 5.6× 10−3, and from 0.02
to 6.9× 10−4. A possible cause of this phenomenon is that large edge costs amplify the
arbitrariness of the edge edit operations. For graphs with n vertices, there are n2 possible
edges that can be inserted, removed, and substituted, which causes more uncertainty when
constructing edit paths and computing their costs. Taking IPFP for instance, large edge costs
lead to a big cost matrix Q in (4), implying the possibility of more variance on the value
of the term gx>Qx. Many edit costs given by domain experts are in accordance with this
empirical rule, such as the ones in [17]. In the next section, we further validate the relevance
of stability and prediction performance benefitting from an edit cost learning method.

https://brunl01.users.greyc.fr/CHEMISTRY/
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Figure 2. The relative errors of mbipartite and mIPFP on five datasets with respect to the numbers
of solutions m and ratios between vertex and edge edit costs Rec. Colors along with the markers
indicate different datasets.

4.2. Stability vs. Prediction Performance

As stated in the Introduction, the choice of edit costs has a major impact on the com-
putation of graph edit distance, and thus on the performance associated with a prediction
task. To challenge these predefined expert costs with how they can improve the prediction
performance, methods to tune the edit costs and thus the GED were proposed in the litera-
ture [23,32,33]. These methods provide an opportunity to observe the connection between
the prediction performance of GEDs and the choices of edit costs, which further relate to
the GED stability, as examined in Section 4.1.

To inspect this relevance, we utilize a state-of-the-art cost learning algorithm [23],
where the edit costs are optimized according to a particular prediction task. An alternate
iterative procedure is proposed to preserve the distances in both the graph space (GEDs)
and target space (Euclidean or Manhattan distances between targets), where the update
on edit costs obtained by solving a constrained linear problem and a re-computation of
the optimal edit paths according to the newly computed costs are performed alternately.
The GEDs with optimized edit costs are then used to train a k-nearest-neighbors (KNN)
regression [34] model. KNN predicts the property value or class of an object based on the
value or class of its neighbors. It has been widely used for various types of data, such as
traffic [35], infrared vision [36], sensors [37], and graphs [38]. Thus, it is suitable for the
current experiments. Experiments on Alkane and Acyclic show that optimized costs gain
a significant improvement in accuracy compared to random or expert costs [1]. Table 1
summarizes the optimized values of edit costs.
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Table 1. Average and standard deviation of fitted edit costs’ values.

Dataset Edit Cost Distance cni cnr cns cei cer ces

Alkane
bipartite Euclidean 26.45 ± 0.48 26.24 ± 0.60 - 0.13 ± 0.06 0.14 ± 0.09 -

Manhattan 26.67 ± 0.37 26.63 ± 0.58 - 0.11 ± 0.04 0.11 ± 0.06 -

IPFP Euclidean 26.12 ± 0.24 25.88 ± 0.25 - 0.74 ± 0.23 0.78 ± 0.23 -
Manhattan 25.94 ± 0.38 25.71 ± 0.44 - 0.89 ± 0.30 0.77 ± 0.29 -

Acyclic
bipartite Euclidean 13.81 ± 0.48 13.83 ± 0.80 10.46 ± 0.40 1.37 ± 0.46 1.45 ± 0.46 1.41 ± 0.09

Manhattan 13.76 ± 0.39 14.14 ± 0.57 10.28 ± 0.44 1.44 ± 0.20 1.45 ± 0.19 1.45 ± 0.07

IPFP Euclidean 11.61 ± 0.45 11.68 ± 0.43 11.07 ± 0.53 4.49 ± 0.30 4.46 ± 0.24 4.48 ± 0.18
Manhattan 11.52 ± 0.40 11.40 ± 0.40 10.61 ± 0.52 4.50 ± 0.31 4.50 ± 0.31 4.50 ± 0.10

We then examine the stability of the two heuristics when using these edit costs. Figure 3
demonstrates the relations between the relative errors Er and the ratios Rec between vertex
and edge costs (See Section 3.2 and Figure 2 for more details). Therein, the colors represent
datasets (i.e., blue for Alkane and orange for Acyclic), and shapes represent different edit
costs, with

Version October 1, 2022 submitted to Electronics 8 of 11

Table 1. Average and standard deviation of fitted edit costs values.

