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Abstract

A novel numerical framework is discussed to simulate the time evolution of non-inertial particle size distributions
(or number density functions) in flames. The generic form of the population balance equation is considered
featuring nucleation, surface growth/loss and agglomeration/coagulation. This balance equation is first recast in
a form that is prone to minimize spurious numerical errors in the simulation of surface growth/loss and collision
integrals. Formally, this is achieved classifying the terms of the equation into: (i) Lagrangian transport in size-
space (surface growth/loss), (ii) relaxation rates of the particle density at a given size (non-uniform growth/loss
and negative contribution of collision integrals) and (iii) sources (nucleation and positive contribution of collision
integrals). To secure accuracy, a high-order modal decomposition of the particle size distribution is introduced
within every section of size considered. A Legendre polynomials basis is used with Gauss-Lobatto quadrature
points. By construction, the method performs very well for dealing with particle surface growth/loss and it is also
highly accurate for the estimation of the collision integrals thanks to the high-order quadrature. This is confirmed
simulating canonical test cases of the literature to compare the numerical results against exact and analytical
solutions. With a discretisation based on about 40 sections of size and with Legendre interpolation at the 5th-
order, very good accuracy is obtained up to the third moment of the distributions for particle size ranging over
up to 8 orders of magnitude. The method is cast to minimize computing cost. Strategies to couple this novel
numerical framework with the simulation of carbon particles dynamics in flames are discussed.
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Nomenclature

N Number of sections of size
nL Number of Gauss-Lobatto points
p Order of interpolation
vij Particle size in the i-th section

at the j-th interpolation point
n(vij , t) Particle size distribution (PSD)
⇠j Gauss-Lobatto interpolation points
Pk(⇠j) Legendre polynomial of order k
�i
k k-th mode of the PSD in the

i-th section in the Legendre basis

1. Introduction

Accurately simulating the distribution of sizes of
non-inertial particles is crucial to help in design and
optimisation of many combustion applications, both
in the quest of optimising combustion systems to mit-
igate particulate and soot emission and in the manu-
facture of carbon nanotubes, nanosilver and other ad-
vanced carbon-based materials (see [1] for a review).

In addition to the complexity of the thermophys-
ical modeling of the gaseous and solid phases at
play in nucleation, surface growth/loss, agglomera-
tion/coagulation and sometimes breakage of the par-
ticles, serious numerical issues arise when solving
the population balance equation (PBE) describing the
dynamics of the particles size distribution (PSD).
Non-linear convective effects in size-space due to
growth/loss of the particle surface and agglomera-
tion/coagulations/breakage processes are challenging
to discretise and simulate over size ranges which can
cover up to five or six orders of magnitude (i.e., from
nanometer to millimetre).

Numerous approaches and numerical methods
have been discussed and applied [2–11] and many ref-
erences therein. The thermophysical models are usu-
ally developed by comparing their predictions against
experimental results after solving the PBE. Thereby,
to avoid calibrating these models while including nu-
merical error compensation, accurate PBE solving
methods are required. This is even more crucial with
the emergence of neural networks trained to solve for
PBE [12], thus allowing for applying more detailed
physical descriptions to simulate complex systems at
a reasonable CPU cost. The PBE solution database
used for such training must be free from numerical
artefact.

In this work we develop a strategy to solve for such
non-inertial particles dynamics. First the time evolu-
tion of the particle size distribution is cast in a specific
manner, which minimises the error in the solving of
surface growth/loss. It relies on a characteristic-like
treatment of the PSD in size-space, as in [13], associ-
ated here to a modal high-order approximation within
sections of size, which allows to accurately locate
the root of the characteristic. This modal high-order
approximation goes with Gauss-Lobatto quadrature
points, which also facilitate and improve the calcula-
tion of the collisions integrals. This fully new method

(at least to the best knowledge of the authors) is tested
against analytical solutions to focus on numerical ac-
curacy. Its combination with flow solution through a
sectional method through neural networks training, is
finally discussed.

