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CACTUS GROUPS, TWIN GROUPS, AND RIGHT-ANGLED ARTIN GROUPS

PAOLO BELLINGERI, HUGO CHEMIN, AND VICTORIA LEBED

Abstract. Cactus groups Jn are currently attracting considerable interest from diverse mathematical
communities. This work explores their relations to right-angled Coxeter groups, and in particular twin
groups T wn and Mostovoy’s Gauss diagram groups Dn, which are better understood. Concretely, we
construct an injective group 1-cocycle from Jn to Dn, and show that T wn (and its k-leaf generalisations)
inject into Jn. As a corollary, we solve the word problem for cactus groups, determine their torsion
(which is only even) and center (which is trivial), and answer the same questions for pure cactus groups,
P Jn. In addition, we yield a 1-relator presentation of the first non-abelian pure cactus group P J4. Our
tools come mainly from combinatorial group theory.

1. Introduction

Cactus groups appeared under the name of quasibraid groups in the study of the mosaic operad; this
latter governs the moduli space of configurations of smooth points on punctured stable real algebraic
curves of genus zero [Dev99, EHKR10, KW19]. They were immediately generalised to other Coxeter
types, and renamed mock reflection groups [DJS03].

It was later realised that the same groups control coboundary categories, just as braid groups control
braided categories [HK06a]. That paper launched the term cactus groups, inspired by the Opuntia-
cactus-like form of the moduli spaces above. Coboundary categories were designed to study the crystals
of finite-dimensional reductive Lie algebras and, more generally, the representations of coboundary Hopf
algebras.

Cactus groups also appear in the context of hives and octahedron recurrence [KTW04, HK06b].
Together with their generalisations to other Coxeter types, they have become a recurrent tool in
representation theory [Bon16, Los19, CGP20].

Concretely, the cactus group Jn is defined by its generators1 sp,q, where 1 ≤ p < q ≤ n, and relations

s2
p,q = 1, (j1)

sp,qsm,r = sm,rsp,q if [p, q] ∩ [m, r] = ∅, (j2)

sp,qsm,r = sp+q−r,p+q−msp,q if [m, r] ⊂ [p, q]. (j3)

The generator sp,q can be diagrammatically represented as the braid on n strands where the strands
p, p + 1, . . ., q intersect at one common point, and reverse their order after that point. The relations
are depicted in Fig. 1. Here and below the diagrams are drawn from left to right, in order to match
the order of generators in a word representing a cactus. These diagrams make one think of cacti once
again—saguaros these time. For this reason we will often call cacti the elements of Jn, and use the
term leaf number for the parameter q − p + 1 of the generator sp,q.

One should handle such diagrams with care: the braid relation s1,2s2,3s1,2 = s2,3s1,2s2,3 from Fig. 2,
natural in braid and knot theories (where it corresponds to the Reidemeister III move), does not hold
in cactus groups.

The closure of such braids yields cactus doodles, i.e. curves with self-intersections [MR22].

Date: 30th September 2022.
2020 Mathematics Subject Classification. 20F55, 20F36, 57K12, 20F10 .
Key words and phrases. Braid groups, twin groups, cactus groups, right-angled Coxeter groups, pure cactus groups,

virtual braid groups, torsion, word problem, normal form, group 1-cocycle.
1We should have written sp,q;n here. However, we systematically drop the subscript n since it is always clear from the

context. The same is done for the maps s and d, and for the Gauss diagrams τI below.
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Figure 1. Three types of relations in cactus groups

6= 6=

Figure 2. The braid relation, false in cactus groups

Looking at how such braids permute their strands, one obtains a group morphism

s : Jn → Sn,

sp,q 7→ (1, 2, . . . , p− 1, q, q − 1, . . . , p + 1, p, q + 1, q + 2, . . . , n).

The kernel of this map is the pure cactus group PJn, sometimes denoted as Γn+1. It is the fundamental
group of the real locus of the Deligne–Mumford compactificationM0,n+1 of the moduli space of rational
curves with n + 1 marked points [Dev99]. This explains why these groups are particularly interesting.

Our braid-like diagrams can be read in another way: label the strands from 1 (top) to n (bottom),
and then at each multiple point write down the set of the labels of the intersecting strands. This yields
a set-theoretic map

d : Jn → Dn.

Here Dn is the Gauss diagram group from [Mos19]2. Concretely, it has one generator τI for each subset
I of {1, 2, . . . , n} of size ≥ 2, and the relations are

τ2
I = 1, (d1)

τIτJ = τJτI if I ∩ J = ∅ or I ⊂ J. (d2)

It is a right-angled Coxeter group (RACG), that is, it is generated by idempotents with only commut-
ation relations between them. Its elements will be called Gauss diagrams, since they are related to the
Gauss diagrams from virtual knot theory.

The map d is not a group morphism. In Section 2, we explain that it is a group 1-cocycle, injective by
a theorem from [Mos19] (see also [Yu22] for a proof for other Coxeter types). However, its restriction
to the pure part PJn becomes a group morphism.

The “reading” maps s and d can be assembled into a single injective group morphism

ρ = d× s : Jn → Dn ⋊ Sn.

The semi-direct product on the right can be seen as the virtual cactus group, where any, not necessarily
neighboring, collection of strands can come together (using the Sn part) and form a multi-strand
intersection (using the Dn part). Note that, contrary to the usual approach to virtuality in similar
settings [BSV19, KNS21], in Dn⋊Sn a diagram τI ∈ Dn and a permutation σ ∈ Sn do commute when
σ permutes elements from I only.

In Section 2, we use the map d to reduce the word problem in Jn to its much easier analogue in the
RACG Dn, and describe an efficient solution.

2In [Mos19], the Dn were simply called diagram groups. Following a suggestion of Mostovoy, we use a more precise
term, in order to avoid confusion with Guba and Sapir’s diagram groups.



CACTUS AND TWIN GROUPS 3

Similarly, in Section 3 we work on the Dn side to study certain subgroups of Jn. Concretely, given
some 2 ≤ i ≤ j ≤ n, consider the group J i,j

n defined by the generators sp,q, where 1 ≤ p < q ≤ n and
i ≤ q − p + 1 ≤ j, and the cactus relations (j1)-(j3). In other words, we keep only those generators
whose leaf number is between i and j. The groups T wn = J2,2

n appeared as Grothendieck cartographical
groups in [Voe90]; further as twin groups in [Kho97], as a diagrammatic description of the motion of n
points on the plane without triple collisions, but also as a tool to study doodles (closed plane curves
without triple intersections, see [FT79]); later under the name of flat braids [Mer99] and planar braids
[MRM20]; and finally under the name of traids in physics literature [HK20]. By definition, the twin
groups are RACGs, just like any group J i,i

n . As other RACG families, they appear in several contexts
such as topological robotics [GLMRM21]. Our first results is

Theorem A. For all 2 ≤ i ≤ j ≤ n, the natural maps

J i,j
n → Jn,

sp,q 7→ sp,q

are injective.

Thus cactus groups contain twin groups and their higher-leaf analogues. This result is actually
established for a wider class of partial presentations of Jn. It can also be seen as the braid-like
counterpart of the recent proof that the space of doodles embeds into that of cactus doodles [MR22].

We further exploit the injectiveness of d in Section 4 to study the torsion and the center of Jn and
PJn. We prove

Theorem B. The cactus groups Jn have no odd torsion. Moreover, for any k they contain torsion of
order 2k provided that n is big enough.

Theorem C. The pure cactus groups PJn are torsionless.

Theorem D. The groups Jn and PJn are centerless whenever n > 2 and n > 3 respectively.

We have seen that the cactus group Jn contains several important RACGs (T wn and more generally
all the J i,i

n ). In the opposite direction, it injects (non-homomorphically) into the RACG Dn. In
some sense, it can be thought of as a deformation of a RACG, where some commutation relations
are deformed to commutation-conjugation relations. In fact, it can be seen as the Coxeter-like finite
quotient, in the sense of [LV19], of the structure group of a partial solution to the Yang–Baxter equation,
in the sense of [Cho21]. It inherits some properties of the RACG Dn, but loses others: for instance, it
has less center (the center of Dn is 〈τ1,2,...,n〉 ≃ Z2) and more torsion (Dn has torsion of order 2 but
not of order 4).

Finally, in Appendix A we yield a (complicated) one-relator presentation for the first interesting
pure cactus group PJ4. In particular, it confirms the absence of torsion in this group.

Some of our results can be recovered using methods from topological algebra or geometric group
theory. Thus, one can explain the absence of torsion in PJn by interpreting it as the fundamental
group of an aspherical manifold [EHKR10]. Another approach, pointed to us by Anthony Genevois,
exploits the median property of the natural Cayley graph of Jn. This property implies that cactus
groups are CAT(0) groups, and therefore (see for intance [BH99]) have solvable word and conjugacy
problems. Our proofs, of combinatorial nature, have the advantage of being elementary, explicit, and
self-contained.

Acknowledgements. The authors are grateful to Neha Nanda and John Guaschi for their help
with GAP computations and fruitful conversations, and to Jacob Mostovoy and Anthony Genevois for
helpful discussions and remarks. P.B. was partially supported by the ANR project AlMaRe (ANR-19-
CE40-0001).

2. Word problem for cactus groups

Recall that, given a cactus diagram t representing a cactus c ∈ Jn, the Gauss diagram d(c) ∈ Dn

is constructed as follows: label the left endpoints of the strands of t from 1 (top) to n (bottom); at
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each crossing reverse the order of the strands, and hence of the labels; at the ith crossing write down
the ()unordered) set Ii of the labels of the intersecting strands; finally, multiply the generators of Dn

corresponding to these label sets from left to right, setting d(c) = τI1
τI2
· · · . See Fig. 3 for an example3.

