
HAL Id: hal-03749224
https://normandie-univ.hal.science/hal-03749224v1

Submitted on 10 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SynWoodScape: Synthetic Surround-view Fisheye
Camera Dataset for Autonomous Driving

Ahmed Rida Sekkat, Yohan Dupuis, Varun Ravi Kumar, Hazem Rashed,
Senthil Yogamani, Pascal Vasseur, Paul Honeine

To cite this version:
Ahmed Rida Sekkat, Yohan Dupuis, Varun Ravi Kumar, Hazem Rashed, Senthil Yogamani, et al..
SynWoodScape: Synthetic Surround-view Fisheye Camera Dataset for Autonomous Driving. 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Oct 2022, Kyoto,
Japan. �hal-03749224�

https://normandie-univ.hal.science/hal-03749224v1
https://hal.archives-ouvertes.fr


1

SynWoodScape: Synthetic Surround-view Fisheye
Camera Dataset for Autonomous Driving

Ahmed Rida Sekkat, Yohan Dupuis, Varun Ravi Kumar, Hazem Rashed,
Senthil Yogamani, Pascal Vasseur, and Paul Honeine

Instance 
Segmentation

Semantic 
Segmentation

Motion 
Segmentation

Optical Flow

Event Camera

Depth Estimation

Syn
WoodScape

Bird’s Eye View

2D & 3D Bounding 
Boxes

IMU & GNSS

Fig. 1: Overview of all the SynWoodScape tasks. The dataset and the baseline code will be released in https://woodscape.valeo.com.

Abstract—Surround-view cameras are a primary sensor for
automated driving, used for near-field perception. It is one of the
most commonly used sensors in commercial vehicles primarily
used for parking visualization and automated parking. Four
fisheye cameras with a 190° field of view cover the 360° around the
vehicle. Due to its high radial distortion, the standard algorithms
do not extend easily. Previously, we released the first public
fisheye surround-view dataset named WoodScape. In this work,
we release a synthetic version of the surround-view dataset,
covering many of its weaknesses and extending it. Firstly, it is
not possible to obtain ground truth for pixel-wise optical flow
and depth. Secondly, WoodScape did not have all four cameras
annotated simultaneously in order to sample diverse frames.
However, this means that multi-camera algorithms cannot be
designed to obtain a unified output in birds-eye space, which
is enabled in the new dataset. We implemented surround-view
fisheye geometric projections in CARLA Simulator matching

A. R. Sekkat and P. Honeine are with Université de Rouen Normandie,
LITIS Lab, Rouen, France.

V. Ravi Kumar, H. Rashed are with Valeo DAR, Kronach, Germany.
S. Yogamani is with Valeo Vision Systems, Tuam, Ireland.
Y. Dupuis is with LINEACT CESI, Paris La Défense, France.
P. Vasseur is with MIS Lab, Université de Picardie Jules Verne, France.
This research has been partially funded by the ANR Project CLARA ANR-

18-CE33-0004.
The authors would like to thank Nawal Bouin and Pierre-Sylvain Luquet

from Normandie Valorisation for their support.

WoodScape’s configuration and created SynWoodScape. We re-
lease 80k images from the synthetic dataset with annotations for
10+ tasks1. We also release the baseline code and supporting
scripts.

Index Terms—Fisheye Cameras, Omnidirectional vision, Auto-
mated Driving, Synthetic Datasets.

I. INTRODUCTION

In autonomous driving (AD), the near field is a region
from 0 to 30 meters and 360° coverage around the vehicle.
Near-field perception is primarily needed for use cases, such
as automated parking, traffic jam assist, and urban driving,
where the predominant sensor suite includes surround-view
fisheye-cameras and ultrasonics [1]. Despite the importance
of such use cases, most research to date has focused on far-
field perception. Consequently, there are limited datasets and
research papers on near-field perception tasks. In contrast to
far-field, near-field perception is more challenging due to high
precision object detection requirements of 10 cm [2]. For
example, an autonomous car needs to be parked in a tight
space where high precision detection is required with no room
for error.

1An initial sample of the dataset is released in link.

ar
X

iv
:2

20
3.

05
05

6v
4 

 [
cs

.C
V

] 
 8

 A
ug

 2
02

2

https://woodscape.valeo.com
https://drive.google.com/drive/folders/1N5rrySiw1uh9kLeBuOblMbXJ09YsqO7I


2

Fig. 2: Sample images from the surround-view camera network showing wide field of view and 360° coverage. Real WoodScape images are marked
in red and synthetic SynWoodScape images are marked in green.