2. PBE solving formulation

Let us denote the PSD (or the number density func-
tion) n(v;x, t) as the number of particles of charac-
teristic size v (in terms of volume or mass, v is a con-
tinuous independent variable), per unit of flow vol-
ume and per unit of characteristic size. The evolution
of n(v;x, t) follows the generic form of a population
balance equation [14, 15],

@⇢n(v;x, t)
@t

+r · (⇢un(v;x, t)) =

�⇢
@
@v

[G(v;x, t)n(v;x, t)] + ⇢Ȧ(v;x, t) , (1)

with ⇢ the density, u the flow velocity, G(v;x, t) the
particle surface growth/loss rate and

Ȧ(v;x, t) = ḣ(v;x, t)

+
1
2

Z v

0

�(v � v?, v?)n(v � v?;x, t)n(v?;x, t)dv?

�n(v;x, t)

Z 1

0

�(v, v?)n(v?;x, t)dv? , (2)

where ḣ(v;x, t) is the nucleation term and �(v, v?)
the collision kernel of two particles entering the so-
called Smoluchowski integrals.

How to account for non-homogeneous mixtures
in the proposed approach, in other words for r ·
(⇢un(v;x, t)), is discussed thereafter. First, the evo-
lution in size space is isolated (i.e., space is omitted
the relations being valid for every points of a three-
dimensional domain1) and the PBE is reorganised un-
der the form:

@n(v; t)
@t

+G(v; t)
@n(v; t)

@v
=

�ḃ(v; t)n(v; t) + ċ(v; t) , (3)

with

ḃ(v; t) =
@G(v; t)

@v
+

1Z

0

�(v, v?)n(v?; t)dv? , (4)

and

ċ(v; t) = ḣ(v; t)

+
1
2

Z v

0

�(v � v?, v?)n(v � v?; t)n(v?; t)dv? .

(5)

1Flow continuity (@⇢/@t) +r · (⇢u) = 0 is accounted
for before setting rn(v;x, t) = 0.
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Cast under this form, three basic contributions appear:
The first is a Lagrangian transport in size-space

@n(v; t)
@t

+G(v; t)
@n(v; t)

@v
= 0 . (6)

Applying only this Lagrangian transport, the value
n(v;x, t) of the PSD stays constant when it is trans-
ported at the speed G(v; t) along the characteristic
trajectory

v(t) =

tZ

to

G(v; t)dt+ v(to) , (7)

and the solution of Eq. (6) reads

n(v; t+ �t) = n(v�; t) , (8)

with
v� = v �G(v; t)�t . (9)

The second contribution is a relaxation of the PSD
according to

1
n(v; t)

@n(v; t)
@t

= �ḃ(v; t) , (10)

whose solution is

n(v; t+ �t) = n(v; t) exp(�ḃ(v; t)�t) . (11)

The third contribution is a source due to nucleation,
agglomeration or breakage,

@n(v; t)
@t

= ċ(v; t) , (12)

which may be approximated by a numerical time in-
tegration of arbitrary order

�n(v; t) = ċ(v; t)�t . (13)

Combining these three solutions provides

n(v; t+�t) = n(v�; t) exp
⇣
�ḃ(v; t)�t

⌘
+ċ(v; t)�t,

(14)
with v� from (9). Expressing the time advancement
with (14) is equivalent to a factorisation of the solu-
tion in three terms, assuming that G(v, t), ḃ(v; t) and
ċ(v; t) are fixed during the time-step �t. By construc-
tion, the solution is then limited to first-order accuracy
in time.

Casting the PBE evolution under the form given
by Eq. (14) presents strong numerical advantages.
Firstly, it is free from numerical diffusion to deal with
surface gross/loss, if n(v�; t) is estimated with preci-
sion. Secondly, the time evolution of the solution can
stay accurate up to high-order moments of the dis-
tribution if �ḃ(v) and ċ(v) are computed with high-
order accuracy.
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Fig. 1: Sketch of the PSD interpolation at the 5-th order.

