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Abstract

To control the global warming trends, carbon footprint of all the human activ-

ities needs to be restricted, including the aviation industry. Mixing hydrogen

with commercial kerosene jet fuels appears as a promising alternative fuels to

reduce the carbon dioxide emissions of aviation engines. The addition of hy-

drogen could significantly impact the auto-ignition process of aviation fuels,

which is a key ingredient of engine reliability. However, accurate calculations

or measurements of ignition delay times over a wide range of pressures, tem-

peratures and fuel blending ratios are complicated and time-consuming. To

achieve real-time prediction of ignition delay time for hydrogen-blended jet

fuels under various operating conditions, machine learning methods are in-
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troduced to build a data-driven proxy model in this work. First, the ignition

delay times of Jet A-1/hydrogen fuel mixture are simulated using the well-

known HyChem combustion reaction mechanism under different pressures,

temperatures, equivalence ratios and blending molar ratios of hydrogen. Af-

ter some validation against experimental results, an artificial neural network

(ANN) model is trained using the database of ignition delay times. Further-

more, a sub-ANN is nested to the original ANN model as an improvement

on certain local conditions. The results show that the increase of hydro-

gen blending ratios can generally accelerate the auto-ignition process except

when the temperature is quite low. The ANN models predict the ignition

delay times of Jet A-1/hydrogen fuel mixture with good generalization abil-

ity and minor computational cost. Moreover, the model prediction accuracy

is significantly improved with the nested sub-ANN approach.

Keywords: hydrogen addition, kerosene fuel, ignition delay time, HyChem

mechanism, artificial neural network

1. Introduction1

With the increasing concern for global warming and pollutant emissions2

from aviation transportation, researchers are focusing on finding alternative3

fuels with high thermal efficiency and clean emission characteristics [? ?4

]. Hydrogen is considered as one of the most promising clean fuels because5

of its high energy density per mass and zero carbon-related emissions [? ].6

Airbus has released “ZEROe” project which aims to develop the world’s first7

zero-emission commercial aircraft by 2035. Liquid hydrogen is used as fuel8

for modified gas turbine engines to power the “ZEROe” concept aircraft [1].9
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However, the production capacity of hydrogen still needs to be developed10

to fully replace conventional fossil fuels [2]. In this context, one practical11

approach to progressively improve the combustion and emission character-12

istics of aircraft engines is to combine hydrogen with fossil fuels [3–6]. Jet13

A-1 is a type of conventional aviation fuel widely used in aircraft engines,14

which therefore plays an important role in aviation transportation industry15

[7, 8]. With the help of hydrogen addition, the concern for carbon dioxide16

and pollutant emissions of burning Jet A-1 fuel could be mitigated.17

Although the Jet A-1/hydrogen fuel mixture has many advantages in the18

aspect of emission, the design of engine needs to be reassessed since the19

fuel combustion characteristics change due to the addition of hydrogen. As20

one of the key issues, ignition and flame stabilization must be maintained21

with this novel fuel. The complex ignition processes under various engine22

operating conditions can be quantified by the ignition delay time (IDT), an23

important parameter for engine design [9]. IDT can be determined from24

measurements in rapid compression machine and shock tube experiments25

[10? , 11], so that the modeling of chemistry can be calibrated for numerical26

simulations [12? ]. In the present study, zero-dimensional (0-D) auto-ignition27

processes of Jet A-1/hydrogen fuel mixture with air are simulated to collect28

the IDTs. The state-of-the-art HyChem (Hybrid Chemistry) model [13, 14]29

is introduced, which shows a good efficiency and accuracy in predicting the30

global combustion properties of jet fuels [13]. The combustion chemistry of31

Jet A-1 fuel is first modeled by lumped reaction steps for pyrolysis supported32

by experimental data, and then detailed reaction mechanism is applied to the33

oxidation process of the pyrolysis products.34
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Recently, machine learning (ML) methods like artificial neural network35

