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Abstract
Purpose  We investigated whether artificial intelligence (AI)-based denoising halves PET acquisition time in digital PET/CT.
Methods  One hundred ninety-five patients referred for [18F]FDG PET/CT were prospectively included. Body PET acquisi-
tions were performed in list mode. Original “PET90” (90 s/bed position) was compared to reconstructed ½-duration PET 
(45 s/bed position) with and without AI-denoising, “PET45AI and PET45”. Denoising was performed by SubtlePET™ using 
deep convolutional neural networks. Visual global image quality (IQ) 3-point scores and lesion detectability were evalu-
ated. Lesion maximal and peak standardized uptake values using lean body mass (SULmax and SULpeak), metabolic volumes 
(MV), and liver SULmean were measured, including both standard and EARL1 (European Association of Nuclear Medicine 
Research Ltd) compliant SUL. Lesion-to-liver SUL ratios (LLR) and liver coefficients of variation (CVliv) were calculated.
Results  PET45 showed mediocre IQ (scored poor in 8% and moderate in 68%) and lesion concordance rate with PET90 
(88.7%). In PET45AI, IQ scores were similar to PET90 (P = 0.80), good in 92% and moderate in 8% for both. The lesion 
concordance rate between PET90 and PET45AI was 836/856 (97.7%), with 7 lesions (0.8%) only detected in PET90 and 13 
(1.5%) exclusively in PET45AI. Lesion EARL1 SULpeak was not significantly different between both PET (P = 0.09). Lesion 
standard SULpeak, standard and EARL1 SULmax, LLR and CVliv were lower in PET45AI than in PET90 (P < 0.0001), while 
lesion MV and liver SULmean were higher (P < 0.0001). Good to excellent intraclass correlation coefficients (ICC) between 
PET90 and PET45AI were observed for lesion SUL and MV (ICC ≥ 0.97) and for liver SULmean (ICC ≥ 0.87).
Conclusion  AI allows [18F]FDG PET duration in digital PET/CT to be halved, while restoring degraded ½-duration PET 
image quality. Future multicentric studies, including other PET radiopharmaceuticals, are warranted.

Keywords  [18F]FDG · PET · Denoising · Artificial intelligence · Deep learning · Acquisition time

Introduction

Recent research in PET has focused on decreasing noise and 
increasing signal-to-noise ratios (SNR) [1]. Digital PET with 
silicon photomultipliers (SiPM) has led to improved timing, 
energy, spatial resolution, and effective time-of-flight (TOF) 
sensitivity [2–5]. This has resulted in faster scanning with less 
injected activity [1]. However, despite these advances, there is 
an ever-increasing demand for PET scans, which can contrib-
ute to significant delays in scheduling examinations and patient 
management.

Deep learning (DL), a subdivision of artificial intelli-
gence (AI), has many emerging applications in nuclear med-
icine [6, 7]. DL is able to increase PET resolution, decrease 
noise, and thus enhance image quality [8–12]. It may allow 
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for reducing injected activity, acquisition time, or a combi-
nation of both [10, 13–21].

DL-based denoising can either be associated with PET 
reconstruction or be used as a post-reconstruction tool. 
SubtlePET™ (Subtle Medical, Stanford, US, provided 
by Incepto, France) is a post-reconstruction PET denois-
ing software that has been approved by the Food and Drug 
Administration and validated by the European Commission 
for [18F]FDG PET [22]. The algorithm is based on deep 
convolutional neural networks (DCNN), the most common 
DL architecture [23, 24]. SubtlePET™ uses multi-slice 2.5D 
encoder-decoder U-Net DCNN. It takes the pixel’s neighbor-
hood into account to reduce noise and increase image qual-
ity. Using a residual learning approach that is optimized for 
quantitative (L1 norm) and structural similarity (SSIM), it 
has learned to separate and suppress noise components while 
preserving non-noise components.

Recently, SubtlePET™ processed [18F]FDG PET images 
obtained with 33% less injected activity gave similar visual 
and quantitative performances to native PET in analog PET/
CT without time-of-flight (TOF) [25]. Promising results 
were also reported while reducing reconstructed PET acqui-
sition time by 75% using analog and digital PET/CT (with 
or without TOF) in a smaller study population with a sub-
stantially higher original time-activity PET product [26]. 
Our group demonstrated the stability of most [18F]FDG PET 
radiomics features while applying this software without 
study count reduction [27].