3. High-order approximation of the PSD

Both the accurate integration of the collision inte-
grals over all particle sizes, given by the terms ḃ and
ċ of Eqs. (4) and (5), and the simulation of the La-
grangian transport in size-space (surface growth/loss),
from the characteristic-wave formulation given by
Eq. (8), require precise interpolations of the PSD over
the discretised size space. Indeed, v� in the con-
vective part may not exactly coincide with a point of
the v-discretisation, and the calculation of the Smolu-
chowski integrals demands a precise continuous eval-
uation of the PSD to predict its moments [16]. This
is specifically true in the case of strong mesh distor-
sion, inevitable to cover many orders of magnitudes in
size space, while keeping a sustainable number of grid
points. To secure such a high-order approximation,
a Legendre modal interpolation is introduced within
sections of size, adding Gauss-Lobatto points [17]
in every section (Fig. 1). These additional solution
points will only enter the homogeneous form of the
PBE (Eq. (3)), i.e. they will not need to be transported
by the flow in three-dimensional simulations as dis-
cussed in a subsequent section. With Gauss-Lobatto
points and Legendre polynomials, the two end-point
of every section are included. The PSD is positive
at initial time and the interpolation was found to stay
positive inside the section during runtime.

Let us denote vij the j-th solution point within the
i-th section of size. For N sections (i = 0, · · · , N �
1) and nL Gauss-Lobatto points (j = 0, · · · , nL�1)
used for an interpolation of order p = nL � 1, the
PSD n(vij ; t) may be written in the i-th section where
v 2 [vi0, v

i
nL�1] (Fig. 1)

n(vij ; t) =
p=nL�1X

k=0

�i
k(t)Pk(⇠j(v

i
j)) , (15)

where �i
k denotes the k mode2 of the PSD decom-

2It is usual in Legendre approximation to start indices
from zero so that the order of the polynomial coincide with
the indice, Po = 1, P1(⇠) = ⇠, P2 = (3⇠2 � 1)/2. etc.
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Table 1: Position and weights of the Gauss-Lobatto quadra-
ture points used for 5-th order interpolation.

⇠j wj

j = 0 -1 1/15

j = 1 �
q

1/3 + 2
p

7/21 (14 �
p

7)/30

j = 2 �
q

1/3 � 2
p

7/21 (14 +
p

7)/30

j = 3
q

1/3 � 2
p

7/21 (14 +
p

7)/30

j = 4
q

1/3 + 2
p

7/21 (14 �
p

7)/30

j = 5 1 1/15

posed in the basis Legendre functions [18], Pk(⇠j)
used for interpolating the solution at ⇠j 2 [�1,+1],
the nL Gauss-Lobatto points within the section
(Fig. 1). These points are defined so that ⇠j is the j-th
zero of P 0

k(⇠), the derivative of the standard Legendre
functions. The values of the ⇠j are given in Table 1
for the fifth-order approximation used in this study.
The points within the i-th section are then distributed
according to

vij =
⇠j + 1

2

⇣
vinL�1 � vi0

⌘
+ vi0 , (16)

with vinL�1 = vi+1
0 , because the Gauss-Lobatto

points include the end points of the section. The
modes are computed from [Pk(⇠j)]

�1 the inverse of
the polynomial basis

�i
k(t) =

pX

j=0

[Pk(⇠j)]
�1 n(⇠j(v

i
j); t) . (17)

In practice, the inverse of the matrix Akj = Pk(⇠j),
characterising the polynomial basis, is computed once
for all. When needed, the �i

k are computed from (17)
and from (15), n(v; t) can be interpolated at high-
order for any value of v.

