
Control systems with paraboloid nonholonomic
constraints

Timothée Schmoderer
timothee.schmoderer@insa-rouen.fr

Laboratoire de Mathématiques de l’INSA Rouen Normandie

Workshop on "Optimal Control Theory" June 22, 2022

Joint work with: Witold Respondek (LMI, INSA Rouen)

mailto:timothee.schmoderer@insa-rouen.fr


Contents

1. Definitions and problem statement

2. Study of parabolic systems
Characterisation
Classification

3. Study of (p, q)-paraboloid systems
Characterisation
Classification

4. Conclusion and perspectives

5. References

T. Schmoderer (INSAR) Paraboloid control systems 22/06/2022 1 / 43



Contents

1. Definitions and problem statement

2. Study of parabolic systems
Characterisation
Classification

3. Study of (p, q)-paraboloid systems
Characterisation
Classification

4. Conclusion and perspectives

5. References

T. Schmoderer (INSAR) Paraboloid control systems 22/06/2022 2 / 43



Definitions and problem statement 1/3

Conventions:
1 smooth: means C∞ smooth;
2 We consider a smooth n-dimensional manifold X , since all results are

local we can take X as an open subset of Rn, equipped with
coordinates x = (z, y1, . . . , yn−1);

3 TX : the tangent bundle of X , with coordinates (x, ẋ).

We consider a smooth (2n− 1)-dimensional submanifold S ⊂ TX given by

S = {(x, ẋ) ∈ TX , S(x, ẋ) = 0} ,

where S : TX → R is a smooth scalar-valued map such that ∂S
∂ẋ 6= 0 for all

(x, ẋ) ∈ S.
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Definitions and problem statement 2/3

A submanifold S defines a nonholomic constraint, i.e. a curve
γ : [0, T ]→ X satisfies the nonholomic constraint given by S if we have
S(γ(t), γ̇(t)) = 0, for all t.
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Definitions and problem statement 3/3

Definition (Equivalence of submanifolds)

We say that two submanifolds S = {S(x, ẋ) = 0} and S̃ = {S̃(x̃, ˙̃x) = 0}
of TX and T X̃ , respectively, are (locally)-equivalent if there exists a
(local) diffeomorphism x̃ = φ(x) and a nonvanishing scalar function δ(x, ẋ)
such that

S̃(φ(x), Dφ(x)ẋ) = δ(x, ẋ)S(x, ẋ).

Purpose of our work: to characterise and classify the following category

Sp,q = {(x, ẋ) ∈ TX , ż = ẏtQ(x)ẏ + b(x)ẏ + c(x)},

where Q(x) is a smooth (n− 1) by (n− 1) symmetric matrix of full rank
with signature (p, q), b(x) = (b1(x), . . . , bn−1(x)) is a smooth covector,
and c(x) is a smooth scalar function.

Sp,q is said to define a (p, q)-paraboloid nonholomic constraint
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Definitions and problem statement: Motivations

Before turning towards quadratic nonholomic constraints, a lot of work has
been done for linear and affine Pfaffian equations

ω(x)ẋ = 0 and ω(x)ẋ+ h(x) = 0.

+ [Zhi92; Zhi95; JZ01; ZR98; Elk12], and many others.

Dubin’s car
A simple model of the dynamics of a car, studied in [Dub57],{

ż = cos(θ)
ẏ = sin(θ)

corresponds to the constraints (ż)2 + (ẏ)2 − 1 = 0.

In [ANN15], the following relations ż = 1
2

∑m
i,j=1Qi,j ẏiẏj , where

sgn (Q) = (p, q), appear as models whose Lie algebra of symmetries are
isomorphic to so(p+ 2, q + 2).
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Definitions and problem statement: Methodology 1/2

To study the equivalence problem of submanifolds S = {S(x, ẋ) = 0} we
proceed as follows.