In this prospective study, we aimed to evaluate the feasi-
bility of halving PET acquisition time in a routine clinical 
setting by using SubtlePET™ while preserving visual and 
semi-quantitative PET performances in digital TOF PET/
CT.

Materials and methods

Patient selection

One hundred ninety-five adult patients referred to our com-
prehensive cancer center for initial or follow-up [18F]FDG 
PET/CT from end-January to end-February 2021 were pro-
spectively included in this study. The only exclusion crite-
rion was a specific acquisition protocol involving a longer 
acquisition time per bed position on the head and neck or 
liver areas.

This non-interventional clinical study was approved 
by the local institutional review board from the François 
Baclesse Comprehensive Cancer Center and was regis-
tered with the French Health Data Hub under reference N° 
F20210720123322 on 20 January 2021. All patients pro-
vided informed consent to the use of their data.

Imaging protocol and processing

All exams were performed in accordance with the EANM 
imaging guidelines [28] on a digital SiPM PET/CT (VEREOS, 
Philips Healthcare). After a 6-h fasting period, patients were 
injected with 3 MBq/kg [18F]FDG intravenously.

Before each PET scan, a low-dose non-contrast-enhanced 
CT scan was acquired for attenuation correction and as an 
anatomical reference. CT scan parameters were 100–140 kV, 
with variable mAs according to a dose right index of 14 and 
an iterative reconstruction Idose of 4:64 × 0.625-mm slice 
collimation, the pitch of 0.83, rotation time 0.5 s, 3D modu-
lation, matrix 512 × 512 and voxel size 0.97 × 0.97 × 3 mm3.

PET acquisition, 1 h post-injection, was recorded in 
list-mode. Its field comprised at least the skull base to the 
upper thigh and was extended to total body acquisition if 
needed. Two PET reconstructions were performed: one for 
routine clinical purposes using the full acquisition time 
of 90 s per bed position (“PET90”), and a second one 
using 45 s per bed position for the purpose of this study 
(“PET45”). For both reconstructions, we used 3D ordered 
subset expectation maximization (3D-OSEM) with Point 
Spread Function (PSF), 4 iterations with 4 subsets (4i4s), a 
2 × 2 × 2 mm3 voxel size, and 288 × 288 matrix size. Scat-
ter, attenuation, and random corrections were computed.

PET45 images were processed by SubtlePET™ and 
are referred to hereafter as “PET45AI.” A fully automatic 
workflow allowed image transfer as well as denoising. A 
common and affordable NVIDIA 1080 GPU processor was 
used for SubtlePET™.

Image analysis

Visual analysis

Original blinded PET90 and PET45AI were reviewed side-
by-side by five experienced nuclear medicine physicians 
on a Syngo.via viewing server (version VB 30A, Siemens 
Healthcare). Each reader interpreted a unique part of the 
study population (all images per patient) and did not review 
PET/CT scans they had previously seen in clinical practice.

Readers attributed a global, whole-image quality (IQ) 
score to each PET series: 1 = poor; 2 = moderate; 3 = good. 
It was based on global and hepatic image noise and on 
normal tissue contrast.

All lesions with increased [18F]FDG uptake were noti-
fied on each PET series. For each lesion, the readers 
specified the preferred PET series for detection (related 
to the contrast-to-background ratio), the supposed nature, 
i.e. malignant (primary tumor, local recurrence, (nodal) 
metastasis), benign or indeterminate, and its location.
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Additionally, to evaluate the incremental value of AI-
based denoising, PET45 was compared to PET90 and 
PET45AI in 146 patients (due to missing data).

Semi‑quantitative analysis

Lesions were independently and semi-automatically seg-
mented on each PET series, using the 50% 3D-isocontour 
of the maximal pixel value.

In each lesion volume-of-interest (VOI), the following 
standardized uptake values based on lean body mass (SUL) 
were measured: SULmax and SULpeak. LBM was estimated 
using the Janma formula [29].

The metabolic volume (MV) of the lesion and, when feasible, 
its short and long axes on the associated CT were calculated.

In addition, the reference liver SULmean with its standard 
deviation (SD) were collected in a 3 cm-diameter VOI in the 
right liver lobe, identical for each PET series.

Both standard and EARL1 (European Association of 
Nuclear Medicine Research Ltd) SUL were analyzed. 
EARL1 SUL was obtained numerically by Gaussian post-
filtering within Syngo.via (EQ.PET filter [30]), with a full 
width at half maximum (FWHM) of 7.2 mm for all PET 
series. Our center is EARL accredited, and we use EARL1 
SUL in routine practice for quantification, as it is transpos-
able to different PET cameras and reconstructions [31].