To compute the collision integrals, the Gauss-
Lobatto quadrature rule is used. The integral in the
terms ḃ(vij ; t) (Eq. (4)) then reads

vN�1
nL�1Z

v0
0

�(vij , v
?)n(v?; t)dv? =

N�1X

k=0

nL�1X

`=0

�(vij , v
k
` )n(v

k
` ; t)�`k , (18)

where the weights of the quadrature are given by

�`k = w`

 
vknL�1 � vk0

2

!
, (19)

with w0 = wnL�1 = 2/(nL(nL � 1)) and w` =
2/(nL(nL � 1)[PnL�1(⇠`)]

2) for 1  `  nL � 2
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Fig. 2: Agglomeration term Eq. (5). Line: Analytical
0.5(v � 2vo) exp(�v). Circle: Computation by Eq. (20).

(see Table 1). Similarly, the integral in ċ(vij ; t) reads

vi
j�v0

0Z

v0
0

�(vij � v?, v?)n(vij � v?; t)n(v?; t)dv? =

iX

k=0

nL�1X

`=0

vk
` vi

j�v0
0

�(vij � vk` , v
k
` )n(v

i
j � vk` ; t)n(v

k
` ; t)�`k

(20)

where vk` is defined by Eq. (16), but for i = 0,
i = N � 1 and k = i, i.e., when the vk` values can-
not cover the entire of a section, the quadrature points
must be re-organised over the interval left for integra-
tion within the section

vk` =
⇠` + 1

2

⇣
vij � v00 � vi0

⌘
+ vi0 . (21)

The weights of the quadrature �`k (Eq. (19)) are then
also rescaled according to the size-space covered in
the concerned sub-section.

Because of the non-uniform distribution of the sec-
tions, vij � vk` is likely to be located between two
solution points, then in Eq. (20) the PSD amplitude
is estimated from the high-order approximation using
Eq. (15).

4. Analytical test cases

Many canonical test cases exist in the literature to
validate numerics dedicated to the solving of PBE [4,
19–22]. A selection of the most challenging which
provides analytical solutions to compare with are now
used to evaluate the proposed method, thus isolating
the potential numerical errors from physical model-
ing.

These problems are formulated in a dimensionless
manner, the time-step is set to �t = 0.01 and a fifth
order interpolation is used (p = 5, nL = 6)

4.1. Collision integrals
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Table 2: Departure to the analytical solution in the predic-
tion of the three first moments Mm =

R
vmn(v)dv. Cases

Agg(a)-(b), t = 20. Cases Agg+G(a)-(b), t = 7. Sec: two-
point sectional method (see Table 5 in [24]).

Case Error % Present Sec
Agg(a) ✏M1 0.4 0.4

✏M2 1.3 1.6
✏M3 11 –

Agg(b) ✏M1 0.081 -1.1
✏M2 1.84 0.4
✏M3 5.89 –

Agg+G(a) ✏M1 0.97 5.4
✏M2 1.55 48 783
✏M3 1.81 –

Agg+G(b) ✏M1 1.31 5.4
✏M2 8.42 22 141
✏M3 16.81 –

A first stringent test is performed focussing on the
calculation of the collision integrals. Numerical er-
rors easily arise in the computation of these inte-
grals, because they explicitly couple every character-
istic size solved for the PSD with the full range of
sizes considered [16, 23].

The numerical results are compared to the analyti-
cal solution of the collision integral present in ċ(v; t)
for the representative distribution n(v) = exp(�v),
submitted to a size-free collision kernel � = 1 8v:

1
2

Z v�vo

vo

�(v � v?, v?)n(v � v?; t)n(v?; t)dv? =

1
2
(v � 2vo) exp(�v) (22)

Figure 2 shows the results over 5 decades using 40
sections distributed over a geometric grid

vi0 = v00F
i
s , (23)

with v00 = 10�3 and Fs = 1.33. The collision
integral is approximated with a precision that could
hardly be reached without benefiting from the quadra-
ture points within the sections. The same level of pre-
cision is obtained for the remaining collision term in
ḃ(v; t), which is easier to compute because it depends
on size only through the collision kernel. As now
shown, this will be instrumental in securing the ac-
curate prediction of the PSD moments in an iterative
process solving for the PBE.