Dataset Edit cost Distance cni cnr cns cei cer ces

Alkane
bipartite Euclidean 26.45±0.48 26.24±0.60 - 0.13±0.06 0.14±0.09 -

Manhattan 26.67±0.37 26.63±0.58 - 0.11±0.04 0.11±0.06 -

IPFP Euclidean 26.12±0.24 25.88±0.25 - 0.74±0.23 0.78±0.23 -
Manhattan 25.94±0.38 25.71±0.44 - 0.89±0.30 0.77±0.29 -

Acyclic
bipartite Euclidean 13.81±0.48 13.83±0.80 10.46±0.40 1.37±0.46 1.45±0.46 1.41±0.09

Manhattan 13.76±0.39 14.14±0.57 10.28±0.44 1.44±0.20 1.45±0.19 1.45±0.07

IPFP Euclidean 11.61±0.45 11.68±0.43 11.07±0.53 4.49±0.30 4.46±0.24 4.48±0.18
Manhattan 11.52±0.40 11.40±0.40 10.61±0.52 4.50±0.31 4.50±0.31 4.50±0.10

10 1 100 101 102

ratios Rec

10 2

10 1

re
la

tiv
e 

er
ro

rs
 E

r

mbipartite

10 1 100 101

ratios Rec

10 3

10 2

re
la

tiv
e 

er
ro

rs
 E

r

mIPFP

Alkane Acyclic Expert With Euclidean With manhattan

Figure 3. The relative errors of mbipartite and mIPFP on datasets Alkane and Acyclic with respect
to the ratios Rec between vertex and edge edit costs using different edit costs optimization methods.
c1The colors represent datasets and the shapes of markers represent different edit costs.

as traffic [35]c3, infrared vision [36]c4, sensors [37]c5, and graphs [38]c6. Thus it is suitable 220

for the current experiments. Experiments on Alkane and Acyclic show that optimized costs 221

gain a significant improvement in accuracy compared to random or expert costs [1]. Table 1 222

summarizes the optimized values of edit costs. 223

We then examine the stability of the two heuristics when using these edit costs. Figure 3 224

demonstrates the relations between the relative errors Er and the ratios Rec between vertex 225

and edge costs (See Section 3.2 and Figure 2 for more details). Therein the colors represent 226

datasets (i.e., blue for Alkane and orange for Acyclic), and shapes represent different edit 227

costs, with ✖, , and respectively for the expert costs, the optimized costs using the 228

Euclidean and Manhattan distances. When applying mIPFP, for the expert costs, Rec’s 229

for the two datasets are both 1, and Er’s are 0.02 for Alkane and 0.013 for Acyclic; when 230

using the Euclidean distance, Rec = 34.21, Er = 0.002 for Alkane, and Rec = 2.6, Er = 0.002 231

for Acyclic; when using the Manhattan distance, Rec = 3.11, Er = 2.33 × 10−3 for Alkane, 232

and Rec = 2.55, Er = 2.68 × 10−3 for Acyclic. It can be observed that the optimized costs 233

correspond to much higher ratios and an order of magnitude lower relative errors than 234

the expert costs. Similar conclusions can be observed for mbipartite as well. Thus, an 235

empirical conclusion can be derived: the obtained optimized edit costs correspond to higher 236

stability of GEDs, while obtaining a higher performance. 237

c3 Text added.
c4 Text added.
c5 Text added.
c6 Text added.

,

Version October 1, 2022 submitted to Electronics 8 of 11

Table 1. Average and standard deviation of fitted edit costs values.

Dataset Edit cost Distance cni cnr cns cei cer ces

Alkane
bipartite Euclidean 26.45±0.48 26.24±0.60 - 0.13±0.06 0.14±0.09 -

Manhattan 26.67±0.37 26.63±0.58 - 0.11±0.04 0.11±0.06 -

IPFP Euclidean 26.12±0.24 25.88±0.25 - 0.74±0.23 0.78±0.23 -
Manhattan 25.94±0.38 25.71±0.44 - 0.89±0.30 0.77±0.29 -

Acyclic
bipartite Euclidean 13.81±0.48 13.83±0.80 10.46±0.40 1.37±0.46 1.45±0.46 1.41±0.09