Lesion-to-liver ratios (LLR) were calculated as SUL/
SULmean liver and the coefficient of variation in the liver 
(CVliv) as SD/ SULmean.

Statistical analysis

Shapiro–Wilk testing found all quantitative variables (except 
for denoising processing time and SUL differences) to be non-
normally distributed, further expressed by the median and inter-
quartile range (IQR).

IQ scores between two PET series were compared by the 
Wilcoxon signed-rank test with continuity correction for 
paired data. Concordance rates of lesion detection between 
PET90 and PET45AI and between PET90 and PET45 were 
compared by the chi-squared test. Differences in continu-
ous quantitative variables (semi-quantitative PET measures) 
between two PET series were statistically analyzed by the 
Wilcoxon signed-rank test for paired data.

Intraclass correlation coefficients (ICC) between semi-
quantitative measures in PET90 and PET 45AI were also 
calculated, considering 0.5–0.75 as moderate, 0.75–0.9 as 
good, and > 0.9 as excellent reliability [32]. Absolute dif-
ferences in SUL between PET series were calculated as 
SULPET45AI − SULPET90 and relative differences or delta ∆ as 
(SULPET45(AI) − SULPET90) / SULPET90, and likewise for MV.

Bland Altman plots were used to display absolute 
SUL differences between PET90 and PET45AI, with 

Limits of Agreement (LOA) computed as the mean differ-
ence ± 1.96 × SD. A logistic uni- and multivariable regres-
sion analysis was carried out to look for predictive factors 
of a decrease of over 10% in SULmax in PET45AI vs PET90.

This decrease threshold of 10% was set by the required accu-
racy of SUL calibration within 10% for VEREOS PET, according 
to the AAPM report 126 [33]. Bonferroni correction for statisti-
cal significance level was used in univariable logistic regression 
analysis. Elsewhere, P-values < 0.05 were considered statistically 
significant. Analyses were conducted with R version 4.0.2.

Results

Patient population and image processing

The main characteristics of the 195 patients included in this 
study are shown in Table 1.

Table 1   Patient characteristics

1  IQR, interquartile range between first and third quartile (Q1 
and Q3); 2 BMI, body mass index; 3 2 patients had a delay < 55 
or > 65 min pi.(53 and 70 min); 4 Other primaries: prostate (4), mela-
noma (3), head-and-neck (3), esophagus and stomach (3), bladder 
(3), testicle (1), pancreas (1), anus (1), myeloma (1), mesothelioma 
(1), skin squamous cell carcinoma (1), Merkel cell carcinoma (1). 
12 patients had more than one primary; 7 patients had no primary 
(sum > 195)

N = 195

Age (years), median; IQR1 66; 59–74
Gender, n (%)
  Male 122 (63)
  Female 73 (37)

Weight (kg), median; IQR 72; 61–84
BMI 2 (kg/m2) 26; 23–30
Glycaemia (g/l) 1.05; 0.95–1.20
Scan delay (min) 3 57; 55–59
Study indication (n (%) of patients)
   Malignancy 147 (75)
      Baseline staging 39 (20)
      Therapeutic evaluation 65 (33)
      Recurrence detection/staging 43 (22)
   Characterization (benign vs malignant) 41 (21)
   Miscellaneous 7 (4)

Primary lesion (origin)
   Lung 70 (36)
   Breast 68 (35)
   Gynecological (except breast) 17 (9)
   Colorectal 6 (3)
   Lymphoma 6 (3)
   Unknown primary 6 (3)
   Sarcoma 5 (3)
   Other 4 23 (12)
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All two-fold count reduced PET series (PET45) were 
successfully treated by the denoising software with a mean 
processing time of 90 s (min–max; 45–122 s).

Image analysis

Visual analysis: comparison between PET90 
and PET45AI

IQ scores were similar between original PET90 and 
PET45AI (P = 0.80), good (score 3) in 92% (n = 180 vs 179) 
and moderate (score 2) in 8% (n = 15 vs n = 16) of exams.

Concerning lesion detection, 33 out of 195 patients presented 
a normal and concordant examination on both PET series. In 
the remaining 162 patients, a total of 856 lesions were detected.