S ←→ ΞS : ẋ = F (x,w), S(x, F (x,w)) = 0,∀w ∈ W ⊂ Rn−1

←→ ΣS :

{
ẋ = F (x,w)
ẇ = u

, where

• w ∈ Rn−1 is the control for ΞS ;
• u ∈ Rn−1 is the control for ΣS , and (x,w) ∈M = X ×W is the

extended coordinate system.

Base manifold Dimension Controls
S X n
ΞS X n m := n− 1
ΣS M 2n− 1 m := n− 1
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Definitions and problem statement: Methodology 2/2

+ To characterise Sp,q we will characterise the class of control-affine
systems ΣSp,q ;
+ To classify Sp,q we will classify the class of control-nonlinear systems
ΞSp,q ;

What is the notion of equivalence for control systems that makes this
diagram commute ?

S parametrisation←−−−−−−−−−−−−→ ΞS
extension←−−−−−−−−→ ΣS

(φ, δ)
xy xy?

xy?

Sp,q
parametrisation←−−−−−−−−−−−−→ ΞSp,q

extension←−−−−−−−−→ ΣSp,q
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Definitions and problem statement: Feedback equivalence

Feedback for control-nonlinear systems: We call Ξ : ẋ = F (x,w) and
Ξ̃ : ˙̃x = F̃ (x̃, w̃) feedback equivalent if there exists a diffeomorphism
Φ : X ×W → X̃ × W̃ of the form

(x̃, w̃) = Φ(x,w) = (φ(x), ψ(x,w)),

which transforms the first system into the second, i.e.

Dφ(x)F (x,w) = F̃ (φ(x), ψ(x,w)).

Feedback for control-affine systems: For control-affine systems
Σ : ξ̇ = f(ξ) +

∑m
i=1 gi(ξ)ui, feedback transformations are restricted to

those of the form

ũ = ψ(ξ, u) = α(ξ) + β(ξ)u,

where α = (α1, . . . , αm)t and β = (βij) are smooth functions depending on
the state and satisfy β(·) ∈ GLm(R).

T. Schmoderer (INSAR) Paraboloid control systems 22/06/2022 9 / 43



Summary of the talk

Proposition
Equivalence of submanifolds of the tangent bundle corresponds to the
equivalences of their parametrisations (nonlinear and control-affine) under
feedback transformations.

1 Problem I: Characterise (p, q)-paraboloid nonholomic constraints Sp,q;
+ Define a novel class of control-affine systems Σp,q, which corresponds

to prolongation of parametrisations of Sp,q;
+ Find invariants of the class Σp,q and exploit them to obtain a

characterisation that class;
2 Problem II: Classify (p, q)-paraboloid nonholomic constraints Sp,q;

+ Study the nature of feedback transformations acting on Ξp,q;
+ Identify structures of Ξp,q that transform nicely under feedback;
+ Use those structures to classify Ξp,q;

We will first solve both problem for the case dimX = 2 and then
generalise to dimX ≥ 3.
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Study of parabolic systems: Characterisation 1/3

We study the characterisation of S1,0 = ż − a(x)ẏ2 − b(x)ẏ − c(x) = 0.

Definition (Parametrisation )
We say that a control-affine system Σ is parabolisable if it is feedback
equivaent to

Σ1,0 :

{
ẋ = f(x,w)
ẇ = u

, where
∂3f
∂w3

= 0

and
(

∂2f
∂w2 ∧ ∂f

∂w

)
(x0, w0) 6= 0.

We have

Σ1,0 :

{
ẋ = A(x)w2 +B(x)w + C(x)
ẇ = u

with A ∧B 6= 0.
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Study of parabolic systems: Characterisation 2/3

Theorem (Characterisation of parabolic nonholomic constraint)
Let Σ be a control-affine system on a 3-dimensional smooth manifold given
by vector fields f and g. Σ is, locally around ξ0, feedback equivalent to
Σ1,0 if and only if

1 g ∧ adgf ∧ ad2gf(ξ0) 6= 0,
2 The structure functions ρ and τ in the decomposition

ad3gf = ρ ad2gf + τ adgf mod span {g} satisfy

χ = 3Lgρ− 2ρ2 − 9τ = 0.

