

Clinical relevance of nasopharyngeal SARS-CoV-2 viral load reduction in outpatients with COVID-19

Jean-Jacques Parienti, Harm-Jan de Grooth

▶ To cite this version:

Jean-Jacques Parienti, Harm-Jan de Grooth. Clinical relevance of nasopharyngeal SARS-CoV-2 viral load reduction in outpatients with COVID-19. Journal of Antimicrobial Chemotherapy, 2022, 77 (7), pp.2038-2039. 10.1093/jac/dkac104 . hal-03706359

HAL Id: hal-03706359 https://normandie-univ.hal.science/hal-03706359

Submitted on 27 Jun2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Clinical relevance of nasopharyngeal SARS-CoV-2 viral load reduction in outpatients with COVID-19

3 Jean-Jacques PARIENTI^{*1,2}, Harm-Jan DE GROOTH^{3,4}

4

5 ¹Department of Infectious Diseases, University Hospital, Caen, France.

- 6 ² INSERM U1311 DYNAMICURE, Université Caen Normandie, Caen, France.
- 7 ³ Amsterdam Infection and Immunity Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands.

8 ⁴ Department of Intensive Care, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam
 9 Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, the Netherlands.

- 10
- 11 *Corresponding author: parienti-jj@chu-caen.fr
- 12 Phone: +33 231 06 43 20
- 13 Fax: +33 231 06 50 68
- 14
- 15 Word counts: 643/800
- 16

Writting for Journal of Antimicrobial Chemotherapy - Research Letter - 2

17 Early reduction of SARS-CoV-2 viral replication emerges as a new strategy to reduce COVID-related 18 morbidity and mortality¹. Noteworthy, early observations² and models³ have revealed an association between high 19 SARS-CoV-2 nasopharyngeal RNA levels and high risk of hospitalization or death. How much this relationship relies 20 on confounding is unknown. For example, age influences both viral clearance and the risk of adverse outcomes³. In 21 clinical trials, testing the potential antiviral effect using SARS-CoV-2 RNA reduction endpoint appears as a logical 22 first-step, but pivotal trials must demonstrate an effect on a clinically meaningful aspect of the disease4—that is, a 23 patient-oriented endpoint⁵. To date, there is no established predictive relationship between the magnitude and timing 24 of viral load reductions and the extent of clinical benefit. Nevertheless, Mitjà and collaborators⁶ recommended 7 days 25 as the optimal time for measurement and 0.5 log₁₀ decrease or greater as the minimal threshold for significant 26 reduction between arms.

As the number of trials in outpatients with COVID-19 grows, our understanding of the interplay between
several endpoints will become clearer. We aimed to assess whether the effect of an antiviral therapy on the risk of
hospitalization or death is predicted by the effect of a therapy on the nasopharyngeal SARS CoV-2 viral load.

30 We searched for phase 2/3 randomized controlled trials of drug therapies conducted amongst outpatients 31 with COVID-19 reporting both: (i) the risk of hospitalization or death and (ii) the nasopharyngeal SARS-CoV-2 viral 32 load change from baseline to day 5-7 (see details in the Supplemental appendix). The trial-level variability on the log-33 transformed relative risk of hospitalization or death explained by the treatment effects on the nasopharyngeal SARS 34 CoV-2 viral load was quantified by R² through a random-effect linear regression model, weighted by trial size. We 35 also established a Surrogate Threshold Effect (STE): the minimum treatment effect on nasopharyngeal viral load 36 reduction (the surrogate outcome) necessary to predict a significant effect on hospitalization or death (the patient-37 oriented outcome). The STE was determined by the intersection of the upper 95% prediction limit and the horizontal 38 line with a relative risk (RR) equal to one. Because pivotal trials stopped prematurely for benefit are associated with 39 an overestimation of the effect size⁷, we conducted a sensitivity analysis after excluding these trials, as recommended⁸. 40 Sixteen studies testing 17 interventions in 14,010 COVID-19 outpatients reported both treatment effects on

SARS-Cov-2 viral load and on relative risk of hospitalization or death. The baseline characteristics and extracted results from the included studies are shown in the Table S1 and Table S2. The relative risk of hospitalization or death amongst outpatients with COVID-19 was significantly (P=0.021) predicted by the magnitude of nasopharyngeal SARS-CoV-2 viral load reduction (Figure 1), corresponding to a moderate R² of 0.53. The STE corresponding to a non-zero effect on hospitalization or death was 0.41 log₁₀ higher nasopharyngeal SARS-CoV-2 viral load reduction relative to placebo at day 5-7. Without PINETREE, the relative risk of hospitalization or death amongst outpatients with COVID-