(ANN) have been introduced to research combustion [15], flame [? ], and36

ignition process [16]. ANN shows great potential of non-linear regression in37

tabulating and order reduction, which leads to better prediction with less38

memory and CPU-time cost [15, 17, 18], also to analyze experimental mea-39

surements [19]. Since accurate numerical simulation of 0-D auto-ignition pro-40

cesses using detailed chemical reaction mechanisms is a quite time-consuming41

process due to solving many degrees of freedom, it is practically useful to de-42

velop an quasi-instant ANN proxy model (or digital-twin) for predicting IDTs43

over a wide range of temperatures, pressures and other parameters relevant44

to guide engine designs. Such ANN proxy models have been developed in45

previous studies for hydrogen [20], biodiesel [21] and n-heptane [22]. In ad-46

dition, recent studies pay more attention to the ML modeling of IDTs of47

complex mixture fuels. For instance, ML-based IDT models have been de-48

veloped by Han et al. [9] for methane-dimethyl ether dual fuel, by Jach et49

al. [23] for various C1C7 hydrocarbonO2Ar mixtures, and by Cui et al. [24]50

for n-butane/hydrogen mixtures. However, it is quite challenging to built a51

single ML/ANN model to accurately predict IDTs of complex mixture fuels52

under a wide range of engine operating conditions.53

To improve the performance of ANN model on complex problems with54

a high-dimensional distribution of database, new approaches have been in-55

troduced into the ANN framework, e.g., clustering [25], multiple multilayer56

perceptrons [26] and many others [27–29]. To address the large scale of57

database, Nguyen et al. [25] divide and cluster the entire database to assem-58

ble sub-datasets with similar characteristics. Ding et al. [26] employ multiple59
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multilayer perceptrons to balance relative errors in small and large compo-60

sition changes. The non-uniform data distribution in a large scale database61

can results in the problem of poor local prediction of ANN model, which62

deserves special attentions during the implementation of ANN framework.63

The first aim of the present study is to explore the feasibility of using64

a data-driven ANN proxy model to predict IDTs of Jet A-1/hydrogen fuel65

mixture under various engine representative operating conditions. The Hy-66

Chem A1NTC reaction mechanism [13] is employed with 0-D auto-ignition67

simulations to build the IDTs database covering different pressures, temper-68

atures, equivalence ratios and blending molar ratios of hydrogen, which is69

required for training the ANN model. The second aim is to investigate the70

performance of nested sub-ANN approach, in which a sub-ANN model is71

nested to the original basic ANN model as an improvement on certain local72

conditions.73

The rest of this paper is structured as follows. Section 2 explains the 0-74

D auto-ignition simulation method, IDT database construction, basic ANN75

model, and nested sub-ANN approach. In Section 3, results of the 0-D auto-76

ignition simulation and ANN model are compared and discussed. Specifically,77

further validation of HyChem mechanism against experimental data and the78

analyses of IDTs for Jet A-1/hydrogen fuel mixture are presented in Section79

3.1. Then the performance of the basic ANN model is discussed in Section 3.280

while the improvement of the nested sub-ANN approach is shown in Section81

3.3. Finally, the main conclusions of the present study are summarized in82

Section 4.83
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2. Methodology84

2.1. Numerical method85

0-D simulations for the auto-ignition process of Jet A-1/hydrogen fuel86

mixture with air are performed using the HyChem mechanism [13]. Ignition87

delay processes are simulated in a constant volume and adiabatic reactor at88

specified initial temperatures and pressures to investigate ignition delay time.89

The open source library of python for chemical kinetics Cantera 2.4.0 [30] is90

used to simulate the ignition process with the HyChem mechanism.91

Since the HyChem mechanism is originally developed for the Jet A-192

fuel, it is necessary to justify its application to the Jet A-1/hydrogen fuel93

mixture. However, the experimental IDT results of Jet A-1/hydrogen fuel94

mixture are unavailable yet. Hence, the auto-ignition processes of Jet A-195

and hydrogen are simulated using the HyChem mechanism and compared96

against experimental IDT results of Jet A-1 and hydrogen, respectively. The97

validation results will be shown in Section 3.1. After this validation, the98

HyChem mechanism is considered as applicable to the Jet A-1/hydrogen99

fuel mixture.100

2.2. Database construction101

To develop a data-driven proxy model for predicting IDT of Jet A-1/hydrogen102

fuel mixture, a database constitute of adequate training data is required.103

Here, the database is four dimensional which involves temperatures (T ),104

pressures (P ), equivalence ratios (φ) and blending molar ratios of hydro-105

gen (R) as the feature channels. As summarized in Table 1, the IDTs of106

Jet A-1/hydrogen fuel mixture are simulated taking different combinations107

6



of the four features in the range of P = 1.0 ∼ 20.0 atm, T = 800 ∼ 1600 K,108

φ = 0.5 ∼ 1.5, and R = 0 ∼ 0.5 as the initial conditions.109

Finally, the entire database contains 104,000 samples of IDT determined110

from 0-D auto-ignition simulations. Figure 1 shows the non-uniform distri-111

bution of the obtained IDTs spanning multiple scales from 1 µs to 105 µs. It112

features a typical long tail distribution. IDTs with extremely low values are113

the vast majority (75% of IDTs are below 1692 µs) while a few IDTs take114

quite high values. In this case, the data-driven proxy model can be more115

difficult to train or have lower accuracy because of the outliers with high116

values.117

Table 1: Initial conditions of 0-D auto-ignition simulations to generate IDT database of

Jet A-1/hydrogen fuel mixture.