Surround-view fisheye cameras have been deployed in pre-
mium cars for over ten years, starting from visualization
applications on dashboard display units to provide near-field
perception for automated parking. Fisheye cameras have a
strong radial distortion that cannot be corrected without dis-
advantages, including reduced FoV and resampling distortion
artifacts at the periphery [3]. Appearance variations of objects
are larger due to the spatially variant distortion, particularly
for close-by objects. Thus fisheye perception is a challenging
task, and it is relatively less explored than pinhole cameras.
Surround-view cameras consisting of four fisheye cameras are
sufficient to cover the near-field perception as shown in Fig.
2. Most algorithms are usually designed to work on rectified
pinhole camera images. The naive approach to operating on
fisheye images is to first rectify the images and then directly
apply these standard algorithms. However, such an approach
carries significant drawbacks due to the reduced field-of-view
and resampling distortion artifacts in the periphery of the
rectified images. Furthermore, a recent comparative study [4]
on omnidirectional images, including fisheye showed that there
is no need to rectify the fisheye images to achieve good results
for semantic segmentation tasks.

Fisheye cameras are used in for AD tasks such as perception
which involves object detection [5], [6], soiling detection [7],
[8], semantic segmentation [9], [10], weather classification
[11], depth prediction [12], [13], [14], [15], [3], moving object
detection [16] and SLAM [17], [18], [19] are challenging due
to the highly dynamic and interactive nature of surrounding
objects in the automotive scenarios [20]. Fisheye cameras are
also used commonly in other domains like video surveillance
[21] and augmented reality [22]. Despite its prevalence, there
are only a few public datasets for fisheye images publicly
available, and thus relatively little research is performed. The
Oxford Robot car dataset [23] is one such dataset providing
fisheye camera images for AD. It contains over 100 repetitions
of a consistent route through Oxford, the UK, captured over a
year and used widely for long-term localization and mapping.
KITTI-360 [24] is a dataset containing fisheye and perspective
images using multiple cameras including two fisheye facing
each side mounted on the car roof. KITTI-360 provides ground

truth annotations for several tasks but no ground truth for
the fisheye images. OmniScape [25] is a synthetic dataset
providing semantic segmentation annotations and depth maps
for omnidirectional cameras mounted on a motorcycle.

Contributions: In TABLE I, we compare the properties of
the few available automotive fisheye datasets. In particular, it
can be observed that SynWoodScape provides a significantly
improved feature set compared to WoodScape. In TABLE II,
we compare various synthetic automotive datasets illustrating
an improvement relative to the base CARLA synthetic dataset
upon which SynWoodScape is built. To summarize, the con-
tributions of this work include:

• Creation of a new synthetic dataset consisting of 80k
frames for the AD perception application; To the best
of our knowledge, it is the largest fisheye dataset for the
AD application.

• Replication of camera setup and calibration of the Wood-
Scape dataset, thus enabling an easy combination of both
datasets.

• Creation of ground truth for pixel-wise optical flow
and depth which is not feasible to obtain densely and
accurately on real scenes, Lidar cannot cover near-field
regions needed for fisheye cameras.

• Creation of ground truth for bird’s eye view tasks which
takes in all four cameras as input and produces segmen-
tation, occupancy flow, or height maps.

• Creation of fisheye event camera signals for evaluation
of sparse event signal algorithms, and publishing the first
dataset of its kind.

• Experimental evaluation of domain gap between the real
and synthetic fisheye datasets for various tasks.

II. SYNWOODSCAPE

The SynWoodScape dataset is a synthetic version of the
WoodScape dataset. The same configuration used to acquire
the real data from different locations in Europe and the USA
is used in CARLA Simulator (release 0.9.10.1). The same
calibration parameters, intrinsic and extrinsic ones, were also
used to simulate the different sensors. The use of the simulator



3

TABLE I: Summary of various AD datasets containing fisheye images.

