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To control the global warming trends, carbon footprint of all the human activities needs to be restricted, including the aviation industry. Mixing hydrogen with commercial kerosene jet fuels appears as a promising alternative fuels to reduce the carbon dioxide emissions of aviation engines. The addition of hydrogen could significantly impact the auto-ignition process of aviation fuels, which is a key ingredient of engine reliability. However, accurate calculations or measurements of ignition delay times over a wide range of pressures, temperatures and fuel blending ratios are complicated and time-consuming. To achieve real-time prediction of ignition delay time for hydrogen-blended jet fuels under various operating conditions, machine learning methods are in-

Introduction

With the increasing concern for global warming and pollutant emissions from aviation transportation, researchers are focusing on finding alternative fuels with high thermal efficiency and clean emission characteristics [? ?

]. Hydrogen is considered as one of the most promising clean fuels because of its high energy density per mass and zero carbon-related emissions [? ].

Airbus has released "ZEROe" project which aims to develop the world's first zero-emission commercial aircraft by 2035. Liquid hydrogen is used as fuel for modified gas turbine engines to power the "ZEROe" concept aircraft [START_REF] Airbus | Hydrogen: An important pathway to our zero-emission ambition[END_REF].

However, the production capacity of hydrogen still needs to be developed to fully replace conventional fossil fuels [START_REF] Rondinelli | Challenges and Benefits offered by Liquid Hydrogen Fuels in Commercial Aviation, Practical Responses to Climate Change (PRCC)[END_REF]. In this context, one practical approach to progressively improve the combustion and emission characteristics of aircraft engines is to combine hydrogen with fossil fuels [START_REF] Pan | Effect of hydrogen addition on criteria and greenhouse gas emissions for a marine diesel engine[END_REF][START_REF] Zhang | Numerical study on auto-ignition characteristics of hydrogenenriched methane under engine-relevant conditions[END_REF][START_REF] Lee | A rapid compression machine study of hydrogen effects on the ignition delay times of n-butane at low-to-intermediate temperatures[END_REF][START_REF] Chen | Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure[END_REF]. Jet A-1 is a type of conventional aviation fuel widely used in aircraft engines, which therefore plays an important role in aviation transportation industry [START_REF] Han | Measurement of combustion properties and ignition delay time of high performance alternative aviation fuels[END_REF][START_REF] Vozka | A review of aviation turbine fuel chemical composition-property relations[END_REF]. With the help of hydrogen addition, the concern for carbon dioxide and pollutant emissions of burning Jet A-1 fuel could be mitigated.

Although the Jet A-1/hydrogen fuel mixture has many advantages in the aspect of emission, the design of engine needs to be reassessed since the fuel combustion characteristics change due to the addition of hydrogen. As one of the key issues, ignition and flame stabilization must be maintained with this novel fuel. The complex ignition processes under various engine operating conditions can be quantified by the ignition delay time (IDT), an important parameter for engine design [START_REF] Han | Machine Learning of ignition delay times under dual-fuel engine conditions[END_REF]. IDT can be determined from measurements in rapid compression machine and shock tube experiments [10? , 11], so that the modeling of chemistry can be calibrated for numerical simulations [12? ]. In the present study, zero-dimensional (0-D) auto-ignition processes of Jet A-1/hydrogen fuel mixture with air are simulated to collect the IDTs. The state-of-the-art HyChem (Hybrid Chemistry) model [START_REF] Wang | A physics-based approach to modeling real-fuel combustion chemistry -I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations[END_REF][START_REF] Xu | A physics-based approach to modeling real-fuel combustion chemistry II. Reaction kinetic models of jet and rocket fuels[END_REF] is introduced, which shows a good efficiency and accuracy in predicting the global combustion properties of jet fuels [START_REF] Wang | A physics-based approach to modeling real-fuel combustion chemistry -I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations[END_REF]. The combustion chemistry of Jet A-1 fuel is first modeled by lumped reaction steps for pyrolysis supported by experimental data, and then detailed reaction mechanism is applied to the oxidation process of the pyrolysis products.