Feature Range Division Value

Pressure (atm) 1.0 ∼ 20.0 1.0

Temperature (K) 800 ∼ 1600 10

Equivalence ratio (-) 0.5 ∼ 1.5 0.1

Blending molar ratio of hydrogen (-) 0 ∼ 0.5 0.1

2.3. Artificial neural network model118

To perform highly nonlinear regression of the IDT database, a single ANN119

model is first introduced as the basic data-driven proxy model for predicting120

IDTs of Jet A-1/hydrogen fuel mixture. The ANN model has multiple hidden121

layers with fully connected neurons in each layer. As shown in Fig. 2, the122

basic ANN has an input layer with 4 neurons corresponding to the four input123

features, i.e., the z-score normalized pressure, temperature, equivalence ratio124
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Figure 1: Long tail distribution of IDT (ignition delay time) values of Jet A-1/hydrogen

fuel mixture in the obtained database containing 104,000 samples.
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and blending molar ratio of hydrogen. 5 hidden layers are employed with125

80 neurons in each layer. Rectified linear unit (ReLU) function is set as the126

activation function of every neuron. The label of the output layer is the127

logarithmic normalized IDT, which is expressed as128

y′ =
ln(y)

ln(ymax)
, (1)

where y represents the IDT and y′ is the normalized IDT. Table 2 summarizes129

the details of the basic ANN model, which contains in total 26,401 trainable130

parameters of weights and biases. The model is built with TensorFlow 2.4.1131

[31], an open-source machine learning framework in Python.132

Pressure

Temperature
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Ignition 

delay time
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…
…

…
…

…
…

…
…

…
……… …… …… ……

…
…

…
…

…
…

…
…

…
……… …… …… ……

Pressure

Temperature

Blending Molar 

ratios of hydrogen

Equivalence ratio

Ignition 

delay time
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…

…
……… …… …… ……

Figure 2: Structure of the basic ANN model. 4 input features: pressure, temperature,

equivalence ratio and blending molar ratio of hydrogen. 5 hidden layers with 80 neurons

in each one. Output layer: IDT.

The entire IDT database is divided into training set and testing set, with133

the proportion of 80% and 20%, respectively. The model is trained by the134

Adam optimization algorithm [32] to minimize the loss function of Mean135

Square Error (MSE) in Eq. (2).136
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MSE =
1

n

n∑
i=0

(yi − ŷi)
2 , (2)

where n is the number of samples, while yi and ŷi are the true value and137

prediction of the i-th sample, respectively. In the training procedure, the138

whole training database is decomposed to 2080 batches with 40 data points139

per batch to train the ANN for 500 epoches. The learning rate is initially set140

to 10−3 and gets reduced by 20% each time if the MSE loss does not drop141

for 10 epochs during the training. The lower limit of the learning learning142

rate is set to 10−5. To better evaluate the prediction performance of the143

ANN, Mean Relative Error (MRE) in Eq. (3) is calculated as an additional144

indicator.145

MRE(%) =
100

n

n∑
i=0

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (3)

2.4. Nested sub-ANN approach146

In this section, we propose a nested sub-ANN approach to further improve147

the prediction performance over the wide IDT range from 1 µs to 105 µs.148

Because of the long tail distribution of the IDT database (Fig. 1), numerous149

data points with low IDT and few ones with high IDT appear in the database150

together, leading to adverse effects on the training of the ANN model. For151

instance, the outliers with high IDT have a larger impact on the loss function152

of Eq. 3 than the data points with low IDT. The optimization of the ANN153

prediction on these low IDT data points then becomes difficult since their154

contributions on the loss function are minor. To improve this situation, a155

sub-ANN is trained specially for the conditions where the basic ANN make156

poor predictions.157
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Table 2: Structures of the basic ANN and nested sub-ANN models