Manhattan 13.76±0.39 14.14±0.57 10.28±0.44 1.44±0.20 1.45±0.19 1.45±0.07

IPFP Euclidean 11.61±0.45 11.68±0.43 11.07±0.53 4.49±0.30 4.46±0.24 4.48±0.18
Manhattan 11.52±0.40 11.40±0.40 10.61±0.52 4.50±0.31 4.50±0.31 4.50±0.10

10 1 100 101 102

ratios Rec

10 2

10 1

re
la

tiv
e 

er
ro

rs
 E

r

mbipartite

10 1 100 101

ratios Rec

10 3

10 2

re
la

tiv
e 

er
ro

rs
 E

r

mIPFP

Alkane Acyclic Expert With Euclidean With manhattan

Figure 3. The relative errors of mbipartite and mIPFP on datasets Alkane and Acyclic with respect
to the ratios Rec between vertex and edge edit costs using different edit costs optimization methods.
c1The colors represent datasets and the shapes of markers represent different edit costs.

as traffic [35]c3, infrared vision [36]c4, sensors [37]c5, and graphs [38]c6. Thus it is suitable 220

for the current experiments. Experiments on Alkane and Acyclic show that optimized costs 221

gain a significant improvement in accuracy compared to random or expert costs [1]. Table 1 222

summarizes the optimized values of edit costs. 223

We then examine the stability of the two heuristics when using these edit costs. Figure 3 224

demonstrates the relations between the relative errors Er and the ratios Rec between vertex 225

and edge costs (See Section 3.2 and Figure 2 for more details). Therein the colors represent 226

datasets (i.e., blue for Alkane and orange for Acyclic), and shapes represent different edit 227

costs, with ✖, , and respectively for the expert costs, the optimized costs using the 228

Euclidean and Manhattan distances. When applying mIPFP, for the expert costs, Rec’s 229

for the two datasets are both 1, and Er’s are 0.02 for Alkane and 0.013 for Acyclic; when 230

using the Euclidean distance, Rec = 34.21, Er = 0.002 for Alkane, and Rec = 2.6, Er = 0.002 231

for Acyclic; when using the Manhattan distance, Rec = 3.11, Er = 2.33 × 10−3 for Alkane, 232

and Rec = 2.55, Er = 2.68 × 10−3 for Acyclic. It can be observed that the optimized costs 233

correspond to much higher ratios and an order of magnitude lower relative errors than 234

the expert costs. Similar conclusions can be observed for mbipartite as well. Thus, an 235

empirical conclusion can be derived: the obtained optimized edit costs correspond to higher 236

stability of GEDs, while obtaining a higher performance. 237

c3 Text added.
c4 Text added.
c5 Text added.
c6 Text added.

, and

Version October 1, 2022 submitted to Electronics 8 of 11

Table 1. Average and standard deviation of fitted edit costs values.

Dataset Edit cost Distance cni cnr cns cei cer ces

Alkane
bipartite Euclidean 26.45±0.48 26.24±0.60 - 0.13±0.06 0.14±0.09 -

Manhattan 26.67±0.37 26.63±0.58 - 0.11±0.04 0.11±0.06 -

IPFP Euclidean 26.12±0.24 25.88±0.25 - 0.74±0.23 0.78±0.23 -
Manhattan 25.94±0.38 25.71±0.44 - 0.89±0.30 0.77±0.29 -

Acyclic
bipartite Euclidean 13.81±0.48 13.83±0.80 10.46±0.40 1.37±0.46 1.45±0.46 1.41±0.09

Manhattan 13.76±0.39 14.14±0.57 10.28±0.44 1.44±0.20 1.45±0.19 1.45±0.07

IPFP Euclidean 11.61±0.45 11.68±0.43 11.07±0.53 4.49±0.30 4.46±0.24 4.48±0.18
Manhattan 11.52±0.40 11.40±0.40 10.61±0.52 4.50±0.31 4.50±0.31 4.50±0.10

10 1 100 101 102

ratios Rec

10 2

10 1

re
la

tiv
e 

er
ro

rs
 E

r

mbipartite

10 1 100 101

ratios Rec

10 3

10 2

re
la

tiv
e 

er
ro

rs
 E

r

mIPFP

Alkane Acyclic Expert With Euclidean With manhattan

Figure 3. The relative errors of mbipartite and mIPFP on datasets Alkane and Acyclic with respect
to the ratios Rec between vertex and edge edit costs using different edit costs optimization methods.
c1The colors represent datasets and the shapes of markers represent different edit costs.

