Control systems with paraboloid nonholonomic constraints

Timothée Schmoderer

timothee.schmoderer@insa-rouen.fr

Laboratoire de Mathématiques de l'INSA Rouen Normandie

Workshop on "Optimal Control Theory" June 22, 2022 Joint work with: Witold Respondek (LMI, INSA Rouen)

- 1. Definitions and problem statement
- 2. Study of parabolic systems
 - Characterisation
 - Classification
- 3. Study of (p, q)-paraboloid systems
 - Characterisation
 - Classification
- 4. Conclusion and perspectives
- 5. References

1. Definitions and problem statement

- 2. Study of parabolic systems
 - Characterisation
 - Classification
- 3. Study of (p, q)-paraboloid systems
 - Characterisation
 - Classification
- 4. Conclusion and perspectives
- 5. References

Conventions:

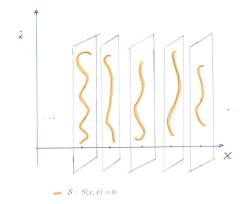
- **1** *smooth*: means C^{∞} smooth;
- ² We consider a smooth *n*-dimensional manifold \mathcal{X} , since all results are local we can take \mathcal{X} as an open subset of \mathbb{R}^n , equipped with coordinates $x = (z, y_1, \dots, y_{n-1})$;
- **③** $T\mathcal{X}$: the tangent bundle of \mathcal{X} , with coordinates (x, \dot{x}) .

We consider a smooth (2n-1)-dimensional submanifold $\mathcal{S} \subset T\mathcal{X}$ given by

$$\mathcal{S} = \left\{ (x, \dot{x}) \in T\mathcal{X}, \ S(x, \dot{x}) = 0 \right\},\$$

where $S: T\mathcal{X} \to \mathbb{R}$ is a smooth scalar-valued map such that $\frac{\partial S}{\partial \dot{x}} \neq 0$ for all $(x, \dot{x}) \in S$.

Definitions and problem statement 2/3



A submanifold S defines a nonholomic constraint, i.e. a curve $\gamma : [0,T] \to \mathcal{X}$ satisfies the nonholomic constraint given by S if we have $S(\gamma(t),\dot{\gamma}(t)) = 0$, for all t.

Definitions and problem statement 3/3

Definition (Equivalence of submanifolds)

We say that two submanifolds $S = \{S(x, \dot{x}) = 0\}$ and $\tilde{S} = \{\tilde{S}(\tilde{x}, \dot{\tilde{x}}) = 0\}$ of $T\mathcal{X}$ and $T\tilde{\mathcal{X}}$, respectively, are (locally)-equivalent if there exists a (local) diffeomorphism $\tilde{x} = \phi(x)$ and a nonvanishing scalar function $\delta(x, \dot{x})$ such that

$$\tilde{S}(\phi(x), D\phi(x)\dot{x}) = \delta(x, \dot{x})S(x, \dot{x}).$$

Purpose of our work: to characterise and classify the following category

$$\mathcal{S}_{p,q} = \{(x, \dot{x}) \in T\mathcal{X}, \ \dot{z} = \dot{y}^t Q(x) \dot{y} + b(x) \dot{y} + c(x)\},\$$

where Q(x) is a smooth (n-1) by (n-1) symmetric matrix of full rank with signature (p,q), $b(x) = (b_1(x), \ldots, b_{n-1}(x))$ is a smooth covector, and c(x) is a smooth scalar function.

 $\mathcal{S}_{p,q}$ is said to define a (p,q)-paraboloid nonholomic constraint

Definitions and problem statement: Motivations

Before turning towards quadratic nonholomic constraints, a lot of work has been done for *linear* and *affine* Pfaffian equations

 $\omega(x)\dot{x} = 0$ and $\omega(x)\dot{x} + h(x) = 0.$

☞ [Zhi92; Zhi95; JZ01; ZR98; Elk12], and many others.

Dubin's car

A simple model of the dynamics of a car, studied in [Dub57],

$$\begin{cases} \dot{z} = \cos(\theta) \\ \dot{y} = \sin(\theta) \end{cases}$$

corresponds to the constraints $(\dot{z})^2 + (\dot{y})^2 - 1 = 0.$

In [ANN15], the following relations $\dot{z} = \frac{1}{2} \sum_{i,j=1}^{m} Q_{i,j} \dot{y}_i \dot{y}_j$, where sgn (Q) = (p,q), appear as models whose Lie algebra of symmetries are isomorphic to $\mathfrak{so}(p+2,q+2)$.