Recently, machine learning (ML) methods like artificial neural network (ANN) have been introduced to research combustion [START_REF] Wan | Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects[END_REF], flame [? ], and ignition process [START_REF] Popov | Machine learning-assisted early ignition prediction in a complex flow[END_REF]. ANN shows great potential of non-linear regression in tabulating and order reduction, which leads to better prediction with less memory and CPU-time cost [START_REF] Wan | Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects[END_REF][START_REF] Chatzopoulos | A chemistry tabulation approach via Rate-Controlled Constrained Equilibrium (RCCE) and Artificial Neural Networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames[END_REF][START_REF] Franke | Tabulation of combustion chemistry via Artificial Neural Networks (ANNs): Methodology and application to LES-PDF simulation of Sydney flame L[END_REF], also to analyze experimental measurements [START_REF] Wan | Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements[END_REF]. Since accurate numerical simulation of 0-D auto-ignition processes using detailed chemical reaction mechanisms is a quite time-consuming process due to solving many degrees of freedom, it is practically useful to develop an quasi-instant ANN proxy model (or digital-twin) for predicting IDTs over a wide range of temperatures, pressures and other parameters relevant to guide engine designs. Such ANN proxy models have been developed in previous studies for hydrogen [START_REF] Zhao | Correlations for the ignition delay times of hydrogen/air mixtures[END_REF], biodiesel [START_REF] Snchez-Borroto | Prediction of Cetane Number and Ignition Delay of Biodiesel Using Artificial Neural Networks[END_REF] and n-heptane [START_REF] Liu | Applicability of high dimensional model representation correlations for ignition delay times of nheptane/air mixtures[END_REF]. In addition, recent studies pay more attention to the ML modeling of IDTs of complex mixture fuels. For instance, ML-based IDT models have been developed by Han et al. [START_REF] Han | Machine Learning of ignition delay times under dual-fuel engine conditions[END_REF] for methane-dimethyl ether dual fuel, by Jach et al. [START_REF] Jach | Ignition delay time model based on a deep neural network[END_REF] for various C1C7 hydrocarbonO 2 Ar mixtures, and by Cui et al. [START_REF] Cui | Development of the ignition delay prediction model of n-butane/hydrogen mixtures based on artificial neural network[END_REF] for n-butane/hydrogen mixtures. However, it is quite challenging to built a single ML/ANN model to accurately predict IDTs of complex mixture fuels under a wide range of engine operating conditions.

To improve the performance of ANN model on complex problems with a high-dimensional distribution of database, new approaches have been introduced into the ANN framework, e.g., clustering [START_REF] Nguyen | Machine learning for integrating combustion chemistry in numerical simulations[END_REF], multiple multilayer perceptrons [START_REF] Ding | Machine learning tabulation of thermochemistry in turbulent combustion: An approach based on hybrid flamelet/random data and multiple multilayer perceptrons[END_REF] and many others [START_REF] Liu | Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[END_REF][START_REF] Le | A Comparative Study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in Estimating the Heating Load of Buildings Energy Efficiency for Smart City Planning[END_REF][START_REF] Zhang | Short-term wind speed prediction model based on GA-ANN improved by VMD[END_REF]. To address the large scale of database, Nguyen et al. [START_REF] Nguyen | Machine learning for integrating combustion chemistry in numerical simulations[END_REF] divide and cluster the entire database to assemble sub-datasets with similar characteristics. Ding et al. [START_REF] Ding | Machine learning tabulation of thermochemistry in turbulent combustion: An approach based on hybrid flamelet/random data and multiple multilayer perceptrons[END_REF] The first aim of the present study is to explore the feasibility of using a data-driven ANN proxy model to predict IDTs of Jet A-1/hydrogen fuel mixture under various engine representative operating conditions. The Hy-Chem A1NTC reaction mechanism [START_REF] Wang | A physics-based approach to modeling real-fuel combustion chemistry -I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations[END_REF] is employed with 0-D auto-ignition simulations to build the IDTs database covering different pressures, temperatures, equivalence ratios and blending molar ratios of hydrogen, which is required for training the ANN model. The second aim is to investigate the performance of nested sub-ANN approach, in which a sub-ANN model is nested to the original basic ANN model as an improvement on certain local conditions.