O
xf

or
d

R
ob

ot
C

ar
[2

3]

K
IT

T
I-

36
0

[2
4]

O
m

ni
Sc

ap
e

[2
5]

W
oo

dS
ca

pe
[2

6]

Sy
nW

oo
dS

ca
pe

(p
ro

po
se

d)

Real/Synthetic Real Real Synthetic Real Synthetic

Ego Vehicle Car Car Motorcycle Car Car

Fisheye Resolution 1024×1024 1400×1400 1024×1024 1280×966 1280×966

Fisheye HFoV 180° 180° 185° 190° 190°

Bird’s Eye View 7 7 7 7 3

Semantic Seg. 7 7 3 3 3

Instance Seg. 7 7 3 3 3

Motion Seg. 7 7 7 3 3

2D/3D Bounding Boxes 7 3 7 3 3

Depth Map 7 7 3 7 3

Event Camera Signals 7 7 7 7 3

Optical Flow 7 7 7 7 3

Lidar 3 3 3 3 3

IMU 3 3 3 3 3

GNSS 3 3 3 3 3

allows us to extract, in addition to all the ground truths
proposed in the WoodScape dataset, the ground truths for
pixel-wise tasks like depth map, optical flow, and event camera
signals in a very precise manner. It also allows us to extract
time synchronized images from four fisheye surround-view
cameras in addition to a bird’s eye view (BEV) image. We also
used the simulator to extract images in different weather and
lighting conditions. In the following subsections, we explain
the construction of the fisheye images using the calibration
parameters of the WoodScape dataset and the computation of
the different ground truths.

A. Fisheye image generation

To generate the fisheye images, we used a framework
based on the cubemap representation of a 360° image and
the calibration model proposed in the WoodScape dataset
[26]. The model uses a fourth-order polynomial function to
estimate the mapping of incident angle to image radius in
pixels (r(θ) = a1θ+ a2θ

2 + a3θ
3 + a4θ

4). Using this model,
each pixel in the fisheye image can be associated with a 3D
direction on the unit sphere. We also construct a unit cube
that corresponds to the cubemap image. Using ray tracing
from the center of the sphere and the cube, we compute the
pixel mapping between the fisheye and the cubemap images,
as sketched in Fig. 3. The mapping of the cubemap image to
the fisheye image is obtained by the intersection of the 3D
direction with both the sphere and the cube. A lookup table is
then built for each fisheye camera to store the correspondences
between the two representations. To extract the fisheye images
from CARLA, we acquired five images that form the five
views of the cubemap needed to build the fisheye image, and
we used the exact calibration parameters of the cameras used
to acquire the WoodScape dataset [26] to build the sphere and
to place the cameras using the same positions and rotations
relative to the car. In such a way, we preserve the same

TABLE II: Summary of various AD synthetic datasets.

SY
N

T
H

IA
[2

7]

D
riv

in
g

in
th

e
M

at
ri

x
[2

8]

Pl
ay

in
g

fo
r

be
nc

hm
ar

ks
[2

9]

A
po

llo
Sy

nt
he

tic
[3

0]

A
ll-

in
-O

ne
D

riv
e

[3
1]

Sy
nW

oo
dS

ca
pe

(p
ro

po
se

d)

Semantic Seg. 3 3 3 3 3 3

Instance Seg. 7 7 3 3 3 3

Motion Seg. 7 7 7 7 7 3

2D Bounding Boxes 7 3 3 3 3 3

3D Bounding Boxes 7 7 3 3 3 3

Depth Map 3 7 7 3 3 3

Event Camera signals 7 7 7 7 7 3

Optical Flow 7 7 3 7 7 3

Lidar 7 7 7 7 3 3

Semantic Lidar 7 7 7 7 3 3

Radar 7 7 7 7 3 3

IMU 7 7 7 7 3 3

GNSS 7 7 7 7 3 3

Bird’s Eye View 7 7 7 7 7 3

360° Coverage 3 7 7 7 3 3

Omnidirectional 3 7 7 7 7 3
Images (Equirectangular) (Fisheye)

Simulator SYNTHIA GTA V GTA V Apollo CARLA CARLA

Engine UNITY RAGE RAGE UNITY Unreal Unreal

configuration of the WoodScape dataset as if we used the same
acquisition platform inside CARLA Simulator.

B. Dataset Details

The SynWoodScape dataset contains synthetic data gener-
ated from CARLA Simulator [32], each sample out of the 10k
samples provided contains surround-view fisheye images in
addition to bird’s eye view and front view perspective images.
Each image comes with a previous image (for tasks that
require two consecutive frames) and ground truth for multiple
tasks namely, semantic segmentation into 25 classes, instance
segmentation, motion segmentation, depth map, optical flow,
event camera signals, 3D and 2D bounding boxes, lidar data,
radar dara, IMU and GNSS data. Fig. 6 lists all the images with
the corresponding ground truth images from a single sample;
the current and the previous RGB images are merged to better
show the movements of objects in the scene. The acquisition
was made using a frame rate of 10 FPS. The intrinsic and
extrinsic parameters of the used cameras are similar to the
parameters of the real cameras used in the acquisition of the
WoodScape dataset [26]. The dimensions of the fisheye images
are 1280×966, of the bird’s eye view images are 1024×1024
and of the front view images are 3264×2448. Fig. 1 and Fig. 6
shows an example of images extracted with generated ground
truth data.