4.2. Agglomeration
Once the calculation of the collision integral ver-

ified, a pure agglomeration process is considered.
Starting from an exponential distribution exp(�v)
discretized over an exponential grid [21]

vi0 = 10�3

✓
1 +

1� ↵i

1� ↵

◆
, (24)

with ↵ = 1.17 and with a size-space covering
6.7 · 10�2 < v < 200 over 40 sections.

Considering first a fixed collision kernel � = 1
(case Agg(a)), the analytical solution reads [19],

n(v; t) =
4

(t+ 2)2
exp

✓
� 2v
t+ 2

◆
. (25)

Figure 3(a) compares this exact solution to the numer-
ical one at time t = 10 and t = 20, obtained using
Eq. (14) with v� = v (G = 0). The PSD shape
is very well captured confirming the precise estima-
tion of the Smoluchowski integrals by (18) and (20).
The departure of the three first moments from their
analytical counterpart is computed from (25) at time
t = 20 and given in % in Table 2. The errors are
below those reported with 2pt and 3pt sectional meth-
ods [20] for the same test case [24], specifically for
the third moment for which that level of accuracy has
not been reached in former works. Additional tests
decreasing the number of sections show that the er-
rors increase at a much slower rate with the present
method than with the sectional methods. The usual
tradeoff between CPU cost and desired accuracy, go-
ing along with the introduction of high-order poly-
nomial approximations, must thus be somehow man-
aged when selecting the number of sections.

A non-uniform collision frequency with the
Golovin sum kernel �(v, v?) = v + v?, featuring the
increase with volume of the collision frequency be-
tween two particles of characteristic sizes v and v?, is
now considered as an additional pure agglomeration
test (case Agg(b)). The exponential grid with 40 sec-
tions is also used, but here with ↵ = 1.25, leading to
larger domain size 6.7 · 10�2 < v < 2000. Starting
from the exponential distribution, the analytical solu-
tion of the PSD may be written [19]

n(v; t) =

✓
1� ✓

✓1/2

◆
exp (�v(✓ + 1))

v
I1
h
2v✓1/2

i
,

(26)
with ✓ = 1 � exp(�t) and I1 the modified Bessel
function of the first kind of order unity. The compari-
son between the analytical solution and the high-order
solution can be seen in Fig. 3(b), the quality of the re-
sults is comparable to the one obtained with the fixed
collision kernel, also in terms of the prediction of the
moments (Table 2).

4.3. Surface growth/loss
The basic test of pure surface growth/loss allows to

verify that the PSD is transported in size space with-
out any deformation. In Fig. 4 a representative hy-
perbolic tangent PSD featuring significant gradients
is convected back and forth over a uniform grid of 50
sections covering a length of 4. The normalised sur-
face growth/loss rate is G = 0.05 for t < 40 and
G = �0.05 for t > 40.

The particle size distributions in Fig. 4 shows that
the characteristic-like approach (Eq. (8)), combined
with high-order approximation, offers a noise-free
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Fig. 3: PSD n(v, t). Pure agglomeration cases Agg(a)-(b).
Symbol: Analytical solution. Lines: High-order solution.
Black circle and solid-line: t = 0. Square and dot-dash line:
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surface growth/loss simulation. n(v; t) returns to the
exact same distribution after applying surface growth
for t = 40 and surface loss at the same rate for that
same duration.

4.4. Agglomeration and surface growth
Combining agglomeration with surface growth,

G(v) = v, and starting from the exponential distri-
bution, the time evolution of the PSD should follow
the analytical solution [22]:

n(v; t) =
4

(2 + �0t)2
exp

✓
�2v exp(�t)

2 + �0t
� t

◆
.