Definitions and problem statement: Methodology 1/2

To study the equivalence problem of submanifolds $\mathcal{S} = \{S(x, \dot{x}) = 0\}$ we proceed as follows.

$$\mathcal{S} \longleftrightarrow \Xi_{\mathcal{S}} : \dot{x} = F(x, w), \quad S(x, F(x, w)) = 0, \forall w \in \mathcal{W} \subset \mathbb{R}^{n-1}$$
$$\longleftrightarrow \Sigma_{\mathcal{S}} : \begin{cases} \dot{x} = F(x, w) \\ \dot{w} = u \end{cases}, \text{ where }$$

•
$$w \in \mathbb{R}^{n-1}$$
 is the control for $\Xi_{\mathcal{S}}$;

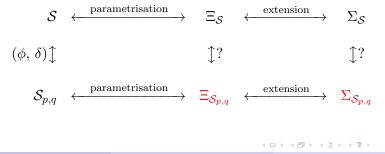
• $u \in \mathbb{R}^{n-1}$ is the control for $\Sigma_{\mathcal{S}}$, and $(x, w) \in \mathcal{M} = \mathcal{X} \times \mathcal{W}$ is the extended coordinate system.

	Base manifold	Dimension	Controls		
\mathcal{S}	X	n			
$\Xi_{\mathcal{S}}$	\mathcal{X}	n	m := n - 1		
$\Sigma_{\mathcal{S}}$	\mathcal{M}	2n - 1	m := n - 1		
			・ 日 > ・ 白 > ・ キ 目 >	★ ≣ ▶ = ∃	5000

Definitions and problem statement: Methodology 2/2

To characterise $S_{p,q}$ we will characterise the class of control-affine systems $\Sigma_{S_{p,q}}$; To classify $S_{p,q}$ we will classify the class of control-nonlinear systems $\Xi_{S_{p,q}}$;

What is the notion of equivalence for control systems that makes this diagram commute ?



Definitions and problem statement: Feedback equivalence

Feedback for control-nonlinear systems: We call $\Xi : \dot{x} = F(x, w)$ and $\tilde{\Xi} : \dot{\tilde{x}} = \tilde{F}(\tilde{x}, \tilde{w})$ feedback equivalent if there exists a diffeomorphism $\Phi : \mathcal{X} \times \mathcal{W} \to \tilde{\mathcal{X}} \times \tilde{\mathcal{W}}$ of the form

$$(\tilde{x},\tilde{w}) = \Phi(x,w) = (\phi(x),\psi(x,w)),$$

which transforms the first system into the second, i.e.

$$D\phi(x)F(x,w) = \tilde{F}(\phi(x),\psi(x,w)).$$

Feedback for control-affine systems: For control-affine systems $\Sigma: \dot{\xi} = f(\xi) + \sum_{i=1}^{m} g_i(\xi)u_i$, feedback transformations are restricted to those of the form

$$\tilde{u} = \psi(\xi, u) = \alpha(\xi) + \beta(\xi)u,$$

where $\alpha = (\alpha_1, \ldots, \alpha_m)^t$ and $\beta = (\beta_j^i)$ are smooth functions depending on the state and satisfy $\beta(\cdot) \in GL_m(\mathbb{R})$.

Summary of the talk

Proposition

Equivalence of submanifolds of the tangent bundle corresponds to the equivalences of their parametrisations (nonlinear and control-affine) under feedback transformations.

- Problem I: Characterise (p, q)-paraboloid nonholomic constraints S_{p,q};
 Define a novel class of control-affine systems Σ_{p,q}, which corresponds to prolongation of parametrisations of S_{p,q};
 - ${\it \ensuremath{\mathbb S}}$ Find invariants of the class $\Sigma_{p,q}$ and exploit them to obtain a characterisation that class;
- **2** Problem II: Classify (p, q)-paraboloid nonholomic constraints $S_{p,q}$;
 - Study the nature of feedback transformations acting on $\Xi_{p,q}$;
 - ${}^{\scriptsize \hbox{\scriptsize ldentify}}$ Identify structures of $\Xi_{p,q}$ that transform nicely under feedback;
 - Solution We want to classify $\Xi_{p,q}$;

We will first solve both problem for the case $\dim \mathcal{X} = 2$ and then generalise to $\dim \mathcal{X} \ge 3$.