Various random scenarios are present in the dataset. Just
urban scene images are considered using the HD Town10,
which is a city with different environments such as an avenue
and promenade. The used synthetic environment is around 250
meters by 300 meters, and there are 155 recommended spawn
points for vehicles. Each time a random spawn point is chosen
to spawn the ego vehicle using a random color, the rest of
the spawn points are used to spawn other random vehicles



4

Fig. 3: Mapping of the cubemap image’s pixels to the fisheye image.

Fig. 4: Percentage of pixels representing all classes in the semantic
segmentation ground truth of all images in the dataset including BEV
images. Largest classes namely Road 42,32% and Ego vehicle 23,45%
are not plotted due to its large size.

from a set of vehicles. Regarding pedestrians; the maximum
possible candidates are spawned around the ego vehicle, their
amount varies depending on the possible positions to spawn a
pedestrian and also on the available computation resources.
It results in a minimum of 125 vehicles and pedestrians
present on the scene and a maximum of 289. All the vehi-
cles including the ego vehicle and also the pedestrians are
controlled automatically using the Traffic Manager provided
by Carla Simulator, which manages the urban traffic using
an autopilot mode to simulate natural behaviors. The images
are captured in nine different weather and lightning conditions
predefined in the simulator: Clear Noon, Clear Sunset, Cloudy
Noon, Cloudy Sunset, Default, Wet Cloudy Noon, Wet Cloudy
Sunset, Wet Noon, Wet Sunset.

In the SynWoodScape, the 2D/3D bounding boxes include
four-wheeler vehicles, two-wheeled vehicles, and pedestrians.
In TABLE III object statistics are made showing the fre-
quencies of each class across all frames, as well as motion
segmentation statistics using different thresholds. The semantic
segmentation is provided into the following classes: unlabeled,

TABLE III: Statistics of objects in the dataset. The second grouped
column shows the frequency of all objects. The third grouped column
shows statistics of moving objects thresholded according to distance
traveled across consecutive frames.

Class All objects Moving objects
Frequency Thresholds in meters

% of images objects/image 0.0 0.25 0.5 0.75 1.0

Pedestrian 98.68 34.09 4.76 3.15 1.15 0.35 0.0
Four-wheeler 90.44 8.24 0.68 0.45 0.13 0.04 0.0
Two-wheeler 80.72 2.89 0.23 0.16 0.06 0.02 0.0

building, fence, other, pedestrian, pole, road line, road, side-
walk, vegetation, four-wheeler vehicle, wall, traffic sign, sky,
ground, bridge, rail track, guard rail, traffic light, water, terrain,
two-wheeler vehicle, static, dynamic, ego vehicle. Fig. 4 shows
the distribution of pixels of all images in the dataset. Fig. 2
shows side by side surround-view fisheye images from the
WoodScape and the SynWoodScape dataset. Fig. 5 shows a
simplified diagram of the extraction procedure of all ground
truth data from the CARLA Simulator. In the following
section, we explain how we compute the ground truths that
are not directly extracted from CARLA Simulator. It is worth
noting that the following methods can be used also for other
simulators or datasets, as long as the same inputs are available.

C. Instance Segmentation

To extract the instance segmentation, we used the depth
maps, the 3D bounding boxes, and the semantic segmentation
ground truth. With these three modalities, we developed a tool
to compute the instance segmentation on perspective images
used to generate the omnidirectional images. This tool is based
on ray tracing. For each pixel, we compute the 3D position in
the world reference of the CARLA Simulator. This is achieved
by using the depth map and the camera transform matrix
from the sensor to the world reference, which can be obtained
after computing the focal length of the camera. The camera
transform matrix is obtained according to

K =

 f 0 w/2
0 f h/2
0 0 1

 , (1)



5

Fig. 5: Illustration of data extraction procedure from CARLA Simulator.

where w and h are the width and the height of the image,
respectively, and f is the focal length of the camera and it is
computed using the formula:

f =
w

2 tan
(
πfov
360

) , (2)

where fov the field of view of the camera. The 3D position of
the pixel p of coordinate (x, y) is obtained using the following
formula, where d is the corresponding depth map value: X

Y
Z

 = K−1

 x
y
1

 d· (3)

After computing the 3D points of all pixels using (3), and
since we have the 3D bounding boxes of each object in the
scene identifiable by a unique id, we need to check which of
these 3D bounding boxes the computed 3D points are inside.
We check this by computing the six planes formed by the
bounding box; if the 3D points are in between the parallel
planes, the point is considered inside the bounding box.