The rest of this paper is structured as follows. Section 2 explains the 0-D auto-ignition simulation method, IDT database construction, basic ANN model, and nested sub-ANN approach. In Section 3, results of the 0-D autoignition simulation and ANN model are compared and discussed. Specifically, further validation of HyChem mechanism against experimental data and the analyses of IDTs for Jet A-1/hydrogen fuel mixture are presented in Section 3.1. Then the performance of the basic ANN model is discussed in Section 3.2 while the improvement of the nested sub-ANN approach is shown in Section 3.3. Finally, the main conclusions of the present study are summarized in Section 4.

Methodology

2.1. Numerical method 0-D simulations for the auto-ignition process of Jet A-1/hydrogen fuel mixture with air are performed using the HyChem mechanism [START_REF] Wang | A physics-based approach to modeling real-fuel combustion chemistry -I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations[END_REF]. Ignition delay processes are simulated in a constant volume and adiabatic reactor at specified initial temperatures and pressures to investigate ignition delay time.

The open source library of python for chemical kinetics Cantera 2.4.0 [START_REF] Goodwin | Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes[END_REF] is used to simulate the ignition process with the HyChem mechanism.

Since the HyChem mechanism is originally developed for the Jet A-1 fuel, it is necessary to justify its application to the Jet A-1/hydrogen fuel mixture. However, the experimental IDT results of Jet A-1/hydrogen fuel mixture are unavailable yet. Hence, the auto-ignition processes of Jet A-1 and hydrogen are simulated using the HyChem mechanism and compared against experimental IDT results of Jet A-1 and hydrogen, respectively. The validation results will be shown in Section 3.1. After this validation, the HyChem mechanism is considered as applicable to the Jet A-1/hydrogen fuel mixture.

Database construction

To develop a data-driven proxy model for predicting IDT of Jet A-1/hydrogen fuel mixture, a database constitute of adequate training data is required.

Here, the database is four dimensional which involves temperatures (T ), pressures (P ), equivalence ratios (φ) and blending molar ratios of hydrogen (R) as the feature channels. As summarized in Table 1, the IDTs of Jet A-1/hydrogen fuel mixture are simulated taking different combinations of the four features in the range of P = 1.0 ∼ 20.0 atm, T = 800 ∼ 1600 K, φ = 0.5 ∼ 1.5, and R = 0 ∼ 0.5 as the initial conditions.

Finally, the entire database contains 104,000 samples of IDT determined from 0-D auto-ignition simulations. Figure 1 and blending molar ratio of hydrogen. 5 hidden layers are employed with 80 neurons in each layer. Rectified linear unit (ReLU) function is set as the activation function of every neuron. The label of the output layer is the logarithmic normalized IDT, which is expressed as

y = ln(y) ln(y max ) , (1) 
where y represents the IDT and y is the normalized IDT. 

(y i -ŷi ) 2 , ( 2 
)
where n is the number of samples, while y i and ŷi are the true value and prediction of the i-th sample, respectively. In the training procedure, the whole training database is decomposed to 2080 batches with 40 data points per batch to train the ANN for 500 epoches. The learning rate is initially set to 10 -3 and gets reduced by 20% each time if the MSE loss does not drop for 10 epochs during the training. The lower limit of the learning learning rate is set to 10 -5 . To better evaluate the prediction performance of the ANN, Mean Relative Error (MRE) in Eq. ( 3) is calculated as an additional indicator.

MRE(%) = 100 n n i=0 y i -ŷi y i . (3) 

Nested sub-ANN approach

In this section, we propose a nested sub-ANN approach to further improve the prediction performance over the wide IDT range from 1 µs to 10 5 µs.

Because of the long tail distribution of the IDT database (Fig. 1), numerous data points with low IDT and few ones with high IDT appear in the database together, leading to adverse effects on the training of the ANN model. For instance, the outliers with high IDT have a larger impact on the loss function of Eq. 3 than the data points with low IDT. The optimization of the ANN prediction on these low IDT data points then becomes difficult since their contributions on the loss function are minor. To improve this situation, a sub-ANN is trained specially for the conditions where the basic ANN make poor predictions. The overall training and predicting processes of the nested sub-ANN approach is demonstrated in Fig. 3. For the training process, the data points with IDT < 10 3 µs featuring a large local relative error during the basic ANN training are collected to form a subset database. A sub-ANN is then trained only with the subset and nested to the basic ANN, appearing as a combined dual-ANN model. For the predicting process, the IDT is first predicted by the basic ANN with the input features. Then, if the predicted IDT falls in the governing region of the sub-ANN, i.e., < 10 3 µs, it is predicted again by the sub-ANN to be the final prediction.