τ1,2 τ1,3,4 τ2,3,4

1
1

1

2

2

23 3

3

4

4 4

4

3

2

Figure 3. A cactus c with s(c) = (4312) and d(c) = τ1,2τ1,3,4τ2,3,4

Theorem 2.1 ([Mos19, Yu22]). The above procedure yields a well-defined injective map

d : Jn →֒ Dn.

This is a consequence of the following two lemmas, which we will also need below.

Notation 2.2. Let FJn (resp., FDn) be the free group on the generators sp,q (resp., τI).

The above procedure defines a map

d : FJn →֒ FDn,

which is clearly injective, but not surjective for n > 2 (for instance, τ1,3 is not in its image). A careful
comparison of the relations defining Jn and Dn yields

Lemma 2.3. (a) If a word w′ ∈ FJn is obtained from w ∈ FJn by applying a relation of type (j1)
(resp., (j2) or (j3)), then d(w′) ∈ FDn is obtained from d(w) ∈ FDn by applying a relation of type
(d1) (resp., (d2)).
(b) Conversely, if a word v′ ∈ FDn is obtained from some d(w) ∈ FDn by applying an annihilation
relation τ2

I ❀ 1 (resp., a commutation relation (d2)), then v′ = d(w′) for the word w′ ∈ FJn obtained
from w by applying a corresponding relation of type (j1) (resp., (j2) or (j3)).

In other words, both commutation and commutation-conjugation relations for cacti are translated
by commutation relations for Gauss diagrams.

Note that the statement (b) is false for creation relations 1 ❀ τ2
I , since these latter can lead outside

of the image of d.
The following result is standard in the theory of RACGs:

Lemma 2.4. Let G be a RACG, and w a word in the standard generators (called letters) representing
an element g ∈ G. Consider the following procedure: as long as w contains two copies of the same
letter l separated by letters commuting with l, move one copy towards the other by commutation, then
annihilate them by applying l2 ❀ 1; repeat. The result of this procedure is independent, up to com-
mutation in G, of the choice of the annihilated couples and of the choice of the word w representing
g.

In particular, one can transform any two words representing the same element of a RACG into the
same word without ever applying the creation relation.

These two lemmas immediately imply that d induces an injective map d : Jn → Dn.
In fact, the second lemma yields more. Choose any order on the set of generators of a RACG G, and

extend it lexicographically to the words in these generators. Since by Lemma 2.4 all minimal-length
representatives of an element g of a RACG G are equivalent up to commutation, the minimal word

3Here and below we write τa,b,... instead of τ{a,b,...} for simplicity.
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among such representatives yields an easily computable normal form on G. According to Lemma 2.3,
this normal form can be pulled back from Dn to Jn. This gives a solution to the word problem in Jn,
which we summarise as follows:

Proposition 2.5. Let w ∈ FJn be a word representing a cactus c ∈ Jn. Consider the following
procedure: if w contains two letters l and l′ such that l′ can be (conjugation-)commuted all the way to l
(according to the rules (j2)-(j3)) and in the process becomes l, then do this (conjugation-)commutation
and annihilate ll (according to the rule (j1)); repeat as long as possible. The result is the empty word
if and only if the cactus c is trivial.

This procedure has a nice diagrammatic interpretation if one works with i-leaf cacti only (that is,
with elements from J i,i

n ). It then consists in bigon killing, as illustrated in Fig. 4.

c

c′

=

c

c′

Figure 4. Bigon killing; here c is any cactus from J3,3
a , and c′ is any cactus from J3,3

n−a−3

Definition 2.6. A word w ∈ FJn is called irreducible if it contains no two letters that can be
(conjugation-)commuted together and annihilated.

Pulling back form Dn to Jn the results of Lemma 2.4, one sees that all irreducible representatives of
a cactus c ∈ Jn are related by (conjugation-)commutation. In particular, they have the same length,
which is minimal for representatives of c.

Remark 2.7. The conjugacy problem in Jn is much more delicate. In particular, conjugation may
shorten even very simple irreducible words. The word s3,4s1,2s1,4s3,6 ∈ J6 illustrates this phenomenon:

s5,6s3,4 · (s3,4s1,2s1,4s3,6) · s3,4s5,6 = s5,6s1,2s1,4s3,6s3,4s5,6 = s5,6s1,4s3,4s3,6s5,6s3,4

= s5,6s1,4s3,6s5,6s5,6s3,4 = s1,4s5,6s3,6s3,4

= s1,4s3,6s3,4s3,4 = s1,4s3,6.

We finish this section with a remark on the nature of the map d. It is not a group morphism: for
example, applied to the cactus from Fig. 3, it yields τ1,2τ1,3,4τ2,3,4, whereas a group morphism would
have given τ1,2τ2,3,4τ1,2,3. However, it is not so far from being one. It is in fact a group 1-cocycle, that
is, it satisfies the twisted compatibility relation

d(c1c2) = d(c1) c1d(c2), c1, c2 ∈ Jn,

where the left group action of Jn on Dn is induced from the label-permuting Sn-action on Dn: ct = s(c)t,
with c ∈ Jn, t ∈ Dn. In the example from Fig. 3, we obtain

d(s1,2s2,4s1,3) = τ1,2
(2134)τ2,3,4

(4132)τ1,2,3 = τ1,2τ1,3,4τ2,3,4.

Note that, restricted to the pure part PJn, the map d becomes a group morphism, since s(c) = Id
for a pure cactus c.

3. Twin groups are subgroups of cactus groups

Consider a group G = 〈S | R〉 defined by a set of generators S and a set of relations R. For any
subset of generators I ⊆ S, one can extract from R all the relations RI involving the generators from
I only. This defines a new group GI := 〈I | RI〉, with the obvious map

ιI : GI → G,
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g 7→ g for all g ∈ I.

Such maps will be called ι-type maps in what follows. They need not be injective.

Definition 3.1. A subset of generators I is called complete if the above map ιI is injective.

Example 3.2. In a RACG or a RAAG with its standard presentation, any generator subset is complete.
It follows from Lemma 2.4 and its analogue for RAAGs.

Example 3.3. All generator subsets are complete in braid and symmetric groups with their standard
presentations as well.

This is actually true for more general Artin–Tits and Coxeter groups.

Example 3.4. In the virtual braid group G = V B3 with its classical generators σ1, σ2 and virtual
generators τ1, τ2 and the usual relations, the set I = {σ1, τ1, τ2} is not complete. Indeed, since there
are no relations relating σ1 only to the τ ’s, GI is the direct product GI = Z ∗ S3, and it includes two
distinct elements

σ1τ1τ2σ1τ2τ1σ1 and τ1τ2σ1τ2τ1σ1τ1τ2σ1τ2τ1,

sent by ιI to the same element σ1σ2σ1 = σ2σ1σ2 of G, since σ2 = τ1τ2σ1τ2τ1 in G.

Cactus groups provide some more interesting counterexamples:

Example 3.5. In the cactus group G = J4 with its usual presentation, there are no relations involving
only s1,2 and s1,4, except for idempotence relations. Thus, for I = {s1,2, s1,4}, one gets GI = Z2 ∗ Z2.
However, in G these generators satisfy the relation

s1,2s1,4s1,2s1,4 = s1,4s1,2s1,4s1,2,

which expresses the commutation of s1,2 and s3,4 = s1,4s1,2s1,4.

In the example above, one should add the generator s3,4 = s1,4s1,2s1,4 to make the set I = {s1,2, s1,4}
complete. We will now prove that this is the only possible completeness defect in cactus groups. More
precisely, a generator subset is complete al long as it is stable by certain conjugations.

Definition 3.6. A collection C of sub-intervals of the integer interval [1, n] is called symmetric if
together with any two nested sub-intervals [m, r] ⊂ [p, q] it contains the sub-interval [p+q−r, p+q−m],
symmetric to [m, r] with respect to the middle of [p, q].

Theorem 3.7. For any symmetric collection C of sub-intervals of [1, n], the family {sI |I ∈ C} of
generators of the cactus group Jn (with its standard presentation) is complete.

Before giving a proof, let us describe several important particular cases.

Corollary 3.8. The group Jn can be viewed as a subgroup of Jn+k, via the map sp,q 7→ sp,q.

Corollary 3.9. The twin group T wn can be viewed as a subgroup of the cactus group Jn, via the map
sp,p+1 7→ sp,p+1.

More generally, given some 2 ≤ i ≤ j ≤ n, the sub-interval collection

Ci,j := {[p, q] | 1 ≤ p < q ≤ n, i ≤ q − p + 1 ≤ j}

is clearly symmetric. Theorem 3.7 thus applies to the group J i,j
n defined by the generators sp,q, where

[p, q] ∈ Ci,j, and the cactus relations (j1)-(j3). In other words, in J i,j
n we keep only those generators

whose leaf number is between i and j. We get

Corollary 3.10. The group J i,j
n can be viewed as a subgroup of Jn, via the map sp,q 7→ sp,q.

Proof of Theorem 3.7. Take a symmetric collection C of sub-intervals of [1, n]. Consider a word w ∈
FJn which contains only generators sI with I ∈ C, and which represents the trivial element in Jn.
We need to show that it also represents the trivial element in (Jn)I . According to Proposition 2.5,
the word w can be turned into the trivial word by applying commutation, commutation-conjugation
and annihilation relations. But all these relation are also available in the group (Jn)I ; in fact, the
symmetry condition on I was imposed precisely to preserve all commutation-conjugation relations
from Jn in (Jn)I . �
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Remark 3.11. If one is interested in the i-leaf group J i,i
n only (for instance, the twin group T wn = J2,2

n ),
then in the arguments above the Gauss diagram group Dn can be replaced with a smaller RACG.
Concretely, consider the width i Gauss diagram group Di

n generated by the idempotents τI for all
i-element subsets I of {1, 2, . . . , n}, which commute if the corresponding subsets are disjoint. The
symmetric group Sn still acts on such subsets I, and hence on Di

n. Consider the following eraser map:

εi : Jn → Di
n ⋊ Sn,

sp,q 7→ 1 if q − p + 1 < i,

sp,q 7→ (τ[p,q], s(sp,q)) if q − p + 1 = i,

sp,q 7→ (1, s(sp,q)) if q − p + 1 > i.