We attribute a random color to each bounding box to obtain
the instance segmentation (see Fig. 1 and Fig. 6). The color
will persist in all images captured during the current recording
session.

D. Motion Segmentation

Motion segmentation is the segmentation of all dynamic
objects in the scene that underwent a movement in the world
reference. We consider that an object has moved when the
distance between the position of this object in the frames t-1
and t is superior to a threshold. Since the positions in the
simulator are very precise, not using a threshold will give
us a noisy motion segmentation. We will be considering in
this case the small motions of the objects which will end
up considering almost all objects likely to move as moving
objects. To construct the ground truth of this segmentation,
we used the instance segmentation and the transformation
matrices of each dynamic object in the scene. We then compute
the distances traveled by each object between the two frames.
Since each object has a unique id and corresponds to a unique

label in the instance segmentation, we can then build the
motion segmentation by selecting the object in the instance
segmentation that will also be included or not in the motion
segmentation depending on the traveled distances. We provide
motion masks for objects that have traveled more than 0.5
meters for direct use. We also provide text files including
the precise motion obtained. This allows researchers to use
different threshold values depending on the use case at hand.

E. Optical Flow

Next, we explain how we compute the optical flow analyt-
ically using the data extracted from the simulator. First, we
compute the scene flow, and then we project it to the image
plane of all representations (perspective and fisheye) to obtain
the optical flow, as described in Fig. 5. In this manner, we
are able to provide a very precise flow information at sub-
pixel level. Similar to instance segmentation, we compute
the 3D point cloud of all objects in the scene separately
by separating dynamic ones from static ones. Since we can
extract the positions and rotations of all objects from the
simulator, we can compute the transformation matrices in the
3D reference between two frames. Then, we get the scene flow
by applying the transformation matrices of the movements to
the point cloud of dynamic objects and the inverse of the
transformation matrix of the camera movement to all 3D point
clouds (dynamic and static objects). Next, we project this 3D
point cloud before and after being moved into the images. This
means that we have the 2D coordinates of each pixel in both
frames. The vectors of movement are then constructed by each
couple of these 2D coordinates representing the optical flow.
These vectors can be displayed using color-coding (see Fig. 1
and Fig. 6). We provide optical flow for all modalities using
this process since we have all the calibration parameters.

F. Event Camera

CARLA Simulator provides event camera signals for per-
spective images in the form e = (x, y, t, pol), where e is the
event triggered at pixel (x, y) at timestamp t with the polarity
pol. The polarity of the event is positive when the brightness
increases and negative otherwise. We compute the fisheye
event camera signals using the lookup tables that allow us to
map from cubemap images to fisheye images. For each event
that occurred in the cubemap representation at (x, y), if the
pixel at (x, y) is used to create the fisheye image, we compute
the corresponding pixel coordinates in the fisheye image using
the lookup tables. The corresponding event information t
and pol are then assigned. Similar data structures for the
perspective representation generated by the CARLA Simulator
are then created for the fisheye representation and stored into
NumPy array files. Fig. 1 and Fig. 6 show examples of the
fisheye event signal as an RGB image where blue represents
positive polarity and red is the negative one.

G. Bird’s Eye View

Behavior Prediction and Planning are generally made in the
top view (or bird’s-eye-view) in a typical AD stack, due to



6

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Fig. 6: All surround-view fisheye images and the BEV image with corresponding ground truths from a single sample.
Rows in order: RGB image pairs, Depth maps, Semantic segmentation, Instance segmentation, Motion segmentation, Optical
flow (color coded), Events (positive & negative). Cameras are marked (a) Front, (b) Rear, (c) Top view, (d) Left, (e) Right.

its effective capability of representing the full scene in all
directions in one representation, thus providing most of the
information an autonomous vehicle needs can be conveniently
represented with the top view. The top view map is based

on images acquired by multiple cameras looking in different
directions of the vehicle at the same time. For the dynamic
participants, we introduce the concept of instances. This makes
it simple to use prior knowledge of dynamic objects to forecast



7

TABLE IV: Ablation study of OmniDet [33] on WoodScape and SynWood-
Scape datasets. S† indicates test on the synthetic dataset SynWoodScape
with training on the R (real-world) WoodScape dataset. R† indicates test
on the real-world WoodScape dataset with training on the S (synthetic)
SynWoodScape dataset. R+S indicates mixed training of real-world and
synthetic datasets.