1. Definitions and problem statement

2. Study of parabolic systems

- Characterisation
- Classification

3. Study of (p, q)-paraboloid systems

- Characterisation
- Classification
- 4. Conclusion and perspectives

5. References

3

1. Definitions and problem statement

2. Study of parabolic systemsCharacterisation

Classification

3. Study of (p, q)-paraboloid systems

- Characterisation
- Classification

4. Conclusion and perspectives

5. References

3

Study of parabolic systems: Characterisation 1/3

We study the characterisation of $S_{1,0} = \dot{z} - a(x)\dot{y}^2 - b(x)\dot{y} - c(x) = 0.$

Definition (Parametrisation)

We say that a control-affine system $\boldsymbol{\Sigma}$ is parabolisable if it is feedback equivaent to

$$\Sigma_{1,0}: \left\{ \begin{array}{l} \dot{x} = \mathsf{f}(x,w) \\ \dot{w} = u \end{array} \right., \quad \text{where} \quad \frac{\partial^3 \mathsf{f}}{\partial w^3} = 0$$
$$\frac{\partial^2 \mathsf{f}}{\partial w^2} \wedge \frac{\partial \mathsf{f}}{\partial w} \right) (x_0,w_0) \neq 0.$$

We have

and

$$\Sigma_{1,0}: \begin{cases} \dot{x} = A(x)w^2 + B(x)w + C(x) \\ \dot{w} = u \end{cases} \quad \text{with} \quad A \wedge B \neq 0.$$

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Characterisation of parabolic nonholomic constraint)

Let Σ be a control-affine system on a 3-dimensional smooth manifold given by vector fields f and g. Σ is, locally around ξ_0 , feedback equivalent to $\Sigma_{1,0}$ if and only if

2 The structure functions ρ and τ in the decomposition $ad_g^{\beta}f = \rho ad_g^2f + \tau ad_gf \mod span\{g\}$ satisfy

$$\chi = 3L_g \rho - 2\rho^2 - 9\tau = 0.$$

NB: $\operatorname{ad}_g^k f = \left[g, \operatorname{ad}_g^{k-1} f\right]$, with $\operatorname{ad}_g f = [g, f]$ and $[\cdot, \cdot]$ is the Lie bracket of vector fields.

These conditions are checkable by algebraic operations and derivations.

イロト 不得下 イヨト イヨト 二日

Study of parabolic systems: Characterisation 3/3

Idea of the proof:

- Check that $\Sigma_{1,0}$ satisfies the conditions,
- Check that the conditions are invariant under feedback transformations,
- **3** Given Σ with ρ and τ , find a feedback (α, β) such that $\tilde{\rho} \equiv 0$, then applying a diffeomorphism ϕ satisfying $\phi_*g = \frac{\partial}{\partial w}$ we obtain $\Sigma_{1,0}$.

 $^{\rm I\!C\!S}$ Using the condition $\chi=0,$ we give a local normal form of all control-affine systems Σ that are equivalent to $\Sigma_{1,0}$

$$\begin{cases} \dot{z} = 2a(x) \frac{w^2}{\left(\sqrt{e(x)w+1}+1\right)^2} + b(x)w + c(x) \\ \dot{y} = w \\ \dot{w} = u \end{cases},$$

where $a \neq 0$; see [SR21].

1. Definitions and problem statement

2. Study of parabolic systems

- Characterisation
- Classification

3. Study of (p, q)-paraboloid systems

- Characterisation
- Classification
- 4. Conclusion and perspectives

5. References

3

Study of parabolic systems: Classification 1/5

We now turn to the classification problem of parabolic nonholonomic constraints

$$S_{1,0} = \{ \dot{z} = a(x)\dot{y}^2 + b(x)\dot{y} + c(x) \}, \quad x \in \mathbb{R}^2$$

The forms that we characterise are the following:

weakly-flat parabolic	$S'_{1,0} = \left\{ \dot{z} = \dot{y}^2 + b(x)\dot{y} + c(x) \right\}$
	$S_{1,0}'' = \left\{ \dot{z} = \dot{y}^2 + c(x) \right\}$
constant-form parabolic	$S_{1,0}^{\prime\prime\prime} = \left\{ \dot{z} = \dot{y}^2 + c \right\}$
null-form parabolic	${\cal S}^0_{1,0}=\left\{\dot{z}=\dot{y}^2 ight\}$

Table: Nomenclature of parabolic submanifolds.