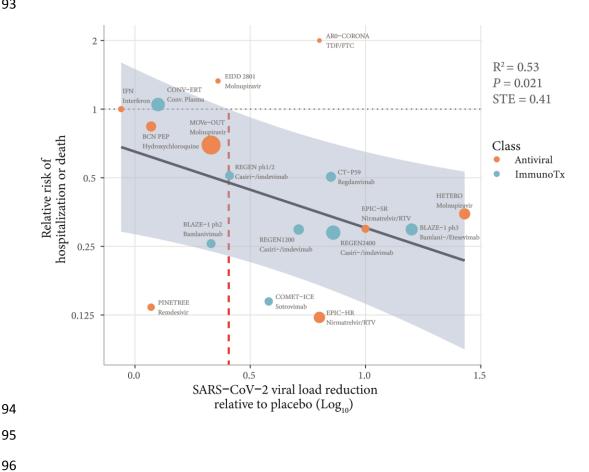
47 19 was more strongly (P=0.003) predicted by the magnitude of SARS-CoV-2 viral load reduction (Figure S1),
48 corresponding to a good R² of 0.68. The STE remained similar (0.38 log₁₀ reduction).

49 Reducing the SARS-CoV-2 viral load early is relevant and beneficial for outpatients with COVID-19. We 50 acknowledge the measurement errors related to the quality of sampling specimen swab and the lack of a standardized 51 quantitative PCR for nasopharyngeal SARS-CoV-2 RNA. However, these technical aspects can be controlled in the 52 clinical research setting. Although the number of trials is small, this finding suggests that nasopharyngeal SARS-CoV-53 2 viral load reduction at days 5-7 captures at least half of the subsequent disease progression in outpatient COVID-19 54 trials. In addition, this result complements the FDA recommendation to select virologic outcome as a potential 55 surrogate endpoints in phase 2 trials⁹ to identify promising antiviral therapies against COVID-19⁴ by providing data 56 and a threshold above which clinical benefit is expected in phase 3 trials.

- 57
- 58

59	
60	
61	FUNDING: This study was funded by Université Caen Normandie and Amsterdam UMC.
62	CONFLICTS OF INTEREST: JJP received honoraria and grant from ViiV, Gilead and Merck outside of this study-HJdG
63	no conflict.
64	
65	
66	References
67 68	1 Forrest JI, Rayner CR, Park JJH, et al Early Treatment of COVID-19 Disease: A Missed Opportunity. Infect Dis Ther 2020; 9: 715–20.
69 70	2 Liu Y, Yan L-M, Wan L, <i>et al</i> . Viral dynamics in mild and severe cases of COVID-19. <i>Lancet Infect Dis</i> 2020; 20 : 656–7.
71 72	3 Néant N, Lingas G, Le Hingrat Q, <i>et al.</i> Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort. <i>Proc Natl Acad Sci U S A</i> 2021; 118 : e2017962118.
73 74 75 76	4 FDA. COVID-19: Developing Drugs and Biological Products for Treatment or Prevention. U.S. Food and Drug Administration. 2021; published online June 23. https://www.fda.gov/regulatory-information/search-fda-guidance- documents/covid-19-developing-drugs-and-biological-products-treatment-or-prevention (accessed March 8, 2022).
77 78	5 de Grooth H-J, Parienti J-J, Oudemans-van Straaten HM. Should we rely on trials with disease- rather than patient-oriented endpoints? <i>Intensive Care Med</i> 2018; 44 : 464–6.
79 80	6 Mitjà O, Corbacho-Monné M, Ubals M, <i>et al</i> . Hydroxychloroquine for Early Treatment of Adults With Mild Coronavirus Disease 2019: A Randomized, Controlled Trial. <i>Clin Infect Dis</i> 2021; 73 : e4073–81.
81 82	7 Bassler D, Briel M, Montori VM, <i>et al.</i> Stopping randomized trials early for benefit and estimation of treatment effects: systematic review and meta-regression analysis. <i>JAMA</i> 2010; 303 : 1180–7.
83 84	8 Bassler D, Montori VM, Briel M, <i>et al.</i> Reflections on meta-analyses involving trials stopped early for benefit: is there a problem and if so, what is it? <i>Stat Methods Med Res</i> 2013; 22 : 159–68.

- 9 Parienti J-J, Prazuck T, Peyro-Saint-Paul L, *et al.* Effect of Tenofovir Disoproxil Fumarate and Emtricitabine on
 nasopharyngeal SARS-CoV-2 viral load burden amongst outpatients with COVID-19: A pilot, randomized, openlabel phase 2 trial. *EClinicalMedicine* 2021; 38: 100993.
- 88
- 89


Writting for Journal of Antimicrobial Chemotherapy - Research Letter - 4

90 Figure 1: Clinical benefit (Y-axis) by relative SARS-CoV-2 viral load reduction (X-axis) in outpatient COVID-19 trials. 91

Point size is proportional to sample size. The vertical red dashed line denotes the surrogate threshold effect (STE): 92

the minimum increase in viral load reduction necessary to predict a significant reduction in hospitalization or death.

95

96 97