Datasets WoodScape SynWoodScape

Train/Test R S† R+S R† S R+S

Depth Est. (RMSE in meters) 1.332 2.401 1.479 2.393 1.448 1.396
Semantic Seg. (mIoU in %) 76.6 71.7 76.2 72.1 78.2 77.8
Motion Seg. (mIoU in %) 75.3 69.5 74.5 70.7 76.8 75.1
Object Det. (mAP in %) 68.4 61.2 67.7 61.9 69.2 68.5

behavior. Cars, for example, follow a specific motion model
and have constrained patterns of future trajectory, whereas
pedestrians move more randomly. The conventional bird’s eye
view representation usually ignores height information. We
argue that height information is very important in a lot of
use cases. For instance, parking over curb scenarios requires
the knowledge of the curb’s height because parking on very
high curbs is not possible. Speed bumps as well allow for
slow driving. Therefore, unlike WoodScape, we provide height
maps to enable the prediction of such objects and thus help
research in that area.

III. EXPERIMENTS

A. Real vs. Synthetic Baseline performance

In TABLE IV, we establish a baseline benchmark for
the SynWoodScape dataset as an ablation study using the
OmniDet framework [33], which is a surround-view cameras
based multi-task visual perception network for AD evaluated
on the WoodScape and SynWoodScape datasets. An important
aspect of this particular ablation study entails evaluating
the need for domain transfer, establishing a baseline for
the community, and evaluating our framework to test the
model generalization capabilities. Because of the differences
in synthetic and real-world data, listed perception tasks do
not yield quantitatively desired results when applied directly
to real-world data, necessitating the domain adaptation phase.
Initially, we train on the WoodScape and test it on the
SynWoodScape to establish a baseline for the domain transfer.
Later, we mix both datasets and train on them jointly to set
up a quantitative baseline for these datasets. Finally, we train
on SynWoodScape which serves as a standalone baseline, and
also evaluate it on WoodScape to measure the deviation of the
domain gap. We perform such an ablation study on 4 tasks
as reported in TABLE IV where the 4-task model is trained
jointly.

RMSE has been used as an accuracy metric for depth
estimation, while mIoU is used for semantic and motion
segmentation and mAP is object detection. These metrics
are standard for such tasks across the literature. We use the
same data split that was done in OmniDet to be able to
compare our results to OmniDet’s official benchmark. The
first column of results “R” reports the accuracy of real data
after training on real data, which corresponds to the results
reported in OmniDet. When evaluated on the synthetic dataset
from SynWoodScape, we obtained degraded performance as

TABLE V: Quantitative comparison of segmentation task on Top View
model vs. Transformed Model.

Model Accuracy (mIoU)

Image Semantic Segmentation + IPM 61.2
Top View Semantic Segmentation 76.5

reported in “S†”. This is expected because of the different
nature of the datasets. When we used mixed training on both
datasets and evaluated the real data in “R+S (WoodScape)”,
we obtained improved performance over “S†”; However, the
accuracy is still less than “R”. This result demonstrates the
importance of domain adaptation to be able to use jointly
real and synthetic data. It is well known that deep learning
is data-oriented. Therefore, annotating large datasets usually
provides better performance, and this is a time and effort
expensive operation. To evaluate the usage of synthetic data
only with minimal effort in manual annotation, we trained the
network on synthetic data only and evaluated on real scenarios
as demonstrated in “R†”. To our surprise, we obtained good
accuracy with an acceptable performance given the cost of
annotation. However, the result is less than “R”, which is
expected. Evaluation on synthetic data only is illustrated in “S”
showing the maximum performance due to the same nature
of training and testing data. Finally “R+S (SynWoodScape)”
demonstrates that the benchmark model is not capable of
making use of the new data and therefore motivates the need
for domain adaptation.