Going through the defining relations (j1)-(j3) of Jn, one checks that this map is well defined. Now, in
the diagram below, the rectangle and the square clearly commute:

J i
n Jn Dn ⋊ Sn Dn

J i
n Jn Di

n ⋊ Sn Di
n.

ι ρ π1

ι

Id

εi

ι

π1

ι

Here we abusively use the same notation ι for all ι-type maps, and the same notation π1 for all (set-
theoretic) projections onto the first component of a semi-direct product. Then the injectivity of the
total map of the first line implies the injectivity for the second line. In other words, we obtain an
injective group 1-cocycle J i

n → Di
n.

In the same vein, the symmetric group Sn above can be replaced with the subgroup Si
n generated by

all the size i flops s(sp,q). It would be interesting to understand the structure of these permutation
subgroups.

The eraser map from the above remark admits the following variation:

ǫi : Jn → J i,n
n ,

sp,q 7→ 1 if q − p + 1 < i,

sp,q 7→ sp,q if q − p + 1 ≥ i.

In other words, it erases all generators with leaf number < i. A quick direct verification shows that
it is well defined and surjective; the map ιi : J i,n

n → Jn, sp,q 7→ sp,q, is its section (cf. Corollary 3.10).

The subgroup J2,i−1
n

ι′
i
→֒ Jn, and hence its normal closure 〈〈J2,i−1

n 〉〉, is by construction in the kernel of
ǫi. We will now prove that this is the whole kernel. In particular, this yields the following semi-direct
decompositions of the cactus groups:

Jn ≃ 〈〈J
2,i−1
n 〉〉⋊ J i,n

n .

Proposition 3.12. The maps above define the following split exact sequence:

0 −→ 〈〈J2,i−1
n 〉〉

ι′
i−→ Jn

ǫi

−−−→←−−−
ιi

J i,n
n −→ 0.

Proof. It remains to prove that any cactus c in the kernel of the eraser map ǫi lies in fact in the normal
closure 〈〈J2,i−1

n 〉〉. Take a word w ∈ FJn representing c. Since c ∈ Ker(ǫi), one can erase all the
letters from w with leaf number < i, and then (permutation-)commute together and annihilate pairs of
remaining letters, in well-chosen order, until the word becomes empty, as explained in Proposition 2.5.
Now, this (permutation-)commutation and annihilation can still be performed when the “small” letters
are not erased: to move a letter l over a small letter m (or its conjugate), simply replace m by its
l-conjugate, since lm = (lml)l and ml = l(lml). When the process stops, one is left with a product of
conjugates of small letters representing c. �

One can push the above arguments slightly further and show that, for any 2 ≤ i′ ≤ i ≤ j ≤ j′ ≤ n,
J i,j

n can be viewed as a subgroup of J i′,j′

n , via the map sp,q 7→ sp,q. This defines a functor from the poset
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of integer sub-intervals of [1, n] to the category of subgroups of Jn. Moreover, for any 2 ≤ i′ ≤ i ≤ j ≤ n,
one has the decomposition

J i′,j
n ≃ 〈〈J i′,i−1

n 〉〉⋊ J i,j
n .

A possible application of these constructions is the filtration

〈〈J2,n−2
n 〉〉 ⊳ J2,n−1

n ⊳ Jn

with RACG quotients

Jn/J2,n−1
n ≃ Jn,n

n ≃ Z2,

J2,n−1
n /〈〈J2,n−2

n 〉〉 ≃ Jn−1,n−1
n ≃ Z2 ∗ Z2 if n ≥ 3.

However, understanding the structure of the next piece, 〈〈J2,n−2
n 〉〉, seems difficult even for n = 4.

Remark 3.13. In this section, we have seen that Jn contains many RACG subgroups. It would be
interesting to find out whether all RACGs can be realised inside cactus groups. For instance, a tedious
direct verification shows that one can include any RACG with ≤ 5 generators into a (sufficiently big)
cactus group by sending each generator to a generator (as usual for the standard presentation), except
for the “pentagon” group

〈g1, . . . , g5 | ∀i, g2
i = 1 and gigi+1 = gi+1gi〉.

Here g6 is identified with g1.

4. Torsion and center of cactus groups

Many basic group-theoretic questions are easy to answer for a RACG G. For instance,

(1) Its center Z(G) is generated by all its friendly generators (that is, the generators of G commuting

with all other generators). Thus Z(G) ≃ Zf
2 , f being the number of the friendly generators of G.

(2) The only torsion G has is of order 2. More precisely, 2-torsion elements are the conjugates of
products of pairwise commuting generators.

In particular, for the Gauss diagram group Dn, we have the center

Z(Dn) = 〈τ1,2,...,n〉 ≃ Z2,

and a big 2-torsion part, without any other torsion.
The aim of this section is to determine the center and the torsion of the cactus group Jn and its pure

part PJn. Our main tool is the connection between Jn and the RACG Dn. Curiously, the answers are
close to but different from those for Dn.

Theorem 4.1. The cactus group Jn is centerless whenever n > 2.

In the case n = 2, we have J2 ≃ Z2, and PJ2 is trivial. We will no longer mention this case in what
follows.

Proof. Let w ∈ FJn be a word representing a non-trivial central element c ∈ Jn. It can be assumed
to be of minimal length among representatives of non-trivial central elements. We will show that the
Gauss diagram d(c) is then central in Dn. As recalled above, this would imply d(c) = τ1,2,...,n or 1.
Since d is injective and c non-trivial, this means c = s1,n. But the generator s1,n does not commute
with s1,2 when n > 2, since

d(s1,ns1,2) = τ1,2,...,nτn,n−1 6= τ1,2,...,nτ1,2 = τ1,2τ1,2,...,n = d(s1,2s1,n).

Thus there are no non-trivial central elements in Jn.
Take a generator sp,q of Jn. Since csp,q = sp,qc, Lemmas 2.3 and 2.4 leave us with two options.
Option 1: The words wsp,q and sp,qw are irreducible. Then sp,qw can be transformed to wsp,q

by commutation and commutation-conjugation relations only. In particular, a letter l in sp,qw can be
(conjugation-)commuted to the end of the word and yield the letter sp,q.

Case 1: The letter l is the initial letter sp,q of sp,qw. At the level of Gauss diagrams, this means

that all letters in the word d(w) ∈ FDn commute with s(c)τp,...,q in Dn.
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Case 2: The letter l is from the word w. This means that (conjugation-)commutation can trans-
form w into w′sp,q. But then wsp,q = w′sp,qsp,q = w′ in Jn, and the word wsp,q is no longer
minimal.

Option 2: The words wsp,q and sp,qw are reducible (simultaneously, since all minimal representat-
ives of a cactus have the same length). Recalling that the word w is minimal, and looking what this
means for wsp,q on the Dn side, one concludes that we are in the situation of the Case 2 above: a letter
l′ can be (conjugation-)commuted to the end of w, so that w becomes w′sp,q. But the same argument
applied to sp,qw shows that a letter l′′ can be (conjugation-)commuted to the beginning of w, so that
w becomes sp,qw′′. Again, two cases are possible.

Case 1: The letters l′ and l′′ occupy the same position in w. At the level of Gauss diagrams, this
means that all letters in the word d(w) ∈ FDn commute with s(c)τp,...,q in Dn.

Case 2: The letters l′ and l′′ occupy different positions in w. Then (conjugation-)commutation
can transform w into sp,qusp,q. The relation wsp,q = sp,qw implies usp,q = sp,qu in Jn, hence
w = sp,qusp,q = usp,qsp,q = u in Jn. We get a shorter word u representing the same cactus as
w, which contradicts the minimality of w.

Since these arguments work for any letter sp,q, one concludes that the diagram d(c) ∈ Dn represented

by the word d(w) ∈ FDn is central, as claimed. �

Theorem 4.2. The pure cactus subgroup PJn has trivial centralizer in Jn whenever n > 3. In
particular, its center is trivial.

The exceptional case n = 3 can be treated by hand. We have

J3 ≃ FC2 ⋊ Z2,

where the free Coxeter subgroup 〈s1,2, s2,3〉 ≃ FC2 is generated by the 2-leaf cacti, and the generator
s1,3 of the Z2 part acts on the FC2 by permuting s1,2 and s2,3. Further,

PJ3 = 〈a := s1,2s2,3s1,2s1,3〉 ≃ Z,

and its centralizer in J3 is
CJ3

(PJ3) = 〈b := s1,2s1,3〉 ≃ Z.

Note that a = b3. See Appendix A for more detail.

Proof. Let w ∈ FJn be a word representing a non-trivial element c ∈ Jn commuting with every pure
cactus. It can be assumed of minimal length among such words.

Any generator sp,q with leaf number > 2 can be transformed into a pure cactus by attaching some
2-leaf generators:

s̃p,q := sp,qsp1,p1+1sp2,p2+1 · · · ,

since neighbouring transpositions generate the symmetric group Sn. This can be done in multiple ways;
any choice will work for us. The commuting relation cs̃p,q = s̃p,qc can be analysed along the lines of the

proof of Theorem 4.1. One concludes that all letters in the word d(w) ∈ FDn commute with s(c)sp,q in

Dn. Thus all letters in d(w) are almost friendly, that is, commute with all the τI of size |I| > 2.
Let us now prove that τ1,2,...,n is the only almost friendly generator of Dn when n > 3. Indeed, given

a proper subset I  {1, 2, . . . , n} of size > 2, one can replace one of its elements with another element
from {1, 2, . . . , n}, and get a subset I ′ of size > 2 such that τI and τI′ do not commute in Dn. For a
subset of size 2 the argument is similar, except that one replaces an element with two new ones; there
is enough place for it in {1, 2, . . . , n} since n > 3.