Results and discussion

Ignition delay time

Figure 4 shows the comparison between the simulated IDTs using the HyChem mechanism and experimental data [START_REF] Zhu | Ignition delay times of conventional and alternative fuels behind reflected shock waves[END_REF][START_REF] De Toni | Ignition delay times of Jet A-1 fuel: Measurements in a high-pressure shock tube and a rapid compression machine[END_REF] of Jet A-1 in the range of P = 3 ∼ 15 atm, T = 650 ∼ 1400 K and φ = 0.5 ∼ 1.5. In Fig. 4(a), the simulated IDTs agree well with the experimental data [START_REF] Zhu | Ignition delay times of conventional and alternative fuels behind reflected shock waves[END_REF] in the linear region at the pressure of 3, 6 and 12 atm compared. that basis, the HyChem mechanism is regarded as applicable for the autoignition simulations of Jet A-1/hydrogen fuel mixture. The IDT database of the Jet A-1/hydrogen fuel mixture is then built by varying the initial conditions, i.e., temperature, pressure, equivalence ratio and blending molar ratio of hydrogen. Part of the IDT database is shown in Figs. 6 and8. Specifically, the IDT gets shorter with the increase of blending molar ratio of hydrogen. Besides, the influence becomes more apparent at relatively lower temperatures in this linear region, e.g., at the peak of IDTs plotted in Fig.

6(b)

. Notably, the opposite trend can appear at the NTC region where the hydrogen addition leads to a longer IDT at low temperatures. For example in Fig. 6(c), the reverse of the hydrogen addition effects on IDT occurs around T < 820 K under the pressure P = 10 atm.

The opposite effects of hydrogen addition depending on temperature has also been reported in previous studies on hydrogen blending with methyl butanoate [START_REF] Lee | Hydrogen effects on ignition delay time of methyl butanoate in a rapid compression machine[END_REF] and n-heptane/n-decane [START_REF] Frolov | Self-ignition of hydrocarbonhydrogenair mixtures[END_REF]. The OH radical-related reaction rates decrease at low temperatures but increase at high temperatures upon hydrogen addition, lending to the change of production rates of the OH, HO 2 and H 2 O 2 radicals [START_REF] Lee | Hydrogen effects on ignition delay time of methyl butanoate in a rapid compression machine[END_REF]. Figure 7 shows that the OH mass fraction gets lower at 800 K but higher at 900 K with the increasing blending ratio of hydrogen. Hence, hydrogen acts as an ignition inhibitor of the fuel mixture at low temperatures such as 800 K, but it promotes the ignition process at higher temperature, e.g., 900 K.

In Fig. 8, the changes of IDT of Jet A-1/hydrogen fuel mixture over pressures are shown by the curves colored by pressure from 1 atm to 20 atm. The blending molar ratio of hydrogen is fixed as 50%. The bright zones featuring a high pressure get lower IDT compared to the dark zones featuring a low pressure, which means increasing pressure can reduce IDT for the hydrogen-enriched mixture fuel. On the other hand, the NTC characteristic of the Jet A-1/hydrogen fuel mixture becomes less obvious as the pressure increase. Especially for P = 20 atm, the NTC characteristic gets disappear and the IDT increase monotonically as the temperature decreases. It should be noted that the developed data-driven ANN models of IDTs of the Jet A-1/hydrogen fuel mixture are trained from purely numerical predictions of the HyChem mechanism, since the experimental IDT results of the Jet A-1/hydrogen fuel mixture are not available yet. However, once the experimental IDT results of the mixture become available in the future, the numerical IDT database can then be calibrated and the proposed data-driven modeling approach can be readily applied.

  employ multiple multilayer perceptrons to balance relative errors in small and large composition changes. The non-uniform data distribution in a large scale database can results in the problem of poor local prediction of ANN model, which deserves special attentions during the implementation of ANN framework.

  shows the non-uniform distribution of the obtained IDTs spanning multiple scales from 1 µs to 10 5 µs. It features a typical long tail distribution. IDTs with extremely low values are the vast majority (75% of IDTs are below 1692 µs) while a few IDTs take quite high values. In this case, the data-driven proxy model can be more difficult to train or have lower accuracy because of the outliers with high values.