Of these, 836 lesions were visualized in both original 
PET90 and denoised PET45AI, resulting in a lesion con-
cordance rate of 97.7%. Seven out of 856 (0.8%) small and 
low-uptake lesions were detected exclusively on PET90 in 6 
patients (Table 2). Thirteen foci (1.5%) were detected only 
on PET45AI in 10 patients, mostly corresponding to inde-
terminate liver lesions. An illustration is shown in Fig. 1.

There was no per-lesion preferred PET series for detec-
tion in 86% of lesions. On the other hand, original PET90 
was preferred for 12% and PET45AI for 2%.

Semi‑quantitative analysis: PET90 
and PET45AI measures

Statistical comparison of standard values

Lesion SULmax, SULpeak, LLR, and CVliv were sig-
nificantly lower in denoised PET45AI than in original 
PET90 (P < 0.0001) (Table 3). In contrast, lesion MV and 
liver SULmean were higher in PET45AI than in PET90 
(P < 0.0001). Lesion SUL, MV, LLR, and liver SULmean 
showed a good-to-excellent correlation between both PET 
series (≥ 0.873 up to 0.998).

Statistical comparison of EARL1values

Lesion EARL1 SULpeak was not significantly different 
between both PET series (P = 0.09). Otherwise, the com-
parison of EARL1 SUL and derived measures between 
PET90 and PET45AI was similar to the comparison of 
standard measures.

Absolute and relative differences

Bland Altman (Fig. 2) plots show the absolute difference 
between both PET series in SULmax and SULpeak (both 

Table 2   Description of discordant lesions between PET90 and PET45AI

Patient Lesion Malignancy Location Nature

Original PET90 only 1 1 lymphoma retroperitoneallymph node malignant
2 2 breast lung malignant(metastasis)
3 3 ovarium peritoneum malignant(metastasis)

4 peritoneum malignant(metastasis)
4 5 breast bone malignant(metastasis)
5 6 breast axillarylymph node indeterminate
6 7 lung smallintestine indeterminate

PET45AI only 7 8 mesothelioma liver indeterminate
9 liver indeterminate

8 10 hypopharynx liver indeterminate
9 11 lung liver indeterminate

12 liver indeterminate
10 13 breast liver indeterminate
11 14 multiplemyeloma liver indeterminate
12 15 breast liver indeterminate
13 16 lung liver indeterminate
14 17 breast liver indeterminate
15 18 breast spleen indeterminate
16 19 colon bone benign

20 bone indeterminate



European Journal of Nuclear Medicine and Molecular Imaging	

1 3

standard and EARL1 measures) for each lesion. The high-
est mean absolute difference reached − 0.38 g/mL [95% 
CI − 0.43, − 0.34] for standard SULmax in PET45AI vs orig-
inal PET90. The other average absolute differences were 
close to 0.

The mean ± SD relative differences in PET45AI com-
pared to PET90 reached − 9.48 ± 11.50% for standard 
SULmax, − 3.41 ± 7.17% for standard SULpeak, − 3.74 ± 7.34% 
for EARL1 SULmax, and − 1.37 ± 5.71% for EARL1 SULpeak 
of lesions. For liver SULmean, the mean relative difference 
was + 5.64 ± 4.75% and 5.88 ± 3.93% for standard and 
EARL1 measures, respectively.

Explanatory factors analysis of differences 
between PET90 and PET45AI

In visual lesion detection

Table  4 shows lesion characteristics (size and uptake) 
according to their detectability. Most discordant and pre-
ferred lesions had a low-to-moderate uptake and size.

In lesion SULmax

Multivariable logistic regression analysis indicated two 
independent predictors of a SULmax decrease of over 

Fig. 1   Two concordant and 
two discordant PET images 
between PET90 and PET45AI 
In a several hepatic (oblique 
red arrows) and a spinal bone 
metastasis (vertical upward red 
arrows) in a female patient with 
breast cancer were detected 
on both original PET90 and 
denoised PET45AI. In b a con-
cordantly negative PET. In c a 
low-uptake, sub-centimetric left 
axillary lymph node (oblique 
red arrows) in a patient referred 
for left breast cancer staging, 
classified indeterminate and 
exclusively detected on original 
PET90. In d an indetermi-
nate liver focus exclusively 
annotated on PET45AI (vertical 
downward red arrows) in a male 
patient scanned for advanced 
lung cancer staging

Table 3   Standard semi-
quantitative measures in 
original PET90 and denoised 
PET45AI