NB: adkgf =
[
g, adk−1

g f
]
, with adgf = [g, f ] and [·, ·] is the Lie bracket of vector

fields.
These conditions are checkable by algebraic operations and derivations.
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Study of parabolic systems: Characterisation 3/3

Idea of the proof:
1 Check that Σ1,0 satisfies the conditions,
2 Check that the conditions are invariant under feedback

transformations,
3 Given Σ with ρ and τ , find a feedback (α, β) such that ρ̃ ≡ 0, then

applying a diffeomorphism φ satisfying φ∗g = ∂
∂w we obtain Σ1,0.

+ Using the condition χ = 0, we give a local normal form of all
control-affine systems Σ that are equivalent to Σ1,0

ż = 2a(x) w2(√
e(x)w+1+1

)2 + b(x)w + c(x)

ẏ = w
ẇ = u

,

where a 6= 0; see [SR21].
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Study of parabolic systems: Classification 1/5

We now turn to the classification problem of parabolic nonholonomic
constraints

S1,0 = {ż = a(x)ẏ2 + b(x)ẏ + c(x)}, x ∈ R2.

The forms that we characterise are the following:

weakly-flat parabolic S ′1,0 =
{
ż = ẏ2 + b(x)ẏ + c(x)

}
strongly-flat parabolic S ′′1,0 =

{
ż = ẏ2 + c(x)

}
constant-form parabolic S ′′′1,0 =

{
ż = ẏ2 + c

}
null-form parabolic S01,0 =

{
ż = ẏ2

}
Table: Nomenclature of parabolic submanifolds.
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Study of parabolic systems: Classification 2/5

The classification problem of S1,0 is treated via a classification of
control-nonlinear systems of the form

Ξ1,0 : ẋ = A(x)w2 +B(x)w + C(x).

where A, B, and C are smooth vector fields satisfying A ∧B 6= 0. We
denote Ξ1,0 = (A,B,C).

S ′1,0 =
{
ż = ẏ2 + b(x)ẏ + c(x)

}
(A,B) commutative

S ′′1,0 =
{
ż = ẏ2 + c(x)

}
(A,B) commutative and A ∧ C = 0

S ′′′1,0 =
{
ż = ẏ2 + c

}
(A,B) commutative, and C constant

Table: Reflection of classification of parabolic submanifolds in properties of
parabolic systems
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Study of parabolic systems: Classification 3/5

Although Ξ1,0 is a control-nonlinear system, feedback transformations that
preserve its parabolic shape are of the form

x̃ = φ(x) and w = ψ(x, w̃) = β(x)w̃ + α(x),

with β 6= 0. And, feedback acts on Ξ1,0 = (A,B,C) by

Ã = β2A, B̃ = 2Aαβ +Bβ, C̃ = C +Aα2 +Bα

Theorem (Existence of a commutative parabolic frame)

There always exists (α, β) such that (Ã, B̃) is a commutative parabolic
frame. As a consequence, Ξ1,0 always admits the following normal form

Ξ′1,0 :

{
ż = w2 + c0(x)
ẏ = w + c1(x)
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Study of parabolic systems: Classification 4/5

Next, we characterise the forms

Ξ′′1,0 :

{
ż = w2 + c0(x)
ẏ = w

, Ξ′′′1,0 :

{
ż = w2 + c
ẏ = w

.

To this end, we define

Γ = c0 + (c1)
2,

which under feedback transformations behaves as Γ = β2Γ̃, hence its sign
is an invariant. With c ∈ R we have the following canonical forms

Ξ±1,0 :

{
ż = w2 ± 1
ẏ = w

, and Ξ0
1,0 :

{
ż = w2

ẏ = w
.