Thus the centralizer of PJn can contain only the d-preimage s1,n of τ1,2,...,n. But this element does
not commute with s1,3s1,2s2,3s1,2 ∈ PJn, since

d(s1,ns1,3s1,2s2,3s1,2) = τ1,2,...,nτn−2,n−1,nτn−2,n−1τn−2,nτn−1,n and

d(s1,3s1,2s2,3s1,2s1,n) = τ1,2,3τ2,3τ1,3τ1,2τ1,2,...,n = τ1,2,...,nτ1,2,3τ2,3τ1,3τ1,2

are distinct in Dn when n > 3. �
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Theorem 4.3. The cactus group Jn has no odd torsion.

Proof. Fix an odd prime p. Among non-trivial p-torsion elements in Jn (if they exist), choose an
element c with the shortest possible representative w. According to Proposition 2.5, the triviality of
cp implies that in the word wp a letter l can be (conjugation-)commuted to the right towards a letter
l′, so that the two get annihilated.

Case 1: The letters l and l′ occupy different positions in the qth and q′th copies of w respectively.
We have q < q′ since w is irreducible. One can assume l to be in the last position, and l′ in
the first position (otherwise the letters of w should be (conjugation-)commuted accordingly).
Remove the first letter of w and put it to the end; let w′ be the resulting word. It represents a
non-trivial p-torsion element c′ ∈ Jn (which is a conjugate of c). The word w′p is obtained from
wp by moving the first letter to the end. In w′p, the letters l and l′ can still be (conjugation-
)commuted together and annihilated. The letter l remains in the qth copy of w′, whereas the
letter l′ is now in the (q′ − 1)st copy. They are still in different positions in their respective
copies. Repeating this argument, one gets a non-trivial p-torsion element represented by a word
w̃ with an annihilation possibility inside w̃ (case q = q′), hence with a representative shorter
than w. This contradicts the minimality of w.

Case 2: The letters l and l′ occupy the same position i in different copies of w. Consider the
word

d(wp) = d(w) td(w) t2

d(w) . . . tp−1

d(w),

where t = s(c). Then the letters of d(wp) ∈ FDn corresponding to the p copies of the ith

letter l from w are τ, tτ, t2

τ, . . . , tp−1

τ . Since p is prime, the permutation t is of order p or 1
(as tp = s(c)p = s(cp) = s(1) = Id). In its orbit containing τ , two elements, corresponding
to l and l′ in wp, can be commuted together and annihilated, thus coincide. The p letters in
d(wp) corresponding to l are thus all identical, and can be commuted all through the word
d(wp). Since the word d(wp) represents the trivial Gauss diagram, it contains an even number
of copies of the letter τ , and thus at least one copy different from the p copies mentioned above;
here we used that p is odd for the first time in this proof. Thus τ appears at least twice in

one of the words d(w), td(w), t2

d(w), . . . , tp−1

d(w), where its two occurrences can be moved
together and annihilated. This contradicts the minimality of w. �

Theorem 4.4. The cactus group J2k has torsion of order 2k.

Proof. Consider the cacti defined inductively by

t1 = s1,2,

t2 = s1,2s1,4, · · ·

tk+1 = tks1,2k+1.

The cactus tk is defined in the group Jn whenever n ≥ 2k. Let us prove by induction that tk is of
order 2k. For k = 1, this is just the idempotence of s1,2. To move from k to k + 1, observe that

t2
k+1 = (tks1,2k+1)2 = tk(s1,2k+1tks1,2k+1) = tkt′

k.

In the word t′

k := s1,2k+1tks1,2k+1, the first letter s1,2k+1 can be conjugate-commuted all the way to

the right and annihilated with the last letter. In the resulting word, the indices of all letters are > 2k.
Thus the cactus tk and its conjugate t′

k commute. Since both are of order 2k by assumption, so is their

product t2
k+1. Hence the order of tk+1 is 2k+1. �

Theorem 4.5. The pure cactus group PJn is torsionless.

Proof. By Theorem 4.3, it is sufficient to show that PJn has no 2-torsion. Assume that there is
some. Among non-trivial 2-torsion elements in PJn, choose an element c with the shortest possible
representative w. Following the proof of Theorem 4.3, one concludes that d(w) is a product of pairwise
commuting generators. In particular, one can reorganise the word w by (conjugation-)commutation
into a word w′ so that the leaf number of its letters never increases from left to right. Let sp,q be the
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first letter of w. Viewing s(c) as a permutation on the set {1, 2, . . . , n}, let us trace what it does to the
element p. First, s(sp,q) sends p to position q. The next letter whose associated permutation moves
this element has to be of the form sp′,q with p′ > p, due to the pairwise commutativity of the letters

of d(w′). The next letter moving this element is sp′,q′ with q′ < q, and so on. We observe a retracting
ping-pong-like trajectory. Overall, the permutation s(c) moves our element strictly to the right, and
thus cannot be trivial. Hence the cactus c cannot be pure. �

Appendix A. A one-relator presentation for PJ4

The goal of this appendix is to provide explicit group presentations for PJ3 and PJ4. First let us
state simpler presentations for J3 and J4 which can be easily obtained using Tietze transformations:

Proposition A.1. The cactus groups J3 and J4 admit the following group presentations:

J3 ≃ 〈s1,2, s1,3 | s
2
1,2 = s2

1,3 = 1〉 ∼= Z2 ∗ Z2

J4 ≃

〈 s2
1,2 = s2

1,3 = s2
1,4 = 1,

s1,2, s1,3, s1,4 s1,2s1,4s1,2s1,4 = s1,4s1,2s1,4s1,2,
s1,4s1,3s1,2s1,3 = s1,3s1,2s1,3s1,4

〉

.

Similar presentations can be produced for general n.

Corollary A.2. The pure cactus group PJ3 admits the following group presentation:

PJ3 = 〈(s1,2s1,3)3〉 ≃ Z.

Proof. The cactus group J3 is the RACG Z2 ∗Z2 generated by s1,2 and s1,3, and the symmetric group
S3 admits the presentation S3 ≃ 〈s1, s2 | s2

1 = s2
2 = 1, (s1s2)3 = 1〉, which, when s2 is replaced

with s′

2 = s1s2s1, becomes S3 ≃ 〈s1, s′

2 | s2
1 = (s′

2)2 = 1, (s1s′

2)3 = 1〉. Since s(s1,2) = s1 and
s(s1,3) = s1s2s1 = s′

2, the kernel of s is freely generated by (s1,2s1,3)3. �

Note that the generator of PJ3 above can be rewritten in a shorter form:

a := (s1,2s1,3)3 = s1,2(s1,3s1,2s1,3)s1,2s1,3 = s1,2s2,3s1,2s1,3.

Theorem A.3. The pure cactus group PJ4 admits the following group presentation:

PJ4 = 〈α, β, γ, δ, ǫ | αγǫβǫα−1δ−1βγδ−1 = 1〉,

where α = (s1,3s1,2)3,

β = s1,2s1,3s1,4s1,3s1,4s1,2s1,4 = s1,3s1,4s1,3(s1,2s1,4)2,

γ = s1,2s1,4s1,2(s1,3s1,4)2,

δ = s1,3(s1,2s1,4)2s1,3s1,4,

ǫ = (s1,4s1,2s1,3s1,2)2.

We will derive this presentation by hand, using the Reidemeister–Schreier method. Our computa-
tions were verified in GAP by Neha Nanda and John Guaschi.

The group PJ4 is thus a one-relator group, where the relation is not a power. Applying Theorem
4.12 of [MKS04], we then obtain another proof of the absence of torsion in PJ4. One can also derive
several other nice properties of PJ4, using the classical theory of one-relator groups (see for instance
[MKS04, LS01, Put] and references therein): PJ4 is locally indicable and of cohomological dimension
≤ 2; it has algorithmically decidable word problem; it satisfies the Tits alternative: every its subgroup
is either solvable or contains a free group of rank 2; its presentation 2-complex is aspherical.

Note that in our presentation of PJ4, we used the generating set {s1,2, s1,3, s1,4} of J4. One obtains
shorter and more manageable expressions by including the generators si,j with i > 1:

α = (s1,3s1,2)3 = s1,3s1,2s2,3s1,2, β = s1,4s2,4s1,3s1,2s3,4,

γ = s1,2s3,4s2,4s1,3s1,4, δ = s1,3s1,2s3,4s1,3s1,4,

ǫ = s3,4s2,3s2,4s1,2s2,3s1,3.
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In particular, α is the inverse of the (image of the) generator a of PJ3 from Corollary A.2. Also, some
generators can be replaced with shorter and/or more meaningful ones:

(a) ǫ ❀ ζ = ǫα−1 = s2,4s2,3s3,4s2,3, which is the generator α “shifted” to the right (in other words,
the inclusion of J3 into J4 given by sp,q 7→ sp+1,q+1 sends a−1 to ζ);
(b) γ ❀ η = βγ = (s1,3s2,4)2, which is the commutator of s1,3 and s2,4;
(c) δ ❀ θ = α−1δ = s1,2s2,3s1,2s1,3s1,3s1,2s3,4s1,3s1,4 = s1,2s2,3s3,4s1,3s1,4;

(d)
β ❀ κ = θη−1β = s1,2s2,3s3,4s1,3s1,4 · s2,4s1,3s2,4s1,3 · s1,4s2,4s1,3s1,2s3,4

= s1,2s2,3s3,4s1,4s2,4 · s2,4s1,3s2,4s1,3 · s1,3s2,4s1,4s1,2s3,4

= s1,2s2,3s3,4s1,4s1,3s1,4s1,2s3,4

= s1,2s2,3s3,4s2,4s3,4s1,2

= s1,2 · s2,3s3,4s2,3s2,4 · s1,2,

which is ζ−1 conjugated by s1,2.

The generators α, ζ, κ, θ and η are depicted in Fig. 5.