Model Total parameters Layer type Neuron number Activation function

ANN 26,401

Input 4 ——

Dense 80 ReLU

Dense 80 ReLU

Dense 80 ReLU

Dense 80 ReLU

Dense 80 ReLU

Dense(Output) 1 ——

sub-ANN 10,801

Input 4 ——

Dense 64 ReLU

Dense 64 ReLU

Dense 48 ReLU

Dense 64 ReLU

Dense(Output) 1 ——

The data points with IDT < 103 µs are collected from the original158

database to train the sub-ANN model. As summarized in Table 2, the sub-159

ANN model has a lighter structure than the basic ANN, because the subset160

contains fewer and more concentrated data points. By reducing the number161

of hidden layers to 4 and cutting down neuron numbers, the sub-ANN model162

has only 10,801 trainable parameters.163

The overall training and predicting processes of the nested sub-ANN ap-164

proach is demonstrated in Fig. 3. For the training process, the data points165

with IDT < 103 µs featuring a large local relative error during the basic ANN166

training are collected to form a subset database. A sub-ANN is then trained167

only with the subset and nested to the basic ANN, appearing as a combined168

dual-ANN model. For the predicting process, the IDT is first predicted by169

11



the basic ANN with the input features. Then, if the predicted IDT falls in170

the governing region of the sub-ANN, i.e., < 103 µs, it is predicted again by171

the sub-ANN to be the final prediction.172

3. Results and discussion173

3.1. Ignition delay time174

Figure 4 shows the comparison between the simulated IDTs using the175

HyChem mechanism and experimental data [33, 34] of Jet A-1 in the range176

of P = 3 ∼ 15 atm, T = 650 ∼ 1400 K and φ = 0.5 ∼ 1.5. In Fig. 4(a),177

the simulated IDTs agree well with the experimental data [33] in the linear178

region at the pressure of 3, 6 and 12 atm compared. Figure 4(b) shows179

that the negative temperature coefficient (NTC) characteristic of the Jet A-180

1 can be generally well captured by the HyChem mechanism, although the181

simulated NTC regions appear at higher temperatures with lower IDTs in182

comparison to the experimental data [34]. Overall, the simulation profiles of183

IDT versus temperature of the Jet A-1 by the HyChem mechanism have a184

good agreement with the experimental measurements.185

Figure 5 shows the profiles of IDT versus temperature of hydrogen at186

4.0/16.0 atm under fuel-lean, stoichiometric and fuel-rich conditions. The187

simulated IDTs of hydrogen by the HyChem mechanism match well with the188

experimental measured IDTs [35] under those various conditions. Compared189

to the Jet A-1 fuel, hydrogen does not show the NTC characteristic and its190

IDT increase monotonically with the temperature decreasing.191

The above results demonstrate that the HyChem mechanism can capture192

the auto-ignition process of Jet A-1 and hydrogen fuels reasonably well. On193
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Train
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Train the basic ANN
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Over
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Y

Figure 3: Flowchart of the overall training (left) and predicting (right) processes of the

nested sub-ANN approach.
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(a)

(b)

Figure 4: Comparisons between the HyChem simulated (lines) and experimental measured

(symbols) IDTs of Jet A-1 under various temperature, pressure and equivalence ratio

conditions.
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that basis, the HyChem mechanism is regarded as applicable for the auto-194

ignition simulations of Jet A-1/hydrogen fuel mixture. The IDT database195

of the Jet A-1/hydrogen fuel mixture is then built by varying the initial196

conditions, i.e., temperature, pressure, equivalence ratio and blending molar197

ratio of hydrogen. Part of the IDT database is shown in Figs. 6 and 8.198

Figure 5: Comparisons between the HyChem simulated (lines) and experimental measured

(symbols) IDTs of hydrogen under various temperature, pressure and equivalence ratio

conditions.

Figure 6 shows the characteristics of IDT of the mixture fuel with various199

blending molar ratio of hydrogen addition in the temperature range of T =200

800 ∼ 1600 K, at p = 1, 5, 10 and 20 atm and φ = 1.0. In the range of201

T > 1000 K, the logarithmic IDT keeps an almost linear relationship with202

T−1, while the hydrogen addition have only slight influence on the IDT.203

Specifically, the IDT gets shorter with the increase of blending molar ratio of204

hydrogen. Besides, the influence becomes more apparent at relatively lower205
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temperatures in this linear region, e.g., at the peak of IDTs plotted in Fig.206