B. Top View Segmentation

We ablate the OmniDet [33] on the top view dataset and
establish a baseline performance in TABLE V. Initially, we
train the model for the trivial semantic segmentation task and
transform it using inverse perspective mapping (IPM) for the
behavior and planning stage as explained in Section II-G.
This method is considered a cost-free one as it does not
need annotation to be performed. However, the transformation
provides an erroneous projection and object distortion. To
provide better results, we attempt to train our model directly
on top view projection; However, this requires annotation. In
our proposed dataset, we provide such top view annotations
and they have the advantage of being cost-free as well because
the data is obtained from a simulator. We train our model using
our synthetic top view annotations and we obtain the results
shown in the table, which show significant improvement for
all segmentation tasks. We release motion masks and instance
segmentation datasets to identify the dynamic objects and
localize particular vehicles/instances in the top view as many
of the existing approaches tend to connect multiple cars into
one contiguous region.

IV. CONCLUSION

In this paper, we provide a synthetic dataset using surround-
view fisheye cameras dedicated to AD with ground truth
annotations for 10+ tasks. In addition to providing synchro-
nized fisheye data, we provide bird’s eye view data with
annotations. We demonstrated the relevance of the generated



8

synthetic data by performing baseline experiments for depth
estimation, semantic segmentation, motion segmentation, and
object detection as well as experiments on the same tasks
using the top view. Our experiments show the benefit of the
proposed dataset in terms of performance vs. cost, where cost-
free synthetic data can be used for the perception of real
scenarios. The results also demonstrate the need for a domain
adaptation approach to fully make use of our proposed dataset,
which can be done in future work. Because our dataset is using
the same configuration and calibration parameters used in the
WoodScape dataset, the couple SynWoodScape/WoodScape is
of great interest in the development of models dedicated to
fisheye images as well as transfer learning between real and
synthetic data or image-to-image translation algorithms.

REFERENCES

[1] M. Pöpperli, R. Gulagundi, S. Yogamani, and S. Milz, “Capsule neural
network based height classification using low-cost automotive ultrasonic
sensors,” in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2019, pp. 661–666.

[2] C. Eising, J. Horgan, and S. Yogamani, “Near-field perception for low-
speed vehicle automation using surround-view fisheye cameras,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[3] R. K. Varun, S. Yogamani, M. Bach, C. Witt, S. Milz, and P. Mäder,
“UnRectDepthNet: Self-Supervised Monocular Depth Estimation using
a Generic Framework for Handling Common Camera Distortion Mod-
els,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, 2020.

[4] A. R. Sekkat, Y. Dupuis, P. Honeine, and P. Vasseur, “A comparative
study of semantic segmentation of omnidirectional images from a
motorcycle perspective,” Scientific Reports, vol. 12, no. 1, p. 4968, Mar
2022.

[5] A. Dahal, V. R. Kumar, S. Yogamani, and C. Eising, “An online learning
system for wireless charging alignment using surround-view fisheye
cameras,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–10, 2022.

[6] R. Hazem, E. Mohamed, V. R. K. Sistu, Ganesh and, C. Eising, A. El-
Sallab, and S. Yogamani, “FisheyeYOLO: Object Detection on Fisheye
Cameras for Autonomous Driving,” Machine Learning for Autonomous
Driving NeurIPS 2020 Virtual Workshop, 2020.

[7] M. Uricar, G. Sistu, H. Rashed, A. Vobecky, V. Ravi Kumar, P. Krizek,
F. Burger, and S. Yogamani, “Let’s get dirty: Gan based data aug-
mentation for camera lens soiling detection in autonomous driving,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2021, pp. 766–775.

[8] A. Das, P. Křı́žek, G. Sistu, F. Bürger, S. Madasamy, M. Uřičář,
V. Ravi Kumar, and S. Yogamani, “TiledSoilingNet: Tile-level Soil-
ing Detection on Automotive Surround-view Cameras Using Coverage
Metric,” in 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2020, pp. 1–6.

[9] I. Sobh, A. Hamed, V. Ravi Kumar, and S. Yogamani, “Adversarial
attacks on multi-task visual perception for autonomous driving,” Journal
of Imaging Science and Technology, vol. 65, no. 6, pp. 60 408–1, 2021.

[10] A. Dahal, E. Golab, R. Garlapati, V. Ravi Kumar, and S. Yogamani,
“RoadEdgeNet: Road Edge Detection System Using Surround View
Camera Images,” in Electronic Imaging, 2021.

[11] M. M. Dhananjaya, V. R. Kumar, and S. Yogamani, “Weather and light
level classification for autonomous driving: Dataset, baseline and active
learning,” in 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC), 2021, pp. 2816–2821.