α = ζ =

κ = θ =

η =

Figure 5. Generators of the group PJ4

Observe that the squares α2, ζ2 and κ2 can be rewritten using 2-leaf generators only, and yield 3 out
of the 7 free generators of the pure twin group (also called the planar pure braid group) PT w4 from
[Mos20].

Remark A.4. In [Dev99], the group PJ4 was given a topological interpretation. It is the fundamental
group of the connected sum of five real projective planes. This yields its one-relator presentation of
the following form:

PJ4 = 〈 α1, α2, α3, α4, α5 | α2
1α2

2α2
3α2

4α2
5 = 1 〉.

However, it seems difficult to find explicit expressions of the generators αk in terms of the generators
si,j of the whole cactus group J4.

Proof of Theorem A.3. Let us first recall the Reidemeister–Schreier method, in order to fix notations.
Let G be a group with presentation G = 〈X | R 〉, where X = {x1, . . . , xp} is the set of generators

and R = {r1, . . . , rq} is the set of relations. Let F (X) be the free group on X. A Schreier transversal
of a subgroup H in G is a set T of reduced words in the generators {x1, . . . , xp} containing exactly one
representative of every right coset of H, and together with each word containing all its prefixes. Any
subgroup of G admits a Schreier transversal [MKS04].
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Fix a Schreier transversal T of H. Denote by − the map F (X)→ T sending w to its representative
w ∈ T . For any k ∈ T and xi ∈ X, put

ak,xi
= (kxi)(kxi)

−1.

According to Theorem 2.9 of [MKS04], H admits a group presentation having as generators all the
non-trivial ak,xi

. A system of relations is constructed as follows. Let w = xε1

i1
xε2

i1
. . . xεm

im
, where

εl = ±1 and xil
∈ X for l = 1, . . . , m. The rewriting function is defined as

τ(w) = aε1

ki1
,xi1

aε2

ki2
,xi2

. . . aεm

kim ,xim
,

where kij
=







xε1

i1
· · · x

εj−1

ij−1
if εj = 1,

xε1

i1
· · · x

εj

ij
if εj = −1.

A complete set of relations for H is given by {τ(krjk−1) | 1 ≤ j ≤ q, k ∈ T}.
We now turn to our concrete subgroup H = PJ4 of G = J4. Fix the following Schreier transversal:

K =























k1 = 1, k2 = s1,2, k3 = s1,3, k4 = s1,4, k5 = s1,2s1,3, k6 = s1,2s1,4, k7 = s1,3s1,2,
k8 = s1,3s1,4, k9 = s1,4s1,2, k10 = s1,4s1,3, k11 = s1,2s1,3s1,2, k12 = s1,2s1,3s1,4,
k13 = s1,2s1,4s1,2, k14 = s1,2s1,4s1,3, k15 = s1,3s1,2s1,4, k16 = s1,3s1,4s1,2,
k17 = s1,3s1,4s1,3, k18 = s1,4s1,2s1,3, k19 = s1,4s1,2s1,4, k20 = s1,4s1,3s1,2,
k21 = s1,4s1,3s1,4, k22 = s1,2s1,3s1,2s1,4, k23 = s1,2s1,3s1,4s1,2, k24 = s1,2s1,4s1,3s1,2























.

The non-trivial generators of PJ4 are:
ak7,s1,3

= s1,3s1,2s1,3s1,2s1,3s1,2

ak11,s1,3
= s1,2s1,3s1,2s1,3s1,2s1,3

ak12,s1,3
= s1,2s1,3s1,4s1,3s1,4s1,2s1,4

ak13,s1,3
= s1,2s1,4s1,2s1,3s1,4s1,3s1,4

ak13,s1,4
= s1,2s1,4s1,2s1,4s1,3s1,4s1,3

ak14,s1,4
= s1,2s1,4s1,3s1,4s1,3s1,2s1,4

ak15,s1,2
= s1,3s1,2s1,4s1,2s1,4s1,3s1,4

ak15,s1,3
= s1,3s1,2s1,4s1,3s1,2s1,3s1,4s1,2

ak16,s1,3
= s1,3s1,4s1,2s1,3s1,2s1,4s1,3s1,2

ak16,s1,4
= s1,3s1,4s1,2s1,4s1,2s1,3s1,4

ak17,s1,2
= s1,3s1,4s1,3s1,2s1,4s1,2s1,4

ak17,s1,4
= s1,3s1,4s1,3s1,4s1,2s1,4s1,2

ak18,s1,2
= s1,4s1,2s1,3s1,2s1,4s1,2s1,3s1,2

ak18,s1,4
= s1,4s1,2s1,3s1,4s1,3s1,4s1,2

ak19,s1,2
= s1,4s1,2s1,4s1,2s1,3s1,4s1,3

ak19,s1,3
= s1,4s1,2s1,4s1,3s1,4s1,3s1,2

ak20,s1,3
= s1,4s1,3s1,2s1,3s1,4s1,2s1,3s1,2

ak20,s1,4
= s1,4s1,3s1,2s1,4s1,2s1,4s1,3

ak21,s1,2
= s1,4s1,3s1,4s1,2s1,4s1,2s1,3

ak21,s1,3
= s1,4s1,3s1,4s1,3s1,2s1,4s1,2

ak22,s1,2
= s1,2s1,3s1,2s1,4s1,2s1,3s1,2s1,4

ak22,s1,3
= s1,2s1,3s1,2s1,4s1,3s1,2s1,3s1,4

ak23,s1,3
= s1,2s1,3s1,4s1,2s1,3s1,2s1,4s1,3

ak23,s1,4
= s1,2s1,3s1,4s1,2s1,4s1,2s1,3s1,4s1,2

ak24,s1,3
= s1,2s1,4s1,3s1,2s1,3s1,4s1,2s1,3

ak24,s1,4
= s1,2s1,4s1,3s1,2s1,4s1,2s1,4s1,3s1,2

We detail only non-trivial relations of type τ(kRk−1):
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τ(k1(s1,2s1,3s1,4s1,3)2k−1
1 ) = τ(s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3)

= ak1,s1,2
ak2,s1,3

ak5,s1,4
ak12,s1,3

ak19,s1,2
ak17,s1,3

ak8,s1,4
ak3,s1,3

= ak12,s1,3
ak19,s1,2

τ(k1(s1,2s1,4)4k−1
1 ) = τ(s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4)

= ak1,s1,2
ak2,s1,4

ak6,s1,2
ak13,s1,4

ak17,s1,2
ak19,s1,4

ak9,s1,2
ak4,s1,4

= ak13,s1,4
ak17,s1,2

τ(k2(s1,2s1,3s1,4s1,3)2k−1
2 ) = τ(s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2)

= ak1,s1,2
ak2,s1,2

ak1,s1,3
ak3,s1,4

ak8,s1,3
ak17,s1,2

ak19,s1,3
ak12,s1,4

ak5,s1,3
ak2,s1,2

= ak17,s1,2
ak19,s1,3

τ(k2(s1,2s1,4)4k−1
2 ) = τ(s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2)

= ak1,s1,2
ak2,s1,2

ak1,s1,4
ak4,s1,2

ak9,s1,4
ak19,s1,2

ak17s1,4
ak13,s1,2

ak6,s1,4
ak2,s1,2

= ak19,s1,2
ak17s1,4

τ(k3(s1,2s1,3s1,4s1,3)2k−1
3 ) = τ(s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,3)

= ak1,s1,3
ak3,s1,2

ak7,s1,3
ak11,s1,4

ak22,s1,3
ak20,s1,2

ak10,s1,3
ak4,s1,4

ak1,s1,3
ak3,s1,3

= ak7,s1,3
ak22,s1,3

τ(k3(s1,2s1,4)4k−1
3 ) = τ(s1,3s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,3)

= ak1,s1,3
ak3,s1,2

ak7,s1,4
ak15,s1,2

ak21,s1,4
ak10,s1,2

ak20,s1,4
ak16,s1,2

ak8,s1,4
ak3,s1,3

= ak15,s1,2
ak20,s1,4

τ(k4(s1,2s1,3s1,4s1,3)2k−1
4 ) = τ(s1,4s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,4)

= ak1,s1,4
ak4,s1,2

ak9,s1,3
ak18,s1,4

ak14,s1,3
ak6,s1,2

ak13,s1,3
ak21,s1,4

ak10,s1,3
ak4,s1,4

= ak18,s1,4
ak13,s1,3

τ(k4(s1,2s1,4)4k−1
4 ) = τ(s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,4)

= ak1,s1,4
ak4,s1,2

ak9,s1,4
ak19,s1,2

ak17,s1,4
ak13,s1,2

ak6,s1,4
ak2,s1,2

ak1,s1,4
ak4,s1,4

= ak19,s1,2
ak17,s1,4

τ(k5(s1,2s1,3s1,4s1,3)2k−1
5 ) = τ(s1,2s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,2
ak11,s1,3

ak7,s1,4
ak15,s1,3

ak24,s1,2
ak14,s1,3

ak6,s1,4
ak2,s1,3

ak5,s1,3
ak2,s1,2

=
ak11,s1,3

ak15,s1,3

τ(k5(s1,2s1,4)4k−1
5 ) = τ(s1,2s1,3s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,2
ak11,s1,4

ak22,s1,2
ak18,s1,4

ak14,s1,2
ak24,s1,4

ak23,s1,2
ak12,s1,4

ak5,s1,3
ak2,s1,2

=
ak22,s1,2

ak18,s1,4
ak24,s1,4

τ(k6(s1,2s1,3s1,4s1,3)2k−1
6 ) = τ(s1,2s1,4s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,4s1,2)

= ak1,s1,2
ak2,s1,4

ak6,s1,2
ak13,s1,3

ak21,s1,4
ak10,s1,3

ak4,s1,2
ak9,s1,3

ak18,s1,4
ak14,s1,3

ak6,s1,4
ak2,s1,2

=
ak13,s1,3

ak18,s1,4

τ(k6(s1,2s1,4)4k−1
6 ) = τ(s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,4s1,2)