1 2. 3 .

 13 Blending molar ratio of hydrogen (-) 0 ∼ 0.5 0.Artificial neural network model To perform highly nonlinear regression of the IDT database, a single ANN model is first introduced as the basic data-driven proxy model for predicting IDTs of Jet A-1/hydrogen fuel mixture. The ANN model has multiple hidden layers with fully connected neurons in each layer. As shown in Fig. 2, the basic ANN has an input layer with 4 neurons corresponding to the four input features, i.e., the z-score normalized pressure, temperature, equivalence ratio

Figure 1 :

 1 Figure 1: Long tail distribution of IDT (ignition delay time) values of Jet A-1/hydrogen fuel mixture in the obtained database containing 104,000 samples.

Figure 4 (

 4 b) shows that the negative temperature coefficient (NTC) characteristic of the Jet A-1 can be generally well captured by the HyChem mechanism, although the simulated NTC regions appear at higher temperatures with lower IDTs in comparison to the experimental data[START_REF] De Toni | Ignition delay times of Jet A-1 fuel: Measurements in a high-pressure shock tube and a rapid compression machine[END_REF]. Overall, the simulation profiles of IDT versus temperature of the Jet A-1 by the HyChem mechanism have a good agreement with the experimental measurements.

Figure 5 Figure 3 :Figure 4 :

 534 Figure5shows the profiles of IDT versus temperature of hydrogen at 4.0/16.0 atm under fuel-lean, stoichiometric and fuel-rich conditions. The simulated IDTs of hydrogen by the HyChem mechanism match well with the experimental measured IDTs[START_REF] Hu | Shock tube study on ignition delay of hydrogen and evaluation of various kinetic models[END_REF] under those various conditions. Compared to the Jet A-1 fuel, hydrogen does not show the NTC characteristic and its IDT increase monotonically with the temperature decreasing.The above results demonstrate that the HyChem mechanism can capture the auto-ignition process of Jet A-1 and hydrogen fuels reasonably well. On

Figure 5 :

 5 Figure 5: Comparisons between the HyChem simulated (lines) and experimental measured (symbols) IDTs of hydrogen under various temperature, pressure and equivalence ratio conditions.

Figure 6

 6 Figure 6 shows the characteristics of IDT of the mixture fuel with various blending molar ratio of hydrogen addition in the temperature range of T = 800 ∼ 1600 K, at p = 1, 5, 10 and 20 atm and φ = 1.0. In the range of T > 1000 K, the logarithmic IDT keeps an almost linear relationship with T -1 , while the hydrogen addition have only slight influence on the IDT.

Figure 6 :Figure 7 :

 67 Figure 6: HyChem simulated IDTs of Jet A-1/hydrogen fuel mixture at φ = 1.0. (a) The blending molar ratio of hydrogen increases in the arrow direction for each pressure group profiles; (b) Zoomed-in profiles for P = 1 atm; (c) Zoomed-in profiles for P = 10 atm.

Figure 8 :

 8 Figure 8: HyChem simulated IDTs of Jet A-1/hydrogen fuel mixture at φ = 1.0 and R = 50%. The pressure between 1 atm and 20 atm is indicated by the color of the curves.

3. 2 .

 2 Prediction of the basic ANN model The comparisons between the predicted IDTs by the basic ANN model and the simulated IDTs using the HyChem mechanism, which are seen as the reference true values, are shown in Figs. 9 and 10. Performance of the trained basic ANN model is evaluated on the test set containing 20,800 data points. Figure 9 shows the good agreement between ANN predictions and reference true values and the correlation coefficient R 2 reaches 0.9994. The MRE of the ANN predictions is 1.0377%, and the relative error mainly locates in the range of ±5% with a normal distribution. The comparison between the simulated IDT profiles by the HyChem mechanism and predictions by the basic ANN model are shown in Fig. 10, in which four typical cases are plotted as examples. The predictions by the

Figure 9 :

 9 Figure 9: Comparison between the IDT reference true values and the predictions by the basic ANN on the test set. The subplot shows the distribution of relative errors.