[12] V. R. Kumar, S. A. Hiremath, M. Bach, S. Milz, C. Witt, C. Pinard,
S. Yogamani, and P. Mäder, “Fisheyedistancenet: Self-supervised scale-
aware distance estimation using monocular fisheye camera for au-
tonomous driving,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 574–581.

[13] R. K. Varun, S. Yogamani, S. Milz, and P. Mäder, “FisheyeDis-
tanceNet++: Self-Supervised Fisheye Distance Estimation with Self-
Attention, Robust Loss Function and Camera View Generalization,” in
Electronic Imaging, 2021.

[14] V. Ravi Kumar, M. Klingner, S. Yogamani, S. Milz, T. Fingscheidt,
and P. Mader, “Syndistnet: Self-supervised monocular fisheye camera
distance estimation synergized with semantic segmentation for au-
tonomous driving,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2021, pp. 61–71.

[15] C. Eising, J. Horgan, and S. Yogamani, “Near-field perception for low-
speed vehicle automation using surround-view fisheye cameras,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–18, 2021.

[16] M. Yahiaoui, H. Rashed, L. Mariotti, G. Sistu, I. Clancy, L. Yahiaoui, and
S. Yogamani, “FisheyeMODNet: Moving object detection on surround-
view cameras for autonomous driving,” in Proceedings of the Irish
Machine Vision and Image Processing (IMVIP), 2019, pp. 1–4.

[17] L. Gallagher, V. R. Kumar, S. Yogamani, and J. B. McDonald, “A hybrid
sparse-dense monocular slam system for autonomous driving,” in Proc.
of ECMR. IEEE, 2021, pp. 1–8.

[18] V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold,
S. Yogamani, and T. Pech, “Near-field depth estimation using monocular
fisheye camera: A semi-supervised learning approach using sparse lidar
data,” in CVPR Workshop, vol. 7, 2018, p. 2.

[19] ——, “Monocular fisheye camera depth estimation using sparse lidar
supervision,” in 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC), 2018, pp. 2853–2858.

[20] S. Rüping, E. Schulz, J. Sicking, T. Wirtz, M. Akila, S. Gannamaneni,
M. Mock, M. Poretschkin, J. Rosenzweig, S. Abrecht et al., “Inspect,
understand, overcome: A survey of practical methods for ai safety,”
Deep Neural Networks and Data for Automated Driving: Robustness,
Uncertainty Quantification, and Insights Towards Safety, p. 3, 2022.

[21] H. Kim, E. Chae, G. Jo, and J. Paik, “Fisheye lens-based surveillance
camera for wide field-of-view monitoring,” in 2015 IEEE International
Conference on Consumer Electronics (ICCE), 2015, pp. 505–506.

[22] D. Schmalstieg and T. Hollerer, Augmented reality: principles and
practice. Addison-Wesley Professional, 2016.

[23] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000
km: The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[24] Y. Liao, J. Xie, and A. Geiger, “Kitti-360: A novel dataset and bench-
marks for urban scene understanding in 2d and 3d,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

[25] A. R. Sekkat, Y. Dupuis, P. Vasseur, and P. Honeine, “The omniscape
dataset,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 1603–1608.

[26] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, P. Varley, D. O’Dea,
M. Uricár, S. Milz, M. Simon, K. Amende et al., “Woodscape: A
multi-task, multi-camera fisheye dataset for autonomous driving,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 9308–9318.

[27] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
synthia dataset: A large collection of synthetic images for semantic
segmentation of urban scenes,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 3234–3243.

[28] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and
R. Vasudevan, “Driving in the matrix: Can virtual worlds replace human-
generated annotations for real world tasks?” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 746–
753.

[29] S. R. Richter, Z. Hayder, and V. Koltun, “Playing for benchmarks,” in
IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, 2017, pp. 2232–2241.

[30] P. Wang, X. Huang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The
apolloscape open dataset for autonomous driving and its application,”
IEEE transactions on pattern analysis and machine intelligence, 2019.

[31] X. Weng, Y. Man, J. Park, Y. Yuan, D. Cheng, M. O’Toole, and
K. Kitani, “All-In-One Drive: A Large-Scale Comprehensive Perception
Dataset with High-Density Long-Range Point Clouds,” arXiv, 2021.

[32] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[33] V. Ravi Kumar, S. Yogamani, H. Rashed, G. Sitsu, C. Witt, I. Leang,
S. Milz, and P. Mäder, “Omnidet: Surround view cameras based multi-
task visual perception network for autonomous driving,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 2830–2837, 2021.