All values are expressed as median [interquartile range]. ICC, intraclass correlation coefficients between 
PET90 and PET45AI measures; MV, metabolic volume; CV, coefficient of variation; LLR, lesion-to-liver 
ratio

PET90 PET45AI ICC [95%CI]

Lesion SULmax (g/ml) 4.45 [3.08–7.53] 3.99 [2.68–6.94] 0.99 [0.98–0.99]
SULpeak (g/ml) 2.72 [1.87–4.77] 2.63 [1.79–4.65] 1.00 [0.99–1.00]
MV (ml) 1.22 [0.61–2.90] 1.45 [0.80–3.30] 0.97 [0.97–0.98]

Liver SULmean (g/ml) 1.66 [1.52–1.84] 1.77 [1.60–1.96] 0.87 [0.84–0.90]
CV (%) 12.83 [11.71–14.49] 10.96 [9.55–12.41] 0.58 [0.48–0.66]

Lesion/liver LLRmax 2.68 [1.81–4.58] 2.32 [1.51–4.04] 0.97 [0.97–0.98]
LLRpeak 1.67 [1.12–2.86] 1.51 [1.01–2.69] 0.99 [0.99–0.99]
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10% in PET45AI compared to PET90, namely SULmax 
in PET45AI (P < 0.0001) and CT long axis (P = 0.01) 
(Table 5). Supplementary Fig. 3 shows that the smaller 
the lesion size on CT and the lower the SULmax, the 
greater the probability of a negative SULmax bias over 
10%.

Evaluation of PET45

Visual analysis

PET90, PET45, and PET 45AI were compared in 146 
patients. Two cases are illustrated in Figs. 3 and 4.

Fig. 2   Bland Altman plots for standard SULmax (a) and SULpeak (b) 
and respective EARL1 SULmax (c) and SULpeak (d): Y-axis shows the 
absolute differences between PET45AI and PET90 SUL measures 

versus their means on X-axis. A dashed black line corresponds to the 
mean and dotted red lines to the upper and lower limits of agreement 
(LOA). Most lesions had SUL below 5 g/ml

Table 4   Lesion features 
according to their detectability 
in original PET90 and denoised 
PET45AI

All measures are displayed as median [interquartile range]; 1 MV, metabolic volume. Note that metabolic 
volumes of small lesions and with low contrast-to-background ratios are less accurate. 2 of original PET90; 
3 NA, not assessable (no measurable CT lesion)

Size on CT (mm) MV (ml) 1 SULmax (g/ml)

Absolute detection Long axis Short axis
  Concordant 16 [10–24] 10 [7–16] 1.3 [0.6–3.2] 4.4 [3.1–7.5] (2)

  Discordant PET90 only 5 [5–6] 4 [3–6] 0.8 [0.6–1.2] 2.1 [1.5–2.6]
  Discordant PET45AI only NA3 NA 1.2 [0.6–2.9] 3.0 [2.5–3.3]

Preferred serie for detection
  No 17 [11–25] 11 [7–17] 1.5 [0.8–3.8] 4.6 [3.1–7.7] (2)

  PET90 9 [7–12] 7 [5–9] 1.1 [0.7–1.8] 2.7 [2.0–3.6] (2)

  PET45AI 8 [5–22] 6 [4–16] 1.5 [0.9–2.7] 2.2 [1.6–2.8] (2)
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IQ scores were lower in PET45 (median: 2) than in both 
PET90 and PET45AI (median: 3), P < 0.0001. Poor IQ 
scores (= 1) were exclusively found in PET45 scans (n = 12; 
8%). IQ was scored moderate (= 2) in 99 (68%) PET45 
examinations vs in 13 (9%) PET90 and 16 (11%) PET 45AI, 
the remainder being considered of good image quality.

In this subgroup of patients, the lesion detection concord-
ance rate between PET90 and PET45 was 88.7% (582/656), 
while that between PET90 and PET45AI was 97.4% 
(589/605), P < 0.0001. The number of false-positive foci was 
higher in PET45 (n = 61; 9.3%) than in PET45AI (n = 10; 
1.7%), P < 0.0001. Furthermore, 13 (2.0%) false-negative 
lesions were present in PET45 and 6 (1.0%) in PET45AI, 
P = 0.15.