Study of parabolic systems: Classification 2/5

The classification problem of $\mathcal{S}_{1,0}$ is treated via a classification of control-nonlinear systems of the form

$$\Xi_{1,0}$$
: $\dot{x} = A(x)w^2 + B(x)w + C(x).$

where A, B, and C are smooth vector fields satisfying $A \wedge B \neq 0$. We denote $\Xi_{1,0} = (A, B, C)$.

$$\begin{split} \mathcal{S}_{1,0}' &= \left\{ \dot{z} = \dot{y}^2 + b(x)\dot{y} + c(x) \right\} & (A,B) \text{ commutative} \\ \mathcal{S}_{1,0}'' &= \left\{ \dot{z} = \dot{y}^2 + c(x) \right\} & (A,B) \text{ commutative and } A \wedge C = 0 \\ \mathcal{S}_{1,0}''' &= \left\{ \dot{z} = \dot{y}^2 + c \right\} & (A,B) \text{ commutative, and } C \text{ constant} \end{split}$$

Table: Reflection of classification of parabolic submanifolds in properties of parabolic systems

< □ > < 同 > < 回 > < 回 > < 回 >

Study of parabolic systems: Classification 3/5

Although $\Xi_{1,0}$ is a control-nonlinear system, feedback transformations that preserve its parabolic shape are of the form

$$\tilde{x} = \phi(x)$$
 and $w = \psi(x, \tilde{w}) = \beta(x)\tilde{w} + \alpha(x)$,

with $\beta \neq 0$. And, feedback acts on $\Xi_{1,0} = (A, B, C)$ by

$$\tilde{A} = \beta^2 A, \quad \tilde{B} = 2A\alpha\beta + B\beta, \quad \tilde{C} = C + A\alpha^2 + B\alpha$$

Theorem (Existence of a commutative parabolic frame)

There always exists (α, β) such that (\tilde{A}, \tilde{B}) is a commutative parabolic frame. As a consequence, $\Xi_{1,0}$ always admits the following normal form

$$\Xi_{1,0}': \begin{cases} \dot{z} = w^2 + c_0(x) \\ \dot{y} = w + c_1(x) \end{cases}$$

→ ∃ →

< 47 ▶

Study of parabolic systems: Classification 4/5

Next, we characterise the forms

$$\Xi_{1,0}'': \left\{ \begin{array}{ll} \dot{z} &= w^2 + c_0(x) \\ \dot{y} &= w \end{array} \right., \qquad \Xi_{1,0}''': \left\{ \begin{array}{ll} \dot{z} &= w^2 + c \\ \dot{y} &= w \end{array} \right.$$

To this end, we define

$$\Gamma = c_0 + (c_1)^2,$$

which under feedback transformations behaves as $\Gamma = \beta^2 \tilde{\Gamma}$, hence its sign is an invariant. With $c \in \mathbb{R}$ we have the following canonical forms

$$\Xi_{1,0}^{\pm} : \left\{ \begin{array}{ll} \dot{z} & = w^2 \pm 1 \\ \dot{y} & = w \end{array} \right., \quad \text{and} \quad \Xi_{1,0}^0 : \left\{ \begin{array}{ll} \dot{z} & = w^2 \\ \dot{y} & = w \end{array} \right.$$

T. Schmoderer (INSAR)

Study of parabolic systems: Classification 5/5

Theorem (Normalisation of parabolic systems)

Let $\Xi'_{1,0} = \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial y}, C\right)$ be a parabolic control system. Then the following statements hold.

- $\Xi'_{1,0}$ is feedback equivalent to $\Xi''_{1,0}$ if and only if $L^2_A c_1 = 0$.
- **2** $\Xi'_{1,0}$ is feedback equivalent to $\Xi''_{1,0}$ with $c \neq 0$ if and only if $\Gamma \neq 0$ and it holds

$$L_A \Gamma = 0$$
, and $L_B \Gamma + 2\Gamma L_A c_1 = 0$.

3 $\Xi_{1,0}$ is feedback equivalent to $\Xi_{1,0}^{\prime\prime\prime}$ with c = 0 if and only if $L_A^2 c_1 = 0$ holds and, additionally, $\Gamma \equiv 0$.

 ${\tt Im}$ In [SR21], we express the conditions for a general parabolic parabolic system $\Xi_{1,0}.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

1. Definitions and problem statement

- 2. Study of parabolic systems
 - Characterisation
 - Classification

3. Study of (p,q)-paraboloid systems

- Characterisation
- Classification
- 4. Conclusion and perspectives

5. References

3

< 回 > < 三 > <

1. Definitions and problem statement

- 2. Study of parabolic systems
 - Characterisation
 - Classification
- 3. Study of (p,q)-paraboloid systems
 - Characterisation
 - Classification
- 4. Conclusion and perspectives
- 5. References

3

We now turn to the characterisation of

$$\mathcal{S}_Q = \{(x, \dot{x}) \in T\mathcal{X}, \ \dot{z} = \dot{y}^t Q(x) \dot{y} + b(x) \dot{y} + c(x)\},\$$

where dim $\mathcal{X} \geq 3$. To characterise $\mathcal{S}_{p,q}$, we will characterise the class of their parametrisations $\Sigma_{p,q}$.