T. Schmoderer (INSAR) Paraboloid control systems 22/06/2022 20 / 43



Study of parabolic systems: Classification 5/5

Theorem (Normalisation of parabolic systems)

Let Ξ′1,0 =
(

∂
∂z ,

∂
∂y , C

)
be a parabolic control system. Then the following

statements hold.
1 Ξ′1,0 is feedback equivalent to Ξ′′1,0 if and only if L2Ac1 = 0.
2 Ξ′1,0 is feedback equivalent to Ξ′′′1,0 with c 6= 0 if and only if Γ 6= 0 and

it holds

LAΓ = 0, and LBΓ + 2ΓLAc1 = 0.

3 Ξ1,0 is feedback equivalent to Ξ′′′1,0 with c = 0 if and only if L2Ac1 = 0
holds and, additionally, Γ ≡ 0.

+ In [SR21], we express the conditions for a general parabolic parabolic
system Ξ1,0.

T. Schmoderer (INSAR) Paraboloid control systems 22/06/2022 21 / 43



Contents

1. Definitions and problem statement

2. Study of parabolic systems
Characterisation
Classification

3. Study of (p, q)-paraboloid systems
Characterisation
Classification

4. Conclusion and perspectives

5. References

T. Schmoderer (INSAR) Paraboloid control systems 22/06/2022 22 / 43



Contents

1. Definitions and problem statement

2. Study of parabolic systems
Characterisation
Classification

3. Study of (p, q)-paraboloid systems
Characterisation
Classification

4. Conclusion and perspectives

5. References

T. Schmoderer (INSAR) Paraboloid control systems 22/06/2022 23 / 43



Study of (p, q)-paraboloid systems: Characterisation 1/6

We now turn to the characterisation of

SQ = {(x, ẋ) ∈ TX , ż = ẏtQ(x)ẏ + b(x)ẏ + c(x)},

where dimX ≥ 3.
+ To characterise Sp,q, we will characterise the class of their
parametrisations Σp,q.

Major difference with the case n = 2

To characterise the class Σp,q, we will need relations between 2nd order Lie
brackets only and not 3rd order relations.
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Study of (p, q)-paraboloid systems: Characterisation 2/6

Definition: (p, q)-parabolisable systems
We say that a control-affine system Σ on a (2m+ 1)-dimensional manifold
M and with m controls, is (p, q)-parabolisable if it is feedback equivalent
to

Σp,q :

{
ẋ = A(x)wtIp,qw +

∑m
i=1Bi(x)wi + C(x)

ẇ = u
,

(x,w) ∈M, u ∈ Rm, where Ip,q =
(
Idp 0
0 −Idq

)
, A, B = (B1, . . . , Bm),

and C are smooth vector fields satisfying A ∧B1 ∧ . . . ∧Bm 6= 0.
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Study of (p, q)-paraboloid systems: Characterisation 3/6

Consider a control-affine system

Σ : ξ̇ = f(ξ) +

m∑
i=1

uigi(ξ),

with state ξ ∈M, a (2m+ 1)-dimensional manifold, and control u ∈ Rm.
We attach to Σ the following distributions

D0 = span {g1, . . . , gm} and D1 = span {g1, . . . , gm, adfg1, . . . , adfgm} .

First necessary conditions (for Σ to be feedback equivalent to Σp,q):
1 D0 is involutive and of constant rank m,
2 D1 has constant rank 2m,

which encode the fact that Σ is a prolongation of a regular parametrisation
of S.
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Study of (p, q)-paraboloid systems: Characterisation 4/6

For any ω ∈ ann
(
D1
)
, we define

Ωω : D0 ×D0 −→ R
(gi, gj) 7−→ ω ([gi, adfgj ])

Properties of Ω

Ωω is a smooth symmetric (0, 2)-tensor on D0 and feedback
transformations f 7→ f + gα and g 7→ g̃ = gβ transform Ωω into

Ω̃ω = βtΩωβ

For Σp,q we have sgn (Ωω) = (p, q) thus, third necessary condition
3 For Σ, Ωω has constant signature (p, q) with p+ q = m.
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Study of (p, q)-paraboloid systems: Characterisation 5/6

Definition (Weak and strong quadratic frames)