as traffic [35]c3, infrared vision [36]c4, sensors [37]c5, and graphs [38]c6. Thus it is suitable 220

for the current experiments. Experiments on Alkane and Acyclic show that optimized costs 221

gain a significant improvement in accuracy compared to random or expert costs [1]. Table 1 222

summarizes the optimized values of edit costs. 223

We then examine the stability of the two heuristics when using these edit costs. Figure 3 224

demonstrates the relations between the relative errors Er and the ratios Rec between vertex 225

and edge costs (See Section 3.2 and Figure 2 for more details). Therein the colors represent 226

datasets (i.e., blue for Alkane and orange for Acyclic), and shapes represent different edit 227

costs, with ✖, , and respectively for the expert costs, the optimized costs using the 228

Euclidean and Manhattan distances. When applying mIPFP, for the expert costs, Rec’s 229

for the two datasets are both 1, and Er’s are 0.02 for Alkane and 0.013 for Acyclic; when 230

using the Euclidean distance, Rec = 34.21, Er = 0.002 for Alkane, and Rec = 2.6, Er = 0.002 231

for Acyclic; when using the Manhattan distance, Rec = 3.11, Er = 2.33 × 10−3 for Alkane, 232

and Rec = 2.55, Er = 2.68 × 10−3 for Acyclic. It can be observed that the optimized costs 233

correspond to much higher ratios and an order of magnitude lower relative errors than 234

the expert costs. Similar conclusions can be observed for mbipartite as well. Thus, an 235

empirical conclusion can be derived: the obtained optimized edit costs correspond to higher 236

stability of GEDs, while obtaining a higher performance. 237

c3 Text added.
c4 Text added.
c5 Text added.
c6 Text added.

respectively for the expert costs, the optimized costs using the
Euclidean and Manhattan distances. When applying mIPFP, for the expert costs, Rec’s
for the two datasets are both 1, and Er’s are 0.02 for Alkane and 0.013 for Acyclic; when
using the Euclidean distance, Rec = 34.21, Er = 0.002 for Alkane, and Rec = 2.6, Er = 0.002
for Acyclic; when using the Manhattan distance, Rec = 3.11, Er = 2.33× 10−3 for Alkane,
and Rec = 2.55, Er = 2.68× 10−3 for Acyclic. It can be observed that the optimized costs
correspond to much higher ratios and an order of magnitude lower relative errors than
the expert costs. Similar conclusions can be observed for mbipartite as well. Thus, an
empirical conclusion can be derived: the obtained optimized edit costs correspond to higher
stability of GEDs, while obtaining a higher performance.

10 1 100 101 102

ratios Rec

10 2

10 1

re
la

tiv
e 

er
ro

rs
 E

r

mbipartite

10 1 100 101

ratios Rec

10 3

10 2

re
la

tiv
e 

er
ro

rs
 E

r

mIPFP

Alkane Acyclic Expert With Euclidean With manhattan

Figure 3. The relative errors of mbipartite and mIPFP on datasets Alkane and Acyclic with respect
to the ratios Rec between vertex and edge edit costs using different edit costs optimization methods.
The colors represent datasets and the shapes of markers represent different edit costs.

5. Conclusions and Future Work

In this paper, we conducted analyses of the GED heuristics’ stability, which is the first
time it is formally investigated in the literature. After defining an (in)stability measure,
namely, the relative error, we show the strong connection of the stability with the number
of random initial candidates of multi-start GED heuristics and the relation between vertex
and edge edit costs. Experiments on five datasets and two GED heuristics indicate that
the proper choice of these factors can reduce the relative error by more than an order
of magnitude. A further investigation indicates higher stability of GED computation
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corresponds to the optimized edit costs and thus better prediction performance, where
an edit cost learning algorithm is applied to optimize the performance and the k-nearest
neighbor regression for prediction.

There are still several challenges to address in future work. First, examining other
influential factors and conducting theoretical analyses can help deepen understanding
of the stability of the heuristics. Second, it will be helpful to perform more thorough
experiments, including other state-of-the-art GED heuristics on datasets from a wider range
of fields and statistical properties. Third, higher stability comes with the cost of higher time
complexity. Methods that can better balance the stability, time complexity, and prediction
performance in practice need to be developed.
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