Semi‑quantitative analysis

Lesion standard SULmax was significantly higher in PET45 
than in PET90 (P ≤ 0.0001, with an average ± SD relative 
bias of + 3.30 ± 10.34%). Lesion standard SULpeak, EARL1 

SULpeak and EARL1 SULmax were similar in PET90 and 
PET45.

CVliv was significantly higher in PET45 (median 18.00; 
IQR 15.98–21.16%) than in PET90 (12.84; 11.88–14.27%) 
and than in PET45AI (10.80; 9.68–12.21%), P < 0.0001.

Discussion

This prospective study shows good visual and semi-quan-
titative performances of AI-denoised half-count PET com-
pared to original PET in a digital PET/CT. We simulated 
a two-fold reduction in the PET acquisition time and then 
applied a commercially available PET denoising software 
based on U-net DCNN. All PET series were successfully 
denoised within 2 min in an automatic workflow using a 
common GPU card. This makes it compatible with rou-
tine clinical use. Visually, global image quality scores were 
similar between PET90 and PET45AI but lower and clini-
cally insufficient in half-count PET45 due to high noise. We 
obtained few discordances (2.3%) between original PET90 
and denoised PET45AI in the absolute detection of 856 
lesions.

A total of 0.8% of lesions were detected only on PET90 
in 3% of patients. This concerned sub-centimetric or small 
lesions with a maximum SULmax of 3.1 g/ml. Most of these 
“original PET90-only or false-negative lesions in PET45AI” 
were classified as authentically malignant (71%) or inde-
terminate (29%). Many other concordant malignant lesions 
were detected in all but one of these patients.

A total of 1.5% of lesions were exclusively visualized on 
denoised PET45AI in 5% of patients. These “false positives” 
were predominantly located in the liver and interpreted as 
indeterminate or benign foci. For most lesions, there was no 
per-lesion preferred PET series for detection. However, in a 
minority of lesions (12%), original PET was preferred and 
less frequently (in 2%) denoised PET. Whether on original 
or on denoised PET, preferred lesions showed a variable 
uptake and size, mostly low-to-moderate. More expertise in 
the reading of these new denoised PET images could further 
improve the accuracy and comfort of readers.

A higher lesion detection discordance rate (> 10%) 
was found between PET90 and half-duration PET45 than 
between PET90 and PET45AI, with particularly additional 
false positives in PET45. This further renders half-count 
PET not compatible with routine clinical use. Similar results 
were observed in [21], with also a decrease in diagnostic 
confidence when dividing acquisition time by two.

Comparing semi-quantitative SUL measures in lesions 
between PET90 and PET45AI, only harmonized EARL1 
SULpeak was not significantly different when using the 
same Gaussian post-filter for both PET series. Standard 

Table 5   Uni-and multivariable logistic regression analysis for pre-
dicting a negative ΔSULmax above 10% in PET45AI compared to 
PET90

*  statistically significant. 1 of PET45AI. OR, odds ratio; BMI, body 
mass index; MV, metabolic volume; CVliv, coefficient of variation in 
the liver. CVliv_Ratio = CVliv (PET45AI) / CVliv (PET90). PET45AI 
SULmax values were used to build a predictive model focusing on 
the end result, namely denoised and not original PET. However, we 
obtained the same results with original PET90 SULmax. A negative 
ΔSULmax above 10% concerned 383 lesions (46%). Few lesions 
showed an increase above 10% in SULmax (n = 9; 1.0%) on PET45AI 
vs PET90, not further analyzed

Univariable Multivariable

OR [95% CI] P OR P

Age 0.99 [0.82–
1.21]

0.98 1.04 [0.81–
1.34]

0.77

Female sex 1.87 [1.26–
2.78]

0.002* 1.11 [0.65–
1.87]

0.71

BMI 1.20 [0.99–
1.44]

0.05 1.02 [0.78–
1.32]

0.91

Glycaemia 1.18 [0.97–
1.43]

0.10 1.17 [0.89–
1.54]

0.25

SULmax
(1) 0.18 [0.13–

0.25]
 < 0.0001* 0.22 [0.14–

0.33]
 < 0.0001*

CT long axis 0.20 [0.14–
0.29]

 < 0.0001* 0.49 [0.28–
0.84]

0.01*

MV (1) 0.06 [0.03–
0.13]

 < 0.0001* 0.28 [0.07–
1.11]

0.07

CVliv
(1) 0.98 [0.81–

1.18]
0.81 1.35 [0.87–

2.09]
0.18

CVliv_Ratio 0.96 [0.82–
1.14]

0.67 0.79 [0.56–
1.11]

0.17
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SULpeak and standard and EARL1 SULmax were lower 
in denoised PET45AI than in original PET90. The aver-
age relative difference remained below 10% for all lesion 
SUL. Greater SUL biases occurred especially in lesions 
with a moderate size and uptake and mostly “non-target 
and non-evaluable lesions” according to PERCIST crite-
ria [34, 35]. In our quantitative study, all lesions were 
taken into account. The overrepresentation of small, low-
uptake lesions negatively affected quantitative differences 
between both PET series.