(27)
The size-independent collision kernel is set to
� = 0.1 (case Agg+G(a)) and to � = 1.0 (case
Agg+G(b)). A geometrical grid is used (Eq. (23))
with Fs = 1.7, to cover the size range 10�3 <
v < 1.6 · 106. Results are presented in Fig. 5 in
terms of n(v; t) · v, both in linear and logarithmic
scale for the distributions, to avoid the risk in con-
cluding solely from log-plots for physical problems
with a pronounced sensitivity to small fluctuations of
size around a targeted peak level.
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Fig. 4: Pure surface growth/loss. Line: Initial condition.
Dashed dot: t = 40, G = 0.05. Square: t = 80 with
G = �0.05 for t > 40.

Both the time evolution of the amplitude of the
PSD over all sizes (Fig. 5) and its moments at t = 7
(Table 2) are well captured. Here one should notice
that the error is much smaller than usually reported
with sectional methods for this test case [24]. Er-
rors of about 5% were found for the first moment
with the same number of sections using 2- and 3-point
sectional methods, however with the impossibility of
predicting the second order moment, for which error
raised up to more than 48 000% (see Table 2). The
potential of formulating the solution as in Eq. (14)
becomes then fully apparent.

Also, thanks to the simple characteristic formula-
tion for simulating surface growth/loss and to the pre-
computation of the matrix entering the calculating the
modes of the Legendre decomposition (Eq. (17)), in
the end, the number of operations is just 3% above
the one required with usual 2-point sectional methods.
Therefore, the cost in terms of CPU time stays simi-
lar to the one of much lower-order approximations,
which did not take advantage of the time-evolution of
the PSD formulated as in Eq. (14).

4.5. Nucleation and surface growth
To further test the method, nucleation and surface

growth are now combined. The source is given by
ḣ(v0) = 1 and surface growth by G(v) = v. The ini-
tial condition is a stiff hyperbolic tangent of amplitude
10�5 and located at v0. The amplitude of this initial
distribution is five time smaller than the expected so-
lutions for t > 0. As many other approaches solving
for PSD, the present method cannot handle a distribu-
tion exactly set at zero at initial time, instead a vanish-
ing distribution must be imposed, without impacting
on the accuracy as seen thereafter. The grid is still
geometrical (Eq. (23)) with Fs = 1.7.

Such a physical problem should lead to a uniform
distribution progressing over size-space. This is what
is indeed observed in Fig. 6. In previous works, more
or less pronounced oscillations about the uniform dis-
tribution have been reported [20, 24]. Hence, the
present approach allows for simulating nucleation and

6



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.001  0.01  0.1  1  10  100  1000  10000  100000

n(
v)
.v

v
(a) y-axis Linear

 0.0001

 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1  1  10  100  1000  10000  100000

n(
v)
.v

v
(b) y-axis Log

Fig. 5: PSD n(v, t) · v. Case Agg+G: surface growth
G(v) = v and agglomeration with size-free collision kernel
�. Symbols: Analytical solution. Lines: high-order solu-
tion. Black-circle and solid-line: t = 0. At t = 7, square
and dot-dash line: case Agg+G(a) � = 0.1. Empty circle
and dash line: Agg+G(b) � = 1.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1  1  10  100  1000  10000  100000

n(
v)
.v

v
Fig. 6: n(v, t) · v. Constant nucleation, ḣ(vo) = 1, with
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growth without any spurious numerical noise (Fig. 6).

4.5.1. Nucleation, surface growth and agglomeration
A final test case is applied to verify that the

method can handle bi-modal distributions. The sur-
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with surface growth, G(v) = 1.2v, and agglomeration,
�(v, v?) = 1.5(v+v?). Full circle: t = 5. Circle: t = 10.
Square: t = 15.

face growth G(v) = 1.2v, the nucleation source
ḣ(vo) = 1 and an agglomeration kernel �(v, v⇤) =
1.5(v+v⇤) are imposed. 40 sections are used with an
exponential grid with ↵ = 1.15 (Eq. (24)). The ini-
tial condition is here again a stiff hyperbolic tangent
of vanishing amplitude 10�5 located at v0.