We say that a frame g = (g1, . . . , gm) of D0 is a weak quadratic frame,
resp. a strong quadratic frame, if there exists a smooth vector field Z /∈ D1

such that

[gi, adfgj ] = IijZ mod D1, resp. [gi, adfgj ] = IijZ mod D0,

+ Weak quadratic frame correspond to Ωω = λIp,q, for some smooth
function λ 6= 0.
+ Under assumptions (1-3), a weak quadratic frame of D0 always exists
and can be constructed explicitly;
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Study of (p, q)-paraboloid systems: Characterisation 6/6

Theorem (Characterisation of Σp,q)
Under assumptions (1-3), Σ is feedback equivalent to Σp,q if and only if
there exists a strong quadratic frame.

+ Existence of a strong quadratic frame can be tested on structure
functions defined with the help of any weak quadratic frame attached to Σ.
+ A equivalent definition of strong quadratic frames is

[gi, adfgi] Iii − [gj , adfgj ] I
j
j = 0 mod D0 for all i, j = 1, . . . ,m,

and [gi, adfgj ] = 0 mod D0 if i 6= j,

whose meaning on

Σp,q :

{
ẋ = A(x)wtIp,qw +

∑m
i=1Bi(x)wi + C(x)

ẇ = u

is clear.
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Study of (p, q)-paraboloid systems: Classification 1/5

We now turn to the classification problem of paraboloid nonholonomic
constraints

Sp,q = {ż = ẏtQ(x)ẏ + b(x)ẏ + c(x)}, x ∈ Rn.

The forms that we characterise are the following:

diagonal paraboloid Sdp,q =
{
ż = ẏtD(x)ẏ + b(x)ẏ + c(x)

}
weakly-flat paraboloid S ′p,q =

{
ż = ẏtIp,qẏ + b(x)ẏ + c(x)

}
strongly-flat paraboloid S ′′p,q =

{
ż = ẏtIp,qẏ + c(x)

}
constant-form paraboloid S ′′′p,q =

{
ż = ẏtIp,qẏ + c

}
null-form paraboloid S0p,q =

{
ż = ẏtIp,qẏ

}
Table: Nomenclature of paraboloid submanifolds.
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Study of (p, q)-paraboloid systems: Classification 2/5

The classification problem of Sp,q is treated via a classification of
control-nonlinear systems of the form

Ξp,q : ẋ = A(x)wtIp,qw +

m∑
i=1

Bi(x)wi + C(x), n = m+ 1,

where A, B1, . . . , Bm, and C are smooth vector fields satisfying
A ∧B1 ∧ . . . ∧Bm 6= 0, and Ip,q =

(
Idp 0
0 −Idq

)
. We denote

Ξp,q = (A,B,C), where B = (B1, . . . , Bm).

S ′p,q =
{
ż = ẏtIp,qẏ + b(x)ẏ + c(x)

}
(A,B) commutative

S ′′p,q =
{
ż = ẏtIp,qẏ + c(x)

}
(A,B) commutative and A ∧ C = 0

S ′′′p,q =
{
ż = ẏtIp,qẏ + c

}
(A,B) commutative, and C constant
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Study of (p, q)-paraboloid systems: Classification 3/5

Proposition: Equivalence of (p, q)-paraboloid control-nonlinear
systems

If two (p, q)-system Ξp,q = (A,B,C) and Ξ̃p,q = (Ã, B̃, C̃) are feedback
equivalent via a diffeomorphism x̃ = φ(x) and an invertible feedback
transformation w = ψ(x, w̃), then ψ(x, w̃) = α(x) + β(x)w̃ where
α ∈ C∞(X ,Rm) and β ∈ C∞(X , GO(p, q)), i.e. βtIp,qβ = λ Ip,q with λ a
smooth function satisfying λ(·) 6= 0. Moreover, we have

Ã = φ∗(λA), B̃ = φ∗(2Aα
tIp,qβ +Bβ),

and C̃ = φ∗(C +AαtIp,qα+Bα).