Figure 11 (

 11 Figure 11(a) illustrates the distribution of relative errors of the basic ANN prediction. The subplot shows that some outliers with extremely low IDT can have large relative errors up to 10%. Besides, the probability density curves have flat circular shapes, indicating data points with low IDTs are more likely to have larger relative errors.

Figure 11 :

 11 Figure 11: Scatter plots of relative errors against IDT predictions by the ANN models.(a) Results of the basic ANN model. (b) Comparison between the basic ANN and the sub-ANN for IDT < 10 3 µs. (c) Results of the combined dual-ANN model.

Figure 11 (

 11 Figure 11(c) shows the relative error distributions of the combined dual-ANN model. It can be observed that the prediction accuracy for the low IDT region has been significantly improved with the nested sub-ANN approach, as the relative error is reduced to ±5%.

Figure 12

 12 Figure 12 compares the IDT profiles of 9 typical cases in the high temperature region among the HyChem simulations, basic ANN predictions and predictions by the nested sub-ANN approach. The blue dashed lines, representing the nested sub-ANN predictions, exactly overlap the black lines representing the HyChem simulation results. Hence, the nested sub-ANN approach is an effective method to improve ANN accuracy by reducing large local relative errors.

Figure 12 :

 12 Figure 12: Comparison of the IDT profiles predicted by HyChem simulation, the basic ANN and the nested sub-ANN approach. 9 typical cases are plotted. Case a: φ = 0.5, R = 0%. Case b: φ = 1.0, R = 20%. Case c: φ = 1.5, R = 40%. Case d: φ = 0.5, R = 0%. Case e: φ = 1.0, R = 20%. Case f: φ = 1.5, R = 40%. Case g: φ = 0.5, R = 0%. Case h: φ = 1.0, R = 20%. Case i: φ = 1.5, R = 40%.

  

  

  

  

  

Table 1 :

 1 Initial conditions of 0-D auto-ignition simulations to generate IDT database of Jet A-1/hydrogen fuel mixture.

Table 2

 2 

	Pressure
	Temperature
	Equivalence ratio
	Blending Molar
	ratios of hydrogen

summarizes the details of the basic ANN model, which contains in total 26,401 trainable parameters of weights and biases. The model is built with TensorFlow 2.4.1

[START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, software available from tensorflow[END_REF]

, an open-source machine learning framework in Python.

Table 2 :

 2 Structures of the basic ANN and nested sub-ANN models

	Model	Total parameters Layer type	Neuron number Activation function
			Input	4	--
			Dense	80	ReLU
			Dense	80	ReLU
	ANN	26,401	Dense	80	ReLU
			Dense	80	ReLU
			Dense	80	ReLU
			Dense(Output) 1	--
			Input	4	--
			Dense	64	ReLU
			Dense	64	ReLU
	sub-ANN 10,801			
			Dense	48	ReLU
			Dense	64	ReLU
			Dense(Output) 1	--

The data points with IDT < 10 3 µs are collected from the original database to train the sub-ANN model. As summarized in Table

2

, the sub-ANN model has a lighter structure than the basic ANN, because the subset contains fewer and more concentrated data points. By reducing the number of hidden layers to 4 and cutting down neuron numbers, the sub-ANN model has only 10,801 trainable parameters.

Table 3

 3 compares the normalized CPU time cost among the HyChem simulation, the basic ANN and the nested sub-ANN approaches for predicting IDTs of the 9 cases in Fig.12. The basic ANN model is 10 3 times faster than the HyChem simulation method. The nested sub-ANN model is slower than the basic one because two ANNs are used to improve the prediction accuracy. However, since its CPU cost is still much lower than the HyChem simulation, the nested sub-ANN approach is worth to employ.
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Though, the subplot shows a slight departure in Case I under high temperature conditions. 

Improvement with the nested sub-ANN model

In order to control the departures observed under high temperature conditions, as proposed above a sub-ANN is nested to the basic ANN to improve