As expected for these conditions, Fig. 7 shows a
distribution evolving towards a bi-modal shape, with
nucleation feeding the system with small particles to
generate a first peak. Small particles which rapidly
agglomerate and growth, to populate a second peak in
the distribution of size.

5. Coupling with flow solution

The coupling of this PBE solving with flow solu-
tion can be achieved following different routes. First
we must acknowledge that it would not be practi-
cal to transport with the flow all the solution points
n(vij ;x, t).

The most advanced and CPU efficient approach
would consist of adopting the strategy discussed
in [12], in which PBE solutions are generated to train
neural networks. Thereby replacing in this process
former methods used to solve for the PBE by the
present one, to generate databases for the training of a
combination of artificial neural networks (ANN), con-
volutional neural networks (CNN) and recurrent long
short-term memory artificial neural layers (LSTM)
for the prediction of the PSD [12].

During the training phase of this machine learn-
ing approach, in every section, the average number of
particles size per unit of flow volume can be easily
computed from the quadrature points,

N i(x, t) =

vi
nL�1Z

vi
0

n(v;x, t)dv =

vinL�1 � vi0
2

nL�1X

`=0

n(vi`;x, t)w` . (28)
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These N i(x, t) will be transported for convection and
eventually diffusion in the flow solver, as it would be
the case for any sectional method, whereas the evolu-
tion in size-space is handled by the networks thanks
to two set of neurons: Firstly, an ANN takes as inputs
the thermophysical parameters controlling G(v;x, t)
and Ȧ(v;x, t) and the time step. Secondly, collect-
ing the N i(x, t) for i 2 [0, N � 1] constitutes a
one-dimensional ‘image’ which is handled by a CNN.
From these inputs, the ANN-CNN is trained to return
the PSD shape for the subsequent time step.

Such strategy was demonstrated already for lami-
nar sooting flames [12]. In this former work, it was
shown how, for a fixed network architecture and thus
fixed CPU cost, the increase of the precision of the
training database benefited to the subsequent predic-
tion by the networks. The method proposed in this
work could be very useful along these lines.

Because of the high Schmidt number character of
soot, the recently developed numerical method to se-
cure the sub-grid scale flow transport of high Schmidt
number scalars, could complement the methodol-
ogy [25].

6. Conclusion

In the development of numerical tools for predict-
ing carbon-based material derived from processes in-
volving combustion and flames, the use of numeri-
cally precise methods is mandatory to alleviate error
compensation between the modeling of the thermo-
physics and the numerics. Along these lines, a novel
formalism has been proposed to cast the time discreti-
sation of the population balance equation, which con-
trols the time evolution of particle size distributions,
into a form that is further combined with a high-order
approximation of these distributions within sections
of size.

The surface growth/loss is handled through a
characteristic-like propagation of the particle size
distribution. The Smoluchowski collision integrals
are accurately computed thanks to Gauss-Lobatto
quadrature points, introduced with the Legendre poly-
nomial basis providing a high-order approximation of
the distribution of sizes.

Because of the specific form retained for the time-
advancement of the population balance equation, the
CPU cost stays moderate and the coupling with usual
flow solvers can be envisioned easily and a strategy to
do so has been discussed.

The method has been carefully tested with suc-
cess against analytical solutions including surface
growth/loss, agglomeration and nucleation. This was
done for representative distributions covering up to 8
order of magnitudes in size space, with an accurate
prediction up to the third moment.

A perspective lies in the possibility of incorporat-
ing additional information within the particle size dis-
tribution to improve the representation of carbon par-
ticles in flames. Indeed, a multivariate description
can easily be envisioned considering a polynomial

basis for every variable introduced to control joint-
distributions, as usually done for instance in multi-
dimensional high-order flow solution [26].
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