= ak1,s1,2
ak2,s1,4

ak6,s1,2
ak13,s1,4

ak17,s1,2
ak19,s1,4

ak9,s1,2
ak4,s1,4

ak1,s1,2
ak2,s1,4

ak6,s1,4
ak2,s1,2

=
ak13,s1,4

ak17,s1,2

τ(k7(s1,2s1,3s1,4s1,3)2k−1
7 ) = τ(s1,3s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,3)

= ak1,s1,3
ak3,s1,2

ak7,s1,2
ak3,s1,3

ak1,s1,4
ak4,s1,3

ak10,s1,2
ak20,s1,3

ak22,s1,4
ak11,s1,3

ak7,s1,2
ak3,s1,3

=
ak20,s1,3

ak11,s1,3

τ(k7(s1,2s1,4)4k−1
7 ) = τ(s1,3s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,3)

= ak1,s1,3
ak3,s1,2

ak7,s1,2
ak3,s1,4

ak8,s1,2
ak16,s1,4

ak20,s1,2
ak10,s1,4

ak21,s1,2
ak15,s1,4

ak7,s1,2
ak3,s1,3

=
ak16,s1,4

ak21,s1,2

τ(k8(s1,2s1,3s1,4s1,3)2k−1
8 ) = τ(s1,3s1,4s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,4s1,3)

= ak1,s1,3
ak3,s1,4

ak8,s1,2
ak16,s1,3

ak23,s1,4
ak24,s1,3

ak15,s1,2
ak21,s1,3

ak13,s1,4
ak17,s1,3

ak8,s1,4
ak3,s1,3

=
ak16,s1,3

ak23,s1,4
ak24,s1,3

ak15,s1,2
ak21,s1,3

ak13,s1,4

τ(k8(s1,2s1,4)4k−1
8 ) = τ(s1,3s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,4s1,3)

= ak1,s1,3
ak3,s1,4

ak8,s1,2
ak16,s1,4

ak20,s1,2
ak10,s1,4

ak21,s1,2
ak15,s1,4

ak7,s1,2
ak3,s1,4

ak8,s1,4
ak3,s1,3

=
ak16,s1,4

ak21,s1,2

τ(k9(s1,2s1,3s1,4s1,3)2k−1
9 ) = τ(s1,4s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,4)

= ak1,s1,4
ak4,s1,2

ak9,s1,2
ak4,s1,3

ak10,s1,4
ak21,s1,3

ak13,s1,2
ak6,s1,3

ak14,s1,4
ak18,s1,3

ak9,s1,2
ak4,s1,4

=
ak21,s1,3

ak14,s1,4

τ(k9(s1,2s1,4)4k−1
9 ) = τ(s1,4s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4)

= ak1,s1,4
ak4,s1,2

ak9,s1,2
ak4,s1,4

ak1,s1,2
ak2,s1,4

ak6,s1,2
ak13,s1,4

ak17,s1,2
ak19,s1,4

ak9,s1,2
ak4,s1,4

=
ak13,s1,4

ak17,s1,2
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τ(k10(s1,2s1,3s1,4s1,3)2k−1
10 ) = τ(s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,3s1,4) =

ak1,s1,4
ak4,s1,3

ak10,s1,2
ak20,s1,3

ak22,s1,4
ak11,s1,3

ak7,s1,2
ak3,s1,3

ak1,s1,4
ak4,s1,3

ak10,s1,3
ak4,s1,4

= ak20,s1,3
ak11,s1,3

τ(k10(s1,2s1,4)4k−1
10 ) = τ(s1,4s1,3s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,3s1,4)

= ak1,s1,4
ak4,s1,3

ak10,s1,2
ak20,s1,4

ak16,s1,2
ak8,s1,4

ak3,s1,2
ak7,s1,4

ak15,s1,2
ak21,s1,4

ak10,s1,3
ak4,s1,4

=
ak20,s1,4

ak15,s1,2

τ(k11s2
1,3k−1

11 ) = τ(s1,2s1,3s1,2s1,3s1,3s1,2s1,3s1,2) = ak1,s1,2
ak2,s1,3

ak5,s1,2
ak11,s1,3

ak7,s1,3
ak11,s1,2

ak5,s1,3
ak2,s1,2

= ak11,s1,3
ak7,s1,3

τ(k11(s1,2s1,3s1,4s1,3)2k−1
11 ) = τ(s1,2s1,3s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,2
ak11,s1,2

ak5,s1,3
ak2,s1,4

ak6,s1,3
ak14,s1,2

ak24,s1,3
ak15,s1,4

ak7,s1,3
ak11,s1,2

ak5,s1,3
ak2,s1,2

=
ak24,s1,3

ak7,s1,3

τ(k11(s1,2s1,4)4k−1
11 ) = τ(s1,2s1,3s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s,2
ak11,s1,2

ak5,s1,4
ak12,s1,2

ak23,s1,4
ak24,s1,2

ak14,s1,4
ak18,s1,2

ak22,s1,4
ak11,s1,2

ak5,s1,3
ak2,s1,2

=
ak23,s1,4

ak18,s1,2

τ(k12s2
1,3k−1

12 ) = τ(s1,2s1,3s1,4s1,3s1,3s1,4s1,3s1,2) = ak1,s1,2
ak2,s1,3

ak5,s1,4
ak12,s1,3

ak19,s1,3
ak12,s1,4

ak5,s1,3
ak2,s1,2

= ak12,s1,3
ak19,s1,3

τ(k12(s1,2s1,3s1,4s1,3)2k−1
12 ) = τ(s1,2s1,3s1,4s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,4s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,4
ak12,s1,2

ak23,s1,3
ak16,s1,4

ak20,s1,3
ak22,s1,2

ak18,s1,3
ak9,s1,4

ak19,s1,3
ak12,s1,4

ak5,s1,3
ak2,s1,2

=
ak23,s1,3

ak16,s1,4
ak20,s1,3

ak22,s1,2
ak19,s1,3

τ(k12(s1,2s1,4)4k−1
12 ) = τ(s1,2s1,3s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,4s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,4
ak12,s1,2

ak23,s1,4
ak24,s1,2

ak14,s1,4
ak18,s1,2

ak22,s1,4
ak11,s1,2

ak5,s1,4
ak12,s1,4

ak5,s1,3
ak2,s1,2

=
ak23,s1,4

ak14,s1,4
ak18,s1,2

τ(k13s2
1,3k−1

13 ) = τ(s1,2s1,4s1,2s1,3s1,3s1,2s1,4s1,2) = ak1,s1,2
ak2,s1,4

ak6,s1,2
ak13,s1,3

ak21,s1,3
ak13,s1,2

ak6,s1,4
ak2,s1,2

= ak13,s1,3
ak21,s1,3

τ(k13s2
1,4k−1

13 ) = τ(s1,2s1,4s1,2s1,4s1,4s1,2s1,4s1,2) = ak1,s1,2
ak2,s1,4

ak6,s1,2
ak13,s1,4

ak17,s1,4
ak13,s1,2

ak6,s1,4
ak2,s1,2

= ak13,s1,4
ak17,s1,4

τ(k13(s1,2s1,3s1,4s1,3)2k−1
13 ) = τ(s1,2s1,4s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,4s1,2)

= ak1,s1,2
ak2,s1,4

ak6,s1,2
ak13,s1,2

ak6,s1,3
ak14,s1,4

ak18,s1,3
ak9,s1,2

ak4,s1,3
ak10,s1,4

ak21,s1,3
ak13,s1,2

ak6,s1,4
ak2,s1,2

=
ak14,s1,4

ak21,s1,3

τ(k13(s1,2s1,4)4k−1
13 ) = τ(s1,2s1,4s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2)

= ak1,s1,2
ak2,s1,4

ak6,s1,2
ak13,s1,2

ak6,s1,4
ak2,s1,2

ak1,s1,4
ak4,s1,2

ak9,s1,4
ak19,s1,2

ak17,s1,4
ak13,s1,2

ak6,s1,
ak2,s1,2

=
ak19,s1,2

ak17,s1,4

τ(k14s2
1,4k−1

14 )τ(s1,2s1,4s1,3s1,4s1,4s1,3s1,4s1,2) = ak1,s1,2
ak2,s1,4

ak6,s1,3
ak14,s1,4

ak18,s1,4
ak14,s1,3

ak6,s1,4

ak2,s1,2
= ak14,s1,4

ak18,s1,4

τ(k14(s1,2s1,3s1,4s1,3)2k−1
14 ) = τ(s1,2s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,3s1,4s1,2)

= ak1,s1,2
ak2,s1,4

ak6,s1,3
ak14,s1,2

ak24,s1,3
ak15,s1,4

ak7,s1,3
ak11,s1,2

ak5,s1,3
ak2,s1,4

ak6,s1,3
ak14,s1,3

ak6,s1,4
ak2,s1,2

=
ak24,s1,3

ak7,s1,3

τ(k14(s1,2s1,4)4k−1
14 ) = τ(s1,2s1,4s1,3s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,3s1,4s1,2)

= ak1,s1,2
ak2,s1,4

ak6,s1,3
ak14,s1,2

ak24,s1,4
ak23,s1,2

ak12,s1,4
ak5,s1,2

ak11,s1,4
ak22,s1,2

ak18,s1,4
ak14,s1,3

ak6,s1,4
ak2,s1,2

=
ak24,s1,4

ak22,s1,2
ak18,s1,4

τ(k15s2
1,2k−1

15 ) = τ(s1,3s1,2s1,4s1,2s1,2s1,4s1,2s1,3) = ak1,s1,3
ak3,s1,2

ak7,s1,4
ak15,s1,2

ak21,s1,2
ak15,s1,4

ak7,s1,2
ak3,s1,3

= ak15,s1,2
ak21,s1,2

τ(k15s2
1,3k−1

15 ) = τ(s1,3s1,2s1,4s1,3s1,3s1,4s1,2s1,3) = ak1,s1,3
ak3,s1,2

ak7,s1,4
ak15,s1,3

ak24,s1,3
ak15,s1,4

ak7,s1,2
ak3,s1,3

= ak15,s1,3
ak24,s1,3

τ(k15(s1,2s1,3s1,4s1,3)2k−1
15 ) = τ(s1,3s1,2s1,4s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,4s1,2s1,3)