Major difference with the case n = 2

To characterise the class $\Sigma_{p,q}$, we will need relations between 2nd order Lie brackets only and not 3rd order relations.

A (10) A (10)

Definition: (p, q)-parabolisable systems

We say that a control-affine system Σ on a (2m + 1)-dimensional manifold \mathcal{M} and with m controls, is (p,q)-parabolisable if it is feedback equivalent to

$$\Sigma_{p,q} : \begin{cases} \dot{x} = A(x)w^t \mathbb{I}_{p,q}w + \sum_{i=1}^m B_i(x)w_i + C(x) \\ \dot{w} = u \end{cases}$$

 $(x,w) \in \mathcal{M}, u \in \mathbb{R}^m$, where $I_{p,q} = \begin{pmatrix} \mathsf{Id}_p & 0 \\ 0 & -\mathsf{Id}_q \end{pmatrix}$, $A, B = (B_1, \dots, B_m)$, and C are smooth vector fields satisfying $A \wedge B_1 \wedge \dots \wedge B_m \neq 0$.

Study of (p, q)-paraboloid systems: Characterisation 3/6

Consider a control-affine system

$$\Sigma : \dot{\xi} = f(\xi) + \sum_{i=1}^{m} u_i g_i(\xi),$$

with state $\xi \in \mathcal{M}$, a (2m+1)-dimensional manifold, and control $u \in \mathbb{R}^m$. We attach to Σ the following distributions

$$\mathcal{D}^0 = \operatorname{span} \left\{ g_1, \dots, g_m \right\} \quad ext{and} \quad \mathcal{D}^1 = \operatorname{span} \left\{ g_1, \dots, g_m, \operatorname{ad}_f g_1, \dots, \operatorname{ad}_f g_m \right\}.$$

First necessary conditions (for Σ to be feedback equivalent to $\Sigma_{p,q}$):

1 \mathcal{D}^0 is involutive and of constant rank m,

2 \mathcal{D}^1 has constant rank 2m,

which encode the fact that Σ is a prolongation of a regular parametrisation of $\mathcal{S}.$

Study of (p,q)-paraboloid systems: Characterisation 4/6

For any $\omega \in \operatorname{ann}\left(\mathcal{D}^{1}
ight)$, we define

$$\Omega_{\omega} \,:\, \mathcal{D}^0 \times \mathcal{D}^0 \longrightarrow \mathbb{R}$$
$$(g_i, g_j) \longmapsto \omega \left([g_i, \mathsf{ad}_f g_j] \right)$$

Properties of Ω

 Ω_{ω} is a smooth symmetric (0,2)-tensor on \mathcal{D}^0 and feedback transformations $f\mapsto f+g\alpha$ and $g\mapsto \tilde{g}=g\beta$ transform Ω_{ω} into

$$\tilde{\Omega}_{\omega} = \beta^t \Omega_{\omega} \beta$$

For $\Sigma_{p,q}$ we have ${\rm sgn}\,(\Omega_\omega)=(p,q)$ thus, third necessary condition

3 For Σ , Ω_{ω} has constant signature (p,q) with p+q=m.

Definition (Weak and strong quadratic frames)

We say that a frame $g = (g_1, \ldots, g_m)$ of \mathcal{D}^0 is a *weak quadratic frame*, resp. *a strong quadratic frame*, if there exists a smooth vector field $Z \notin \mathcal{D}^1$ such that

$$[g_i, \mathsf{ad}_f g_j] = \mathbf{I}_j^i Z \mod \mathcal{D}^1$$
, resp. $[g_i, \mathsf{ad}_f g_j] = \mathbf{I}_j^i Z \mod \mathcal{D}^0$,

rease Weak quadratic frame correspond to $\Omega_{\omega} = \lambda I_{p,q}$, for some smooth function $\lambda \neq 0$.

Index assumptions (1-3), a weak quadratic frame of \mathcal{D}^0 always exists and can be constructed explicitly;

イロト 不得下 イヨト イヨト 二日

Study of (p,q)-paraboloid systems: Characterisation 6/6

Theorem (Characterisation of $\Sigma_{p,q}$)

Under assumptions (1-3), Σ is feedback equivalent to $\Sigma_{p,q}$ if and only if there exists a strong quadratic frame.