6(b). Notably, the opposite trend can appear at the NTC region where the207

hydrogen addition leads to a longer IDT at low temperatures. For example in208

Fig. 6(c), the reverse of the hydrogen addition effects on IDT occurs around209

T < 820 K under the pressure P = 10 atm.210

The opposite effects of hydrogen addition depending on temperature has211

also been reported in previous studies on hydrogen blending with methyl212

butanoate [36] and n-heptane/n-decane [37]. The OH radical-related reaction213

rates decrease at low temperatures but increase at high temperatures upon214

hydrogen addition, lending to the change of production rates of the OH,215

HO2 and H2O2 radicals [36]. Figure 7 shows that the OH mass fraction gets216

lower at 800 K but higher at 900 K with the increasing blending ratio of217

hydrogen. Hence, hydrogen acts as an ignition inhibitor of the fuel mixture218

at low temperatures such as 800 K, but it promotes the ignition process at219

higher temperature, e.g., 900 K.220

In Fig. 8, the changes of IDT of Jet A-1/hydrogen fuel mixture over221

pressures are shown by the curves colored by pressure from 1 atm to 20222

atm. The blending molar ratio of hydrogen is fixed as 50%. The bright zones223

featuring a high pressure get lower IDT compared to the dark zones featuring224

a low pressure, which means increasing pressure can reduce IDT for the225

hydrogen-enriched mixture fuel. On the other hand, the NTC characteristic226

of the Jet A-1/hydrogen fuel mixture becomes less obvious as the pressure227

increase. Especially for P = 20 atm, the NTC characteristic gets disappear228

and the IDT increase monotonically as the temperature decreases.229
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Figure 6: HyChem simulated IDTs of Jet A-1/hydrogen fuel mixture at φ = 1.0. (a) The

blending molar ratio of hydrogen increases in the arrow direction for each pressure group

profiles; (b) Zoomed-in profiles for P = 1 atm; (c) Zoomed-in profiles for P = 10 atm.
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(a) 800 K

(b) 900 K

Figure 7: Time evolution of OH mass fraction during the ignition process of Jet A-

1/hydrogen fuel mixture at P = 10 atm and φ = 1.0.
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Figure 8: HyChem simulated IDTs of Jet A-1/hydrogen fuel mixture at φ = 1.0 and R =

50%. The pressure between 1 atm and 20 atm is indicated by the color of the curves.

3.2. Prediction of the basic ANN model230

The comparisons between the predicted IDTs by the basic ANN model231

and the simulated IDTs using the HyChem mechanism, which are seen as232

the reference true values, are shown in Figs. 9 and 10.233

Performance of the trained basic ANN model is evaluated on the test set234

containing 20,800 data points. Figure 9 shows the good agreement between235

ANN predictions and reference true values and the correlation coefficient236

R2 reaches 0.9994. The MRE of the ANN predictions is 1.0377%, and the237

relative error mainly locates in the range of ±5% with a normal distribution.238

The comparison between the simulated IDT profiles by the HyChem239

mechanism and predictions by the basic ANN model are shown in Fig. 10,240

in which four typical cases are plotted as examples. The predictions by the241

19



Figure 9: Comparison between the IDT reference true values and the predictions by the

basic ANN on the test set. The subplot shows the distribution of relative errors.
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ANN model are in good agreement with the HyChem simulation results.242

Though, the subplot shows a slight departure in Case I under high temper-243

ature conditions.244

Figure 10: Comparison between the HyChem simulated IDT profiles and the basic ANN

predictions under various pressure, equivalence ratio and hydrogen blending ratio condi-

tions. The subplot is the zoomed-in view of the Case I.

3.3. Improvement with the nested sub-ANN model245

In order to control the departures observed under high temperature con-246

ditions, as proposed above a sub-ANN is nested to the basic ANN to improve247
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the IDT predictions.248

Figure 11(a) illustrates the distribution of relative errors of the basic ANN249

prediction. The subplot shows that some outliers with extremely low IDT250

can have large relative errors up to 10%. Besides, the probability density251

curves have flat circular shapes, indicating data points with low IDTs are252

more likely to have larger relative errors.253

(a) (b)

(c)

Figure 11: Scatter plots of relative errors against IDT predictions by the ANN models.

(a) Results of the basic ANN model. (b) Comparison between the basic ANN and the

sub-ANN for IDT < 103 µs. (c) Results of the combined dual-ANN model.