+ Feedback acts locally in x and globally in w;

+ Distribution A = span {A} is invariantly related to Ξp,q;
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Study of (p, q)-paraboloid systems: Classification 4/5

We now present our characterisation of the following normal form

Ξ′p,q : ẋ = wtIp,qw
∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ C(x);

To this end, we define two subclasses of (p, q)-frame:

Definition (p, q)-frame
We say that a (p, q)-frame (A,B) if

1 pseudo-commutative if [A,Bj ] = 0 mod A;
2 commutative if [A,Bj ] = [Bi, Bj ] = 0;

Moreover, for any pseudo-commutative frame (A,B), we define

π∗ : TX −→ TX/A
Bi 7−→ π∗Bi.
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Study of (p, q)-paraboloid systems: Classification 5/5

And we set the pseudo-Riemannian metric gB such that

gB (π∗Bi, π∗Bj) = Iij ,

i.e. the vector fields π∗Bi are mutually orthonormal with respect to the
quadratic form Ip,q.

Theorem (Existence of a commutative (p, q)-frame)
Consider a (p, q)-paraboloid nonlinear system Ξp,q = (A,B,C) with its
(p, q)-frame (A,B). Then, the following statements are locally equivalent,

1 Ξp,q is feedback equivalent to Ξ′p,q,
2 There exists (α, β) such that (Ã, B̃) is a commutative (p, q)-frame.
3 There exists (α, β) such that (Ã, B̃) is a pseudo-commutative

(p, q)-frame and the pseudo-Riemannian metric gB̃ is conformally flat.

+ Existence of a pseudo-commutative (p, q)-frame can be tested with the
help of well defined structure functions attached to (A,B).
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Study of (p, q)-paraboloid systems: Classification 1/2

Normalisation of paraboloid systems
We have algebraic conditions to characterise the systems

Ξ′′p,q : ẋ = wtIp,qw
∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ c0(x)

∂

∂z
,

Ξ′′′p,q : ẋ = wtIp,qw
∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ c0

∂

∂z
.

+ Those are very complicated to interpret. We have additional conditions
because, to obtain A ∧ C = 0 we use α and we are left with only β to
construct a commutative frame.
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Study of (p, q)-paraboloid systems: Classification 2/2

Canonical form of constant paraboloid systems
When c0 ∈ R is constant we have the following canonical forms, which
depends on the invariant sign of a suitable function Γp,q,

Ξ0
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ 0, or

Ξε
p,q : ẋ = wtIp,qw

∂

∂z
+

m∑
i=1

wi
∂

∂yi
+ εp,q

∂

∂z
,

with εp,q =

{
±1 if p 6= q

1 if p = q
. Moreover, Ξp,q is equivalent to the former

if and only if Γp,q ≡ 0 and to the latter if and only if Γp,q > 0 or Γp,q < 0
when p 6= q, or Γp,q 6= 0 when p = q.
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Conclusion and perspectives 1/2

Summary of our contributions
1 Study of the link between nonholomic constraints and control systems;
2 To characterise and classify paraboloid nonholomic constraints Sp,q,

we introduce a new class of control-nonlinear systems Ξp,q together
with their extensions Σp,q;

3 We give a complete characterisation of (p, q)-paraboloid control
systems Σp,q in any dimension;

4 We propose a classification of (p, q)-paraboloid systems Ξp,q;
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Conclusion and perspectives 2/2

Perspectives
1 Obtain better interpretations of our conditions;
2 Study the problem of equivalence of general quadratic nonholomic

constraints (done for n = 2);

Sq(x, ẋ) = ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x) = 0

3 Generalise our results to polynomials of any degree in ẏ:

ż −
d∑

i=0

ai(x)ẏi = 0.

4 Generalise to corank k ≥ 2 quadratic submanifolds;

T. Schmoderer (INSAR) Paraboloid control systems 22/06/2022 40 / 43



Thank you for your attention!
Any questions?

Control systems with paraboloid nonholonomic constraints

Timothée Schmoderer
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