The Existence of a strong quadratic frame can be tested on structure functions defined with the help of any weak quadratic frame attached to Σ . The A equivalent definition of strong quadratic frames is

$$[g_i, \mathsf{ad}_f g_i] \mathbf{I}_i^i - [g_j, \mathsf{ad}_f g_j] \mathbf{I}_j^j = 0 \mod \mathcal{D}^0 \text{ for all } i, j = 1, \dots, m,$$

and $[g_i, \mathsf{ad}_f g_j] = 0 \mod \mathcal{D}^0 \text{ if } i \neq j,$

whose meaning on

$$\Sigma_{p,q} : \begin{cases} \dot{x} = A(x)w^t \mathbb{I}_{p,q} w + \sum_{i=1}^m B_i(x)w_i + C(x) \\ \dot{w} = u \end{cases}$$

is clear.

T. Schmoderer (INSAR)

1. Definitions and problem statement

- 2. Study of parabolic systems
 - Characterisation
 - Classification
- 3. Study of (p, q)-paraboloid systems
 - Characterisation
 - Classification
- 4. Conclusion and perspectives
- 5. References

3

Study of (p, q)-paraboloid systems: Classification 1/5

We now turn to the classification problem of paraboloid nonholonomic constraints

$$\mathcal{S}_{p,q} = \{ \dot{z} = \dot{y}^t Q(x) \dot{y} + b(x) \dot{y} + c(x) \}, \quad x \in \mathbb{R}^n.$$

The forms that we characterise are the following:

diagonal paraboloid	$\mathcal{S}_{p,q}^d = \left\{ \dot{z} = \dot{y}^t D(x) \dot{y} + b(x) \dot{y} + c(x) \right\}$
weakly-flat paraboloid	$\mathcal{S}_{p,q}' = \left\{ \dot{z} = \dot{y}^t \mathbf{I}_{p,q} \dot{y} + b(x) \dot{y} + c(x) \right\}$
strongly-flat paraboloid	$\mathcal{S}_{p,q}'' = \left\{ \dot{z} = \dot{y}^t \mathbf{I}_{p,q} \dot{y} + c(x) \right\}$
constant-form paraboloid	$\mathcal{S}_{p,q}^{\prime\prime\prime} = \left\{ \dot{z} = \dot{y}^t \mathbf{I}_{p,q} \dot{y} + c \right\}$
null-form paraboloid	$\mathcal{S}_{p,q}^0 = \left\{ \dot{z} = \dot{y}^t \mathtt{I}_{p,q} \dot{y} ight\}$

Table: Nomenclature of paraboloid submanifolds.

A (10) < A (10) < A (10) </p>

Study of (p, q)-paraboloid systems: Classification 2/5

The classification problem of $S_{p,q}$ is treated via a classification of control-nonlinear systems of the form

$$\Xi_{p,q} : \dot{x} = A(x)w^{t} \mathbb{I}_{p,q} w + \sum_{i=1}^{m} B_{i}(x)w_{i} + C(x), \quad n = m+1,$$

where A, B_1, \ldots, B_m , and C are smooth vector fields satisfying $A \wedge B_1 \wedge \ldots \wedge B_m \neq 0$, and $I_{p,q} = \begin{pmatrix} Id_p & 0 \\ 0 & -Id_q \end{pmatrix}$. We denote $\Xi_{p,q} = (A, B, C)$, where $B = (B_1, \ldots, B_m)$.

$$\begin{split} \mathcal{S}'_{p,q} &= \left\{ \dot{z} = \dot{y}^t \mathbb{I}_{p,q} \dot{y} + b(x) \dot{y} + c(x) \right\} & (A, B) \text{ commutative} \\ \mathcal{S}''_{p,q} &= \left\{ \dot{z} = \dot{y}^t \mathbb{I}_{p,q} \dot{y} + c(x) \right\} & (A, B) \text{ commutative and } A \wedge C = 0 \\ \mathcal{S}''_{p,q} &= \left\{ \dot{z} = \dot{y}^t \mathbb{I}_{p,q} \dot{y} + c \right\} & (A, B) \text{ commutative, and } C \text{ constant} \end{split}$$