The relative errors of the basic ANN (black dots) and the sub-ANN (red254
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dots) for the subset data with IDT < 103 µs are compared in Fig. 11(b).255

The relative error of the sub-ANN is obviously lower than the basic ANN,256

although the subplot shows the performance of the sub-ANN deteriorates257

in the range of IDT < 100 µs. If a higher accuracy is required, another258

nested sub-ANN can be introduced to deal with the smaller range of data.259

Figure 11(c) shows the relative error distributions of the combined dual-ANN260

model. It can be observed that the prediction accuracy for the low IDT region261

has been significantly improved with the nested sub-ANN approach, as the262

relative error is reduced to ±5%.263

Figure 12 compares the IDT profiles of 9 typical cases in the high tem-264

perature region among the HyChem simulations, basic ANN predictions and265

predictions by the nested sub-ANN approach. The blue dashed lines, rep-266

resenting the nested sub-ANN predictions, exactly overlap the black lines267

representing the HyChem simulation results. Hence, the nested sub-ANN268

approach is an effective method to improve ANN accuracy by reducing large269

local relative errors.270

Table 3 compares the normalized CPU time cost among the HyChem271

simulation, the basic ANN and the nested sub-ANN approaches for predicting272

IDTs of the 9 cases in Fig. 12. The basic ANN model is 103 times faster273

than the HyChem simulation method. The nested sub-ANN model is slower274

than the basic one because two ANNs are used to improve the prediction275

accuracy. However, since its CPU cost is still much lower than the HyChem276

simulation, the nested sub-ANN approach is worth to employ.277
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(a) 1 atm (b) 6 atm

(c) 20 atm

Figure 12: Comparison of the IDT profiles predicted by HyChem simulation, the basic

ANN and the nested sub-ANN approach. 9 typical cases are plotted. Case a: φ = 0.5, R =

0%. Case b: φ = 1.0, R = 20%. Case c: φ = 1.5, R = 40%. Case d: φ = 0.5, R = 0%.

Case e: φ = 1.0, R = 20%. Case f: φ = 1.5, R = 40%. Case g: φ = 0.5, R = 0%. Case h:

φ = 1.0, R = 20%. Case i: φ = 1.5, R = 40%.

Table 3: Normailized Averaged CPU time cost of HyChem simulation and ANN proxy

models to predict IDTs. (Normalization by the basic ANN model)

HyChem Basic ANN Nested sub-ANN

1493.7 1.0 2.0
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4. Conclusions278

In this work, the ignition delay times (IDTs) of Jet A-1/hydrogen fuel279

mixture under a wide range of operating conditions, including various tem-280

peratures, pressures, equivalence ratios and blending molar ratios of hydro-281

gen, are numerically investigated first. Zero-dimensional auto-ignition simu-282

lations of the fuel mixture with air are performed using the HyChem mecha-283

nism [13] to obtain the IDTs. The IDT vs. T−1 profiles of Jet A-1/hydrogen284

fuel mixture feature both a linear region and a negative temperature coeffi-285

cient (NTC) region. The addition of hydrogen can shorten the IDTs of the286

mixture in most cases especially under high temperatures, while this effect287

is not obvious under the conditions with both a low temperature and a high288

pressure. Moreover, hydrogen is found to increase the IDTs of the mixture289

at temperature lower than 820 K. It means hydrogen can act as ignition pro-290

moter or inhibitor of the fuel mixture under different operating conditions.291

With the help of numerical simulation, an IDT database of Jet A-1/hydrogen292

fuel mixture containing 104,000 data points is built. The performance of293

data-driven artificial neural network (ANN) modeling approach on predict-294

ing the IDTs of the mixture fuel is then investigated. A basic ANN model295

with 5 hidden layers is found to achieve good predictions on the IDTs with296

a mean relative error of 1%. However, the maximum local relative error can297

reach up to 10% for the conditions with short IDT. A nested sub-ANN ap-298

proach is therefore proposed to improve the accuracy of predictions under299

those conditions with a specialized sub-ANN model nested to the original300

basic ANN model. The proposed nested sub-ANN approach successfully re-301

duces the maximum local relative error of ANN predictions to below 5%.302
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The proposed data-driven ANN approaches are around 103 times faster than303

the classic HyChem simulation method on IDT prediction.304

It should be noted that the developed data-driven ANN models of IDTs305

of the Jet A-1/hydrogen fuel mixture are trained from purely numerical pre-306

dictions of the HyChem mechanism, since the experimental IDT results of307

the Jet A-1/hydrogen fuel mixture are not available yet. However, once the308

experimental IDT results of the mixture become available in the future, the309

numerical IDT database can then be calibrated and the proposed data-driven310

modeling approach can be readily applied.311
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