On the other hand, SULmean in the reference liver was 
slightly higher (on average + 6%) in PET45AI than in the 
original PET90. Its standard deviation and thus its noise 
levels were lower (on average − 12% for standard CVliv). 
The decrease in CVliv highlights the denoising efficacy even 
when dividing study counts by two.

Some other research groups have found even lower SUV 
biases, despite a higher study count reduction, especially 
while using CycleGANs as DL architecture [16, 17] or Sub-
tle PET™ (U-net) [26]. However, their studies were per-
formed on different and/or smaller cohorts.

A pilot study of 10 small lung nodules suggested that 
a fully 3D U-net compared to a 2.5D U- net, as used in 
our study, may offer better lesion quantitative performance, 
even though visual image quality was similar [19]. However, 
2.5D U-net is useful for routine clinical practice owing to its 
shorter computational time and lower processing capacity 
requirement.

Nevertheless, probably more important than these dif-
ferences in semi-quantitative measures was their correla-
tion between original PET90 and PET45AI, in particular 
for lesion SUL.

This inter-PET correlation was very high for lesion SUL 
and MV (with ICCs of at least 0.97) and high for liver 
SULmean (with ICCs of at least 0.87), testifying to the sta-
bility and reliability of these measures obtained after PET 
count reduction and denoising.

A strength of our study is a large number of lesions of 
very different sizes, uptake, nature, and location.

Study limitations are the side-by-side reading method-
ology which could have enhanced the detection accuracy 
in PET45(AI). Second, the clinical impact of denoised 
PET has not been properly established. Third, the unlim-
ited lesion number per patient led to a potential statistical 
bias due to the over-representation of dependent lesions 
in the same patients. Fourth, the effect of AI-denoising 
on image artifacts was not studied. A final small draw-
back is a use of harmonized EARL1 SUL measures, 
which are still widely used, and not more recent EARL2 
values [36].

Our study thus supports the routine use of Subtle PET™ 
combined with a two-fold faster PET acquisition.

The benefit of decreasing PET duration, thus reducing 
waiting time for appointments and helping patients who 
experience discomfort, outweighs the minor decrease in 
performance.

Fig. 3   Concordant lesions A 
77-year-old man (78 kg; BMI 
24 kg/m2) with multifocal 
lymphadenopathy of unknown 
origin. MIP views (a) and axial 
PET slices (b) of [18F]FDG 
PET90, PET45, and PET45AI. 
Detection of small left suprahi-
lar lymphadenopathy in all PET 
series (vertical arrows in b) with 
respective standard SULmax of 
1.8 (PET90), 2.3 (PET45), and 
1.7 g/ml (PET45AI). None-
theless, PET45 images are 
noisier than PET90 or PET45AI 
images, particularly in the liver
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Although not properly studied, our findings could also 
lead to a reduction in injected activity or a combination of 
both (activity and time). Initially, an Italian group reported a 
similar performance of Subtle PET™ treated PET with 33% 
less injected [18F]FDG activity compared to native PET in 
non-TOF analog PET/CTs [25].

Further research should be carried out on ways to increase 
performances, e.g. by optimizing the DL-model and/or 
adapting acquisition time in liver and regions of interest. 
Furthermore, large multicentric studies with different PET 
cameras, reconstruction parameters, and various reductions 
in [18F]FDG PET acquisition time-activity product are nec-
essary. Striking the optimal balance between performance 
and time savings is essential. Moreover, research with other 
PET radiopharmaceuticals is warranted.

Conclusion

This prospective study demonstrates the satisfactory 
preservation of [18F]FDG PET image quality and 
quantification when applying AI-based denoising on 
half-duration PET compared to original full-duration 
PET. AI restored degraded and clinically insufficient 

image quality of half-duration PET. It paves the way 
for a significant reduction in acquisition time and the 
optimization of PET imaging equipment in routine 
clinical practice.
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