Study of (p, q)-paraboloid systems: Classification 3/5

Proposition: Equivalence of (p,q)-paraboloid control-nonlinear systems

If two (p,q)-system $\Xi_{p,q} = (A, B, C)$ and $\tilde{\Xi}_{p,q} = (\tilde{A}, \tilde{B}, \tilde{C})$ are feedback equivalent via a diffeomorphism $\tilde{x} = \phi(x)$ and an invertible feedback transformation $w = \psi(x, \tilde{w})$, then $\psi(x, \tilde{w}) = \alpha(x) + \beta(x)\tilde{w}$ where $\alpha \in C^{\infty}(\mathcal{X}, \mathbb{R}^m)$ and $\beta \in C^{\infty}(\mathcal{X}, GO(p,q))$, i.e. $\beta^t \mathbf{I}_{p,q}\beta = \lambda \mathbf{I}_{p,q}$ with λ a smooth function satisfying $\lambda(\cdot) \neq 0$. Moreover, we have

$$\begin{split} \tilde{A} &= \phi_*(\lambda A), \quad \tilde{B} = \phi_*(2A\,\alpha^t \mathbb{I}_{p,q}\beta + B\beta), \\ & \text{and} \quad \tilde{C} = \phi_*(C + A\,\alpha^t \mathbb{I}_{p,q}\alpha + B\alpha). \end{split}$$

Feedback acts locally in x and globally in w;

Solution $\mathcal{A} = \text{span} \{A\}$ is invariantly related to $\Xi_{p,q}$;

イロト イロト イヨト 一日

Study of (p, q)-paraboloid systems: Classification 4/5

We now present our characterisation of the following normal form

$$\Xi'_{p,q}: \dot{x} = w^t \mathbb{I}_{p,q} w \frac{\partial}{\partial z} + \sum_{i=1}^m w_i \frac{\partial}{\partial y_i} + C(x);$$

To this end, we define two subclasses of (p,q)-frame:

Definition (p,q)-frame

We say that a (p,q)-frame (A,B) if

) pseudo-commutative if
$$[A, B_j] = 0 \mod \mathcal{A}$$
;

2 commutative if
$$[A, B_j] = [B_i, B_j] = 0;$$

Moreover, for any pseudo-commutative frame (A, B), we define

$$\pi_*: T\mathcal{X} \longrightarrow T\mathcal{X}/\mathcal{A}$$
$$B_i \longmapsto \pi_* B_i.$$

T. Schmoderer (INSAR)

Paraboloid control systems

<ロ> <問> < 同> < 回> < 回> < 三</p>

Study of (p, q)-paraboloid systems: Classification 5/5

And we set the pseudo-Riemannian metric g_B such that

$$\mathbf{g}_B\left(\pi_*B_i,\pi_*B_j\right)=\mathbf{I}_j^i,$$

i.e. the vector fields π_*B_i are mutually orthonormal with respect to the quadratic form $I_{p,q}$.

Theorem (Existence of a commutative (p,q)-frame)

Consider a (p,q)-paraboloid nonlinear system $\Xi_{p,q} = (A, B, C)$ with its (p,q)-frame (A,B). Then, the following statements are locally equivalent, $\Xi_{p,q}$ is feedback equivalent to $\Xi'_{p,q}$,

- **2** There exists (α, β) such that (\tilde{A}, \tilde{B}) is a commutative (p, q)-frame.
- There exists (α, β) such that (Ã, B̃) is a pseudo-commutative (p,q)-frame and the pseudo-Riemannian metric g_{R̃} is conformally flat.

Solution Structure functions attached to (A, B).

Normalisation of paraboloid systems

We have algebraic conditions to characterise the systems

$$\Xi_{p,q}'': \dot{x} = w^{t} \mathbf{I}_{p,q} w \frac{\partial}{\partial z} + \sum_{i=1}^{m} w_{i} \frac{\partial}{\partial y_{i}} + c_{0}(x) \frac{\partial}{\partial z},$$
$$\Xi_{p,q}''': \dot{x} = w^{t} \mathbf{I}_{p,q} w \frac{\partial}{\partial z} + \sum_{i=1}^{m} w_{i} \frac{\partial}{\partial y_{i}} + c_{0} \frac{\partial}{\partial z}.$$

real Those are very complicated to interpret. We have additional conditions because, to obtain $A \wedge C = 0$ we use α and we are left with only β to construct a commutative frame.