= ak1,s1,3
ak3,s1,2

ak7,s1,4
ak15,s1,2

ak21,s1,3
ak13,s1,4

ak17,s1,3
ak8,s1,2

ak16,s1,3
ak23,s1,4

ak24,s1,3
ak15,s1,4

ak7,s1,2
ak3,s1,3

=
ak15,s1,2

ak21,s1,3
ak13,s1,4

ak16,s1,3
ak23,s1,4

ak24,s1,3
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τ(k15(s1,2s1,4)4k−1
15 ) = τ(s1,3s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,4s1,2s1,3)

= ak1,s1,3
ak3,s1,2

ak7,s1,4
ak15,s1,2

ak21,s1,4
ak10,s1,2

ak20,s1,4
ak16,s1,2

ak8,s1,4
ak3,s1,2

ak7,s1,4
ak15,s1,4

ak7,s1,2
ak3,s1,3

=
ak15,s1,2

ak20,s1,4

τ(k16s2
1,3k−1

16 ) = τ(s1,3s1,4s1,2s1,3s1,3s1,2s1,4s1,3) = ak1,s1,3
ak3,s1,4

ak8,s1,2
ak16,s1,3

ak23,s1,3
ak16,s1,2

ak8,s1,4

ak3,s1,3
= ak16,s1,3

ak23,s1,3

τ(k16s2
1,4k−1

16 ) = τ(s1,3s1,4s1,2s1,4s1,4s1,2s1,4s1,3) = ak1,s1,3
ak3,s1,4

ak8,s1,2
ak16,s1,4

ak20,s1,4
ak16,s1,2

ak8,s1,2

ak3,s1,3
= ak16,s1,4

ak20,s1,4

τ(k16(s1,2s1,3s1,4s1,3)2k−1
16 ) = τ(s1,3s1,4s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,4s1,3)

= ak1,s1,3
ak3,s1,4

ak8,s1,2
ak16,s1,2

ak8,s1,3
ak17,s1,4

ak13,s1,3
ak21,s1,2

ak15,s1,3
ak24,s1,4

ak23,s1,3
ak16,s1,2

ak8,s1,4
ak3,s1,3

=
ak17,s1,4

ak13,s1,3
ak21,s1,2

ak15,s1,3
ak24,s1,4

ak23,s1,3

τ(k16(s1,2s1,4)4k−1
16 ) = τ(s1,3s1,4s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,3)

= ak1,s1,3
ak3,s1,4

ak8,s1,2
ak16,s1,2

ak8,s1,4
ak3,s,2

ak7,s1,4
ak15,s1,2

ak21,s1,4
ak10,s1,2

ak20,s1,4
ak16,s1,2

ak8,s1,4
ak3,s1,3

=
ak15,s1,2

ak20,s1,4

τ(k17s2
1,2k−1

17 ) = τ(s1,3s1,4s1,3s1,2s1,2s1,3s1,4s1,3) = ak1,s1,3
ak3,s1,4

ak8,s1,3
ak17,s1,2

ak19,s1,2
ak17,s1,3

ak8,s1,4

ak3,s1,3
= ak17,s1,2

ak19,s1,2

τ(k17s2
1,4k−1

17 ) = τ(s1,3s1,4s1,3s1,3s1,3s1,3s1,4s1,3) = ak1,s1,3
ak3,s1,4

ak8,s1,3
ak17,s1,4

ak13,s1,4
ak17,s1,3

ak8,s1,4

ak3,s1,3
= ak17,s1,4

ak13,s1,4

τ(k17(s1,2s1,3s1,4s1,3)2k−1
17 ) = τ(s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,3s1,4s1,3)

= ak1,s1,3
ak3,s1,4

ak8,s1,3
ak17,s1,2

ak19,s1,3
ak12,s1,4

ak5,s1,3
ak2,s1,2

ak1,s1,3
ak3,s1,4

ak8,s1,3
ak17,s1,3

ak8,s1,4
ak3,s1,3

=
ak17,s1,2

ak19,s1,3

τ(k17(s1,2s1,4)4k−1
17 ) = τ(s1,3s1,4s1,3s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,3s1,4s1,3)

= ak1,s1,3
ak3,s1,4

ak8,s1,3
ak17,s1,2

ak19,s1,4
ak9,s1,2

ak4,s1,4
ak1,s1,2

ak2,s1,4
ak6,s1,2

ak13,s1,4
ak17,s1,3

ak8,s1,4
ak3,s1,3

=
ak17,s1,2

ak13,s1,4

τ(k18s2
1,2k−1

18 ) = τ(s1,4s1,2s1,3s1,2s1,2s1,3s1,2s1,4) = ak1,s1,4
ak4,s1,2

ak9,s1,3
ak18,s1,2

ak22,s1,2
ak18,s1,3

ak9,s1,2
ak4,s1,4

= ak18,s1,2
ak22,s1,2

τ(k18s2
1,4k−1

18 ) = τ(s1,4s1,2s1,3s1,4s1,4s1,3s1,2s1,4) = ak1,s1,4
ak4,s1,2

ak9,s1,3
ak18,s1,4

ak14,s1,4
ak18,s1,3

ak9,s1,2
ak4,s1,4

= ak18,s1,4
ak14,s1,4

τ(k18(s1,2s1,3s1,4s1,3)2k−1
18 ) = τ(s1,4s1,2s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,3s1,2s1,4)

= ak1,s1,4
ak4,s1,2

ak9,s1,3
ak18,s1,2

ak22,s1,3
ak20,s1,4

ak16,s1,3
ak23,s1,2

ak12,s1,3
ak19,s1,4

ak9,s1,3
ak18,s1,3

ak9,s1,2
ak4,s1,4

=
ak18,s1,2

ak22,s1,3
ak20,s1,4

ak16,s1,3
ak12,s1,3

τ(k18(s1,2s1,4)4k−1
18 ) = τ(s1,4s1,2s1,3s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,3s1,2s1,4)

= ak1,s1,4
ak4,s1,2

ak9,s1,3
ak18,s1,2

ak22,s1,4
ak11,s1,2

ak5,s1,4
ak12,s1,2

ak23,s1,4
ak24,s1,2

ak14,s1,4
ak18,s1,3

ak9,s1,2
ak4,s1,4

=
ak18,s1,2

ak23,s1,4
ak14,s1,4

τ(k19s2
1,2k−1

19 ) = τ(s1,4s1,2s1,4s1,2s1,2s1,4s1,2s1,4) = ak1,s1,4
ak4,s1,2

ak9,s1,4
ak19,s1,2

ak17,s1,2
ak19,s1,4

ak9,s1,2
ak4,s1,4

= ak19,s1,2
ak17,s1,2

τ(k19s2
1,3k−1

19 ) = τ(s1,4s1,2s1,4s1,3s1,3s1,4s1,2s1,4) = ak1,s1,4
ak4,s1,2

ak9,s1,4
ak19,s1,3

ak12,s1,3
ak19,s1,4

ak9,s1,2
ak4,s1,4

= ak19,s1,3
ak12,s1,3

τ(k19(s1,2s1,3s1,4s1,3)2k−1
19 ) = τ(s1,4s1,2s1,4s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,4s1,2s1,4)

= ak1,s1,4
ak4,s1,2

ak9,s1,4
ak19,s1,2

ak17,s1,3
ak8,s1,4

ak3,s1,3
ak1,s1,2

ak2,s1,3
ak5,s1,4

ak12,s1,3
ak19,s1,4

ak9,s1,2
ak4,s1,4

=
ak19,s1,2

ak12,s1,3

τ(k19(s1,2s1,4)4k−1
19 ) = τ(s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,4s1,2s1,4)

= ak1,s1,4
ak4,s1,2

ak9,s1,4
ak19,s1,2

ak17,s1,4
ak13,s1,2

ak6,s1,4
ak2,s1,2

ak1,s1,4
ak4,s1,2

ak9,s1,4
ak19,s1,4

ak9,s1,2
ak4,s1,4

=
ak19,s1,2

ak17,s1,4

τ(k20s2
1,3k−1

20 ) = τ(s1,4s1,3s1,2s1,3s1,3s1,2s1,3s1,4) = ak1,s1,4
ak4,s1,3

ak10,s1,2
ak20,s1,3

ak22,s1,3
ak20,s1,2

ak10,s1,3
ak4,s1,4

= ak20,s1,3
ak22,s1,3

τ(k20s2
1,4k−1

20 ) = τ(s1,4s1,3s1,2s1,4s1,4s1,2s1,3s1,4) = ak1,s1,4
ak4,s1,3

ak10,s1,2
ak20,s1,4

ak16,s1,4
ak20,s1,2

ak10,s1,3
ak4,s1,4

= ak20,s1,4
ak16,s1,4
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τ(k20(s1,2s1,3s1,4s1,3)2k−1
20 ) = τ(s1,4s1,3s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,4)

= ak1,s1,4
ak4,s1,3

ak10,s1,2
ak20,s1,2

ak10,s1,3
ak4,s1,4

ak1,s1,3
ak3,s1,2

ak7,s1,3
ak11,s1,4

ak22,s1,3
ak20,s1,2

ak10,s1,3
ak4,s1,4

=
ak7,s1,3

ak22,s1,3

τ(k20(s1,2s1,4)4k−1
20 ) = τ(s1,4s1,3s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,3s1,4)

= ak1,s1,4
ak4,s1,3

ak10,s1,2
ak20,s1,2

ak10,s1,4
ak21,s1,2

ak15,s1,4
ak7,s1,2

ak3,s1,4
ak8,s1,2

ak16,s1,4
ak20,s1,2

ak10,s1,3
ak4,s1,4

=
ak21,s1,2

ak16,s1,4

τ(k21s2
1,2k−1

21 ) = τ(s1,4s1,3s1,4s1,2s1,2s1,4s1,3s1,4) = ak1,s1,4
ak4,s1,3

ak10,s1,4
ak21,s1,2

ak15,s1,2
ak21,s1,4

ak10,s1,3
ak4,s1,4

= ak21,s1,2
ak15,s1,2

τ(k21s2
1,3k−1

21 ) = τ(s1,4s1,3s1,4s1,3s1,3s1,4s1,3s1,4) = ak1,s1,4
ak4,s1,3

ak10,s1,4
ak21,s1,3

ak13,s1,3
ak21,s1,4

ak10,s1,3
ak4,s1,4

= ak21,s1,3
ak13,s1,3

τ(k21(s1,2s1,3s1,4s1,3)2k−1
21 ) = τ(s1,4s1,3s1,4s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,4s1,3s1,4)

= ak1,s1,4
ak4,s1,3

ak10,s1,4
ak21,s1,2

ak15,s1,3
ak24,s1,4

ak23,s1,3
ak16,s1,2

ak8,s1,3
ak17,s1,4

ak13,s1,3
ak21,s1,4

ak10,s1,3
ak4,s1,4

=
ak21,s1,2

ak15,s1,3
ak24,s1,4

ak23,s1,3
ak17,s1,4

ak13,s1,3

τ(k21(s1,2s1,4)4k−1
21 ) = τ(s1,4s1,3s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,4s1,3s1,4)

= ak1,s1,4
ak4,s1,3

ak10,s1,4
ak21,s1,2

ak15,s1,4
ak7,s1,2

ak3,s1,4
ak8,s1,2

ak16,s1,4
ak20,s1,2

ak10,s1,4
ak21,s1,4

ak10,s1,3
ak4,s1,4

=
ak21,s1,2

ak16,s1,4

τ(k22s2
1,2k−1

22 ) = τ(s1,2s1,3s1,2s1,4s1,2s1,2s1,4s1,2s1,3s1,2) = ak1,s1,2
ak2,s1,3

ak5,s1,2
ak11,s1,4

ak22,s1,2

ak18,s1,2
ak22,s1,4

ak11,s1,2
ak5,s1,3

ak2,s1,2
= ak22,s1,2

ak18,s1,2

τ(k22s2
1,3k−1

22 ) = τ(s1,2s1,3s1,2s1,4s1,3s1,3s1,4s1,2s1,3s1,2) = ak1,s1,2
ak2,s1,3

ak5,s1,2
ak11,s1,4

ak22,s1,3

ak20,s1,3
ak22,s1,4

ak11,s1,2
ak5,s1,3

ak2,s1,2
= ak22,s1,3

ak20,s1,3

τ(k22(s1,2s1,3s1,4s1,3)2k−1
22 ) = τ(s1,2s1,3s1,2s1,4s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,4s1,2s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,2
ak11,s1,4

ak22,s1,2
ak18,s1,3

ak9,s1,4
ak19,s1,3

ak12,s1,2
ak23,s1,3

ak16,s1,4
ak20,s1,3

ak22,s1,4

ak11,s1,2
ak5,s1,3

ak2,s1,2
= ak22,s1,2

ak19,s1,3
ak23,s1,3

ak16,s1,4
ak20,s1,3

τ(k22(s1,2s1,4)4k−1
22 ) = τ(s1,2s1,3s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,4s1,2s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,2
ak11,s1,4

ak22,s1,2
ak18,s1,4

ak14,s1,2
ak24,s1,4

ak23,s1,2
ak12,s1,4

ak5,s1,2
ak11,s1,4

ak22,s1,4

ak11,s1,2
ak5,s1,3

ak2,s1,2
= ak22,s1,2

ak18,s1,4
ak24,s1,4

τ(k23s2
1,3k−1

23 ) = τ(s1,2s1,3s1,4s1,2s1,3s1,3s1,2s1,4s1,3s1,2) = ak1,s1,2
ak2,s1,3

ak5,s1,4
ak12,s1,2

ak23,s1,3

ak16,s1,3
ak23,s1,2

ak12,s1,4
ak5,s1,3

ak2,s1,2
= ak23,s1,3

ak16,s1,3

τ(k23s2
1,4k−1

23 ) = τ(s1,2s1,3s1,4s1,2s1,4s1,4s1,2s1,4s1,3s1,2) = ak1,s1,2
ak2,s1,3

ak5,s1,4
ak12,s1,2

ak23,s1,4

ak24,s1,4
ak23,s1,2

ak12,s1,4
ak5,s1,3

ak2,s1,2
= ak23,s1,4

ak24,s1,4

τ(k23(s1,2s1,3s1,4s1,3)2k−1
23 ) = τ(s1,2s1,3s1,4s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,4s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,4
ak12,s1,2

ak23,s1,2
ak12,s1,3

ak19,s1,4
ak9,s1,3

ak18,s1,2
ak22,s1,3

ak20,s1,4
ak16,s1,3

ak23,s1,2

ak12,s1,4
ak5,s1,3

ak2,s1,2
= ak12,s1,3

ak18,s1,2
ak22,s1,3

ak20,s1,4
ak16,s1,3

τ(k23(s1,2s1,4)4k−1
23 ) = τ(s1,2s1,3s1,4s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,3s1,2)

= ak1,s1,2
ak2,s1,3

ak5,s1,4
ak12,s1,2

ak23,s1,2
ak12,s1,4

ak5,s1,2
ak11,s1,4

ak22,s1,2
ak18,s1,4

ak14,s1,2
ak24,s1,4

ak23,s1,2

ak12,s1,4
ak5,s1,3

ak2,s1,2
= ak22,s1,2

ak18,s1,4
ak24,s1,4

τ(k24s2
1,3k−1

24 ) = τ(s1,2s1,4s1,3s1,2s1,3s1,3s1,2s1,3s1,4s1,2)ak1,s1,2
ak2,s1,4

ak6,s1,3
ak14,s1,2

ak24,s1,3

ak15,s1,3
ak24,s1,2

ak14,s1,3
ak6,s1,4

ak2,s1,2
= ak24,s1,3

ak15,s1,3

τ(k24s2
1,4k−1

24 ) = τ(s1,2s1,4s1,3s1,2s1,3s1,3s1,2s1,3s1,4s1,2) = ak1,s1,2
ak2,s1,4

ak6,s1,3
ak14,s1,2

ak24,s1,4

ak23,s1,4
ak24,s1,2

ak14,s1,3
ak6,s1,4

ak2,s1,2
= ak24,s1,4

ak23,s1,4

τ(k24(s1,2s1,3s1,4s1,3)2k−1
24 ) = τ(s1,2s1,4s1,3s1,2s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,3s1,2s1,3s1,4s1,2)

= ak1,s1,2
ak2,s1,4

ak6,s1,3
ak14,s1,2

ak24,s1,2
ak14,s1,3

ak6,s1,4
ak2,s1,3

ak5,s1,2
ak11,s1,3

ak7,s1,4
ak15,s1,3

ak24,s1,2

ak14,s1,3
ak6,s1,4

ak2,s1,2
= ak11,s1,3

ak15,s1,3

τ(k24(s1,2s1,4)4k−1
24 ) = τ(s1,2s1,4s1,3s1,2s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,4s1,2s1,3s1,4s1,2)

ak1,s1,2
ak2,s1,4

ak6,s1,3
ak14,s1,2

ak24,s1,2
ak14,s1,4

ak18,s1,2
ak22,s1,4

ak11,s1,2
ak5,s1,4

ak12,s1,2
ak23,s1,4

ak24,s1,2

ak14,s1,3
ak6,s1,4

ak2,s1,2
= ak14,s1,4

ak18,s1,2
ak23,s1,4
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This implies:
ak7,s1,3

= a−1
k11,s1,3

= ak15,s1,3
= ak20,s1,3

= a−1
k22,s1,3

= a−1
k24,s1,3

; ak12,s1,3
= a−1

k13,s1,4
= ak17,s1,2

= ak17,s1,4
=

a−1
k19,s1,2

= a−1
k19,s1,3

; ak13,s1,3
= ak14,s1,4

= a−1
k18,s1,4

= a−1
k21,s1,3

; ak15,s1,2
= ak16,s1,4

= a−1
k20,s1,4

= a−1
k21,s1,2

;

ak16,s1,3
= a−1

k23,s1,3
; ak18,s1,2

= a−1
k22,s1,2

; ak23,s1,4
= a−1

k24,s1,4
.

It follows that PJ4 is generated by ak7,s1,3
, ak12,s1,3

, ak13,s1,3
, ak15,s1,2

, ak16,s1,3
, ak18,s1,2

, ak23,s1,4
, and a

complete set of relations is:
ak7,s1,3

a−1
k23,s1,4

a−1
k16,s1,3

ak12,s1,3
ak13,s1,3

a−1
k15,s1,2

= 1; ak13,s1,3
ak18,s1,2

ak23,s1,4
= 1; and

ak7,s1,3
a−1

k18,s1,2
a−1

k12,s1,3
a−1

k16,s1,3
ak15,s1,2

= 1.

Therefore, using a−1
k23,s1,4

= ak13,s1,3
ak18,s1,2

and a−1
k16,s1,3

= ak12,s1,3
ak18,s1,2

a−1
k7,s1,3

a−1
k15,s1,2

, we get

PJ4 = 〈 ak7,s1,3
, ak12,s1,3

, ak13,s1,3
, ak15,s1,2

, ak18,s1,2
|

ak7,s1,3
ak13,s1,3

ak18,s1,2
ak12,s1,3

ak18,s1,2
a−1

k7,s1,3
a−1

k15,s1,2
ak12,s1,3

ak13,s1,3
a−1

k15,s1,2
= 1〉. �
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