Study of (p, q)-paraboloid systems: Classification 2/2

Canonical form of constant paraboloid systems

When $c_0 \in \mathbb{R}$ is constant we have the following canonical forms, which depends on the invariant sign of a suitable function $\Gamma_{p,q}$,

$$\Xi_{p,q}^{0} : \dot{x} = w^{t} \mathbf{I}_{p,q} w \frac{\partial}{\partial z} + \sum_{i=1}^{m} w_{i} \frac{\partial}{\partial y_{i}} + 0, \quad \text{or}$$

$$\Xi_{p,q}^{\varepsilon} : \dot{x} = w^{t} \mathbf{I}_{p,q} w \frac{\partial}{\partial z} + \sum_{i=1}^{m} w_{i} \frac{\partial}{\partial y_{i}} + \varepsilon_{p,q} \frac{\partial}{\partial z},$$

with $\varepsilon_{p,q} = \begin{cases} \pm 1 & \text{if } p \neq q \\ 1 & \text{if } p = q \end{cases}$. Moreover, $\Xi_{p,q}$ is equivalent to the former if and only if $\Gamma_{p,q} \equiv 0$ and to the latter if and only if $\Gamma_{p,q} > 0$ or $\Gamma_{p,q} < 0$ when $p \neq q$, or $\Gamma_{p,q} \neq 0$ when p = q.

1. Definitions and problem statement

- 2. Study of parabolic systems
 - Characterisation
 - Classification
- 3. Study of (p,q)-paraboloid systems
 - Characterisation
 - Classification
- 4. Conclusion and perspectives
- 5. References

3

< 回 > < 三 > <

Summary of our contributions

- Study of the link between nonholomic constraints and control systems;
- **2** To characterise and classify paraboloid nonholomic constraints $S_{p,q}$, we introduce a new class of control-nonlinear systems $\Xi_{p,q}$ together with their extensions $\Sigma_{p,q}$;
- Solution We give a complete characterisation of (p, q)-paraboloid control systems $\Sigma_{p,q}$ in any dimension;
- We propose a classification of (p,q)-paraboloid systems $\Xi_{p,q}$;

- 4 同 6 4 日 6 4 日 6

Conclusion and perspectives 2/2

Perspectives

- Obtain better interpretations of our conditions;
- ② Study the problem of equivalence of general quadratic nonholomic constraints (done for n = 2);

$$S_q(x, \dot{x}) = \dot{x}^t \mathbf{g}(x) \dot{x} + 2\omega(x) \dot{x} + h(x) = 0$$

③ Generalise our results to polynomials of any degree in \dot{y} :

$$\dot{z} - \sum_{i=0}^{d} a_i(x)\dot{y}^i = 0.$$

③ Generalise to corank $k \ge 2$ quadratic submanifolds;

Thank you for your attention! Any questions?

Control systems with paraboloid nonholonomic constraints

Timothée Schmoderer 🕥

1. Definitions and problem statement

- 2. Study of parabolic systems
 - Characterisation
 - Classification
- 3. Study of (p, q)-paraboloid systems
 - Characterisation
 - Classification
- 4. Conclusion and perspectives

5. References

3

▲ □ ▶ ▲ □ ▶ ▲

References 1/2

Ian Anderson, Zhaohu Nie, and Pawel Nurowski. "Non-Rigid Parabolic Geometries of Monge Type". Advances in Mathematics 277 (2015), pp. 24–55. doi: 10.1016/j.aim.2015.01.021.

Lester E. Dubins. "On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents". *American Journal of Mathematics* 79.3 (1957), p. 497. doi: 10.2307/2372560.

Vladimir I. Elkin. Reduction of Nonlinear Control Systems: A Differential Geometric Approach. Vol. 472. Springer Science & Business Media, 2012.

Bronislaw Jakubczyk and Michail Zhitomirskii. "Local Reduction Theorems and Invariants for Singular Contact Structures". *Annales de l'institut Fourier* 51.1 (2001), pp. 237–295. doi: 10.5802/aif.1823.

Timothée Schmoderer and Witold Respondek. Conic Nonholonomic Constraints on Surfaces and Control Systems. 2021. url: http://arxiv.org/abs/2106.08635.

Michail Zhitomirskii. *Typical Singularities of Differential 1-Forms and Pfaffian Equations*. Vol. 113. American Mathematical Soc., 1992.

3

(a)

Michail Zhitomirskii. "Singularities and Normal Forms of Smooth Distributions". *Banach Center Publications* 32.1 (1995), pp. 395–409. doi: 10.4064/-32-1-395-409.

Michail Zhitomirskii and Witold Respondek. "Simple Germs of Corank One Affine Distributions". *Banach Center Publications* 44.1 (1998), pp. 269–276. doi: 10.4064/-44-1-269-276.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >