
HAL Id: hal-03678994
https://normandie-univ.hal.science/hal-03678994

Submitted on 22 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

An approach based on timed Petri nets and tree
encoding to implement search algorithms for a class of

scheduling problems
Dimitri Lefebvre, Francesco Basile

To cite this version:
Dimitri Lefebvre, Francesco Basile. An approach based on timed Petri nets and tree encoding to
implement search algorithms for a class of scheduling problems. Information Sciences, 2021, 559,
pp.314-335. �10.1016/j.ins.2020.12.087�. �hal-03678994�

https://normandie-univ.hal.science/hal-03678994
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

An approach based on Timed Petri nets and tree encoding  

to implement search algorithms for a class of scheduling problems 

Dimitri Lefebvre*, Francesco Basile** 

 

*Normandie Univ, UNIHAVRE, GREAH, 76600 Le Havre, France (dimitri.lefebvre@univ-lehavre.fr) 

**DIEM, Università di Salerno, Italy (fbasile@unisa.it) 

 

Abstract: Scheduling problems have been approached several times by Petri nets. Indeed, the usage of a 

Petri net model guarantees the feasibility of the candidate solutions, but it does not provide an accurate 

evaluation of the time required to complete the considered workshop. For this purpose, a class of timed 

Petri nets, namely structured nets, is defined and the encoding of the structure and time information of 

such nets as a tree is presented. This encoding, in combination with the resolution of some linear matrix 

inequalities, is used to estimate the residual time required to complete each job of the considered 

workshop. The main advantage of this computation is to provide an estimation of the residual time as an 

interval that includes necessarily the exact residual duration. Consequently, the lower bound of the 

interval never overestimates the exact duration and can be used as a part of the cost function involved in 

many exploration algorithms as the A* or the Beam Search algorithms. In this paper, the proposed 

estimation function is used with the Hybrid Filtered Beam Search algorithm and performances are 

discussed for several examples of workshops. The paper also illustrates that the approach can be 

combined with supervisory control to accelerate the convergence of the exploration since deadlocked 

solutions can be eliminated directly in the model. 

 

Keywords: Flexible manufacturing systems, scheduling, Timed Petri nets, Beam search algorithm  

 

1. INTRODUCTION 

Scheduling is one of the most important and difficult issues in the operation of flexible manufacturing systems (FMSs) due to 

routing flexibility and shared resources. It belongs to the class of NP-hard combinatorial optimization problems. Petri Nets 

(PNs) have demonstrated their ability to handle such problems with numerous contributions. PNs have an underlying 

mathematical structure that can be exploited to perform qualitative and quantitative analysis of the systems. They can be 

directly converted into simulation models; in addition, they are graphical, easy to develop, extend, and offer a better 

understanding of the dynamic behavior of the systems by means of tokens and transitions. The major advantages of using PNs 

in the scheduling of production systems over other tools include the ability to represent many states in a concise manner, to 

capture precedence relations and structural interactions, and to model deadlocks, conflicts, buffer-sizes, and multi-resource 

constraints. Activities, resources, and constraints of a manufacturing system can be represented in a single coherent 

formulation. Concurrent and asynchronous activities, resources sharing, routing flexibility, and complex constraints on process 

sequences can be explicitly and concisely modeled by PNs.  

As far as scheduling problems are considered, a large variety of PN subclasses have been listed and discussed [29], [30]. Job 

shop problems are the most popular scheduling problems and Systems of Simple Sequential Processes with Resources (S3PR) 
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have been defined as a subclass of ordinary and conservative PNs [11] for this class of problems. Later, to extend the use of 

resources in job shops, a generalization of S3PR models called Systems of Sequential Systems with Shared Resources (S4R) 

has been defined [2]. Scheduling problem for totally flexible workshops have been also considered in particular for open shops 

that consist of several jobs which are processed on multiple resources with full routing flexibility. A subclass of PN models 

called Set of Simple Open Processes with Resources (S2OPR) has been defined for such problems [34]. In this paper a model 

suitable to describe workshops that have more flexibility than job shops but less flexibility than open shops is proposed. We 

refer to such jobs as structured jobs. We propose to model the structured jobs with a class of timed Petri nets [10] referred to as 

structured nets and to abstract interesting structural and timing properties of the net in a tree, namely a structure tree. This 

abstraction is different from the existing works that aim to reduce the PN structure [28], [35], [44], [46]. The aim of PN 

reduction is to develop models of smaller size but preserving the precise representation of the allocation of the resources within 

the operations. The structure tree is also different from net unfolding methods [6], [19]. Compared to net unfolding, the tree 

encoding takes into account the effects of events interleaving (as net unfolding already does) and filters it. But, in addition, at 

the same level, the structure tree incorporates timed information essential to estimate the duration of sequences of transitions 

and to generate the schedule.  

Basically, the contributions of the paper are double: first, to detail a systematic modeling methodology, based on structure 

trees, for a certain class of flexible workshops with parallelisms and choices; second, to use the advantages of the structure 

trees combined with pruning search algorithms and supervisory control to generate admissible and efficient schedule at lowest 

cost. The precedence constraints and operating times of the considered workshops are both encoded in the structure trees. Our 

work prompts the research effort in the domain of scheduling: the timing properties and rapid evaluation of the structure trees 

make them tractable for use with search algorithms to compute, rapidly, good schedule candidates even if the search algorithm 

is an aggressive pruning one that eliminates most of the candidates. 

Based on PN models, there are mainly two categories of methods devoted to scheduling problems with PNs: the first one uses 

the PN model to reveal and analyze properties in order to decide/ensure that a schedule can be efficiently found; the second 

one uses the PN model to design a search algorithm and obtain the schedule. The method proposed in this paper belongs to the 

latter. 

In the first category, much effort has been done for scheduling cluster tools and one can refer to [37] for a recent review about 

the main contributions in this area. Most of the results have been obtained by analytical expressions if some schedulability 

conditions are satisfied [47], [48], [49]. Linear programming has been intensively used for that purpose. Revisiting processes 

[49] and non-revisiting ones [38], [39] have been studied with or without residency times constraints [50]. Activity time 

variations have been also taken into consideration [51]. 

Methods in the second category generally use the PN reachability graph. However, due to exponential growth of the number of 

states, generating the entire reachability graph is time consuming even for small size systems. Lee and DiCesare in [20] 

pioneered the domain by proposing to combine the PN reachability graph and the A∗ algorithm to schedule FMSs. However, 

due to the problem of state explosion, this method was not tractable for large systems. To find schedules, researchers try to 

reduce the state space by using search algorithms that include heuristic functions, and generate only a portion of the 

reachability graph. These methods can be classified as ''PNs with a search algorithm'' [43] and the contribution of this paper 

can be framed in this  

context.  
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Some improvements concern the sizing and delimitation of the parts in reachability graph to explore and other ones concern 

the definition of the heuristic function used to sort and select the best candidates. Improvements in the first category have been 

obtained in several ways as for example, by constraining the number of unexplored markings in a fixed range [42]; by 

combining the A∗ search with backtracking strategy [52]; by restraining the search in a limited local search window [41]; by 

pruning the non-promising branches [25], [31]; by unfolding the PN model [19], [45]. Contrary to the A* algorithm where all 

explored candidates are conserved, an informed graph search referred to as Beam Search (BS) algorithm [36], conserves only a 

selection of the best previously explored candidates. The complexity in time of BS algorithm remains polynomial thanks to this 

restriction. But the main drawback is that good candidates could be eliminated due to the selection strategy. Several variants of 

the BS algorithm have been proposed in combination with PNs [32]. Improvements of the heuristic function have been also 

studied, for example with a function based on PN state equations [17], or based on artificial intelligence [55] and genetic 

algorithms [53]. Other techniques based on non-admissible functions [16], have been also developed. A simple and efficient 

heuristic function based on the PN paths has been proposed for job shop problems [31]. The performance of the previous 

methods depends strongly on the choice of the heuristic function used as a metric to evaluate the distance from the current state 

to the reference state because this function is used to prune branches and limit the exploration. In this work, an efficient variant 

of beam search methods – namely Hybrid Filtered Beam Search (HFBS) – [33] is used and a new heuristic function based on 

the tree encoding of the structured nets is detailed. 

A critical issue affecting the solution of a scheduling problem is the existence of deadlocks since they may prevent the 

expected schedule to reach the objective. In particular, deadlocks occur frequently in workshops without intermediate buffer 

between operations (in that case the reservation and release of resources is simultaneous and additional constraints occur). In 

order to prevent deadlocks (or to restrict the possible behaviors of the system in a certain sense), monitor places are usually 

added to the TPN model. Such control places act as a supervisor that constrains the system to remain in some admissible 

regions [3], [12], [18], [26]. Note that supervisory control can be used to enforce other types of specifications on a PN model, 

such as the capacity of shared resources, the maximum number of jobs simultaneously allowed, liveness, controllability, etc. 

These specifications collectively define a set of legal reachable markings and a set of forbidden markings to be avoided.  

A popular approach is to define the marking specification with a set of Generalized Mutual Exclusion Constraints (GMECs) 

that restricts the set of legal markings to a convex region of the reachability graph. A PN supervisor can be calculated that 

enforces the previous constraints using monitor places [4], [12], [54]. A more general form of constraint specification is a 

disjunction of GMECs [5], [9]. Supervisors by means of logical predicate, duplicated transitions [13], or inhibitor arcs [8] can 

be also defined. In general, a PN supervisor may be not maximally permissive, and so it eliminates not only the forbidden 

markings but also some markings that could belong to the optimal schedule. Consequently, the scheduling of the controlled net 

may be degraded and deadlock free scheduling remains an important topic to study. The work in [1] is one of the first that uses 

timed PNs to model FMSs and proposes a deadlock-free scheduling algorithm. The algorithm is based on the depth-first search 

strategy together with a siphon truncation technique. Then, genetic algorithms based on PNs [15] and a model predictive 

approach [21] have been also studied to compute efficient schedules that avoid the deadlocks. Deadlock free scheduling 

remains out of the scope of this paper but we explain how to combine the proposed exploration method with supervisory 

control in order to eliminate a priori any possible deadlock and other forbidden markings. The paper illustrates that using a 

supervisory control generally accelerates the convergence but may degrade the makespan (i.e., the duration to perform all 

operations of the jobs). 

This paper extends our preliminary study about the PN structure encoding with trees [22]. Compared to [22], the new results 

presented here are first to provide a formal definition of a subclass of nets, namely structured PNs. Then, based on structured 
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nets, we propose a systematic modeling methodology, based on trees, for some scheduling problems in which each job may 

include some choices and parallelisms between the operations. In particular, we prove that the tree that encodes the model is 

unique. Taken advantage from the temporal properties of the tree, we use it with the HFBS algorithm to form a new algorithm 

that searches for optimal schedules. Finally, we show how to combine the new search algorithm with supervisory control in 

order to increase the rapidity of the search. In the whole, these new results lead to a systematic scheduling approach that is 

suitable for a certain class of problems and that remains tractable for medium-size to large-size systems. 

The rest of the paper is organized as follows. In Section 2, the scheduling problems with choices and parallelisms that are 

considered in this paper are described. In Section 3, preliminaries about timed Petri net are presented. Structured nets are 

formally introduced. Section 4 details the modelling of the considered scheduling problems with structured nets and structure 

trees. Section 5 is devoted to the use ofE the tree encoding to estimate the residual duration to complete a given job with 

choices and parallelisms between operations. In Section 6, this estimation is used together with the HFBS method in order to 

solve scheduling problems for FMSs composed of structured jobs. In Section 7, several examples are considered to illustrate 

the performance of the approach. A comparison with the usual path-based heuristic function is discussed and the approach is 

also combined with supervisory control. 

 

2. STRUCTURED FMSs 

In this section we characterize the FMSs we are interested in. An FMS is basically a workshop composed of a set of jobs that 

executes some operations according to the availability of some resources. Let J, O and R be respectively the set of jobs, the set 

of operations and the set of resources. Each job Jk consists in the execution of a set of operations oi ∈ O in a certain order and 

each operation needs some resources rj ∈ R to be performed. Formally an operation oi is characterized by oi = (di, Ri), the 

duration di represents the minimal time needed to execute oi (once the required resources are available) and Ri ⊆ R is the subset 

of resources that are required to perform the operation oi. A given resource rj may be required by several operations at the same 

time. In that case, one has to decide to which operation the resource must be allocated first. Buffers may also exist between 

successive operations.  

Here, we consider one or several executions of a given job (in both a simultaneous or serial mode) with total precedence 

constraints between its operations and represent such a job by (O, cap, exe) where O is a set of operations (each one defined 

with a duration and a set of resources). The operations in O need to be processed in a specific order (also known as the 

precedence constraints of the job) induced by the indexes of the operations (i.e., oi follows oi-1 and precedes oi+1). The 

parameter cap is the lot size of the job (i.e. the maximal number of possible simultaneous executions of the set of the 

operations), exe is the number of times the job has to be performed according to the scheduling objective. 

 

In this paper we are interested in a less restrictive class of scheduling problems where the jobs include choices and also 

parallelisms between sequences of operations. The combination of these structures leads to jobs that are characterized by 

partial precedence constraints and partial routing flexibility.  

A particular class of jobs, namely structured jobs, is formally introduced next to describe such workshops. For this purpose, 

three basic composition functions are introduced. 

 

Definition 1: Let o1, o2 be a pair of operations in a given job. 
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• The serial basic function S(o1, o2) returns a job J as the sequence of o1 and o2. The two operations are sequentially 

performed according to the order induced by the indexes of the operations (i.e., o1 is performed first, then o2). 

• The choice basic function C(o1, o2) returns a job J as the choice between the operations o1 and o2: only one operation 

is performed within {o1, o2}. 

• The parallel basic function P(o1, o2) returns a job J as the parallel execution of o1 and o2: the two operations are 

concurrently performed and the order is not specified. 

 

Note that the basic composition functions can be trivially extended so that they are applicable not only to operations but also to 

sets of operations that have been already structured according to the same compositions functions. The structure function F(O) 

is defined recursively as a tree from the recursive application of the preceding composition functions. 

 

Definition 2: Let O = {o1, o2,…,ok} be the set of k operations in a given job and S,C,P being the three composition functions 

introduced with Definition 2. A structure function is a set F such that each element j ∈ F is either: 

• An operation : j ∈ O 

• A 4-tuple j= (label, type, first, second) where label is the label of element j; type ∈ {S,C,P} is the type of the 

composition function used to define the element j; first and second are two structure functions called respectively first 

and second structure functions. 

If the element j is of type S, then j results from first then second. If j is of type C, then j results from first or second. Finally, if j 

is of type P, then j results from first and second. Structured jobs are defined consequently. 

 

Definition 3: A structured job J is defined as (O, cap, exe, F) where O is a subset of operations, cap is the lot size of the job, 

exe is the number of times the job has to be performed according to the scheduling objective and F is a structure function that 

specifies the routing flexibility between the operations and is defined over the set of operations O and according to the 

composition functions S, C, and P.  

 

Note that the term “structured” job focuses on the fact that the operations respect a partial order. This order specifies for each 

operation when it can be performed with respect to the other operations of the job. The definition of a structured FMS results 

straightforward from Definition 3:  

 

Definition 4: A structured FMS is defined as (J, R) where J is a set of structured jobs and R is a set of resources shared by the 

jobs in J.  

 

The considered class of structured FMSs is wide enough to include many situations of practical interest including not only 

transformation processes but also assembly or disassembly workshops. Structured FMSs describe workshops that have more 

flexibility than job shop problems but less flexibility than open shop problems. 

 

Example 1: Consider as an example, a job with 7 operations O = {o1, o2, o3, o4, o5, o6, o7}. The precedence constraints can be 

described as follows: perform o1 before o2; perform o3 before o4. Then, some more complicated constraints are introduced: 
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perform operation o5 simultaneously with the set of operations {o1, o2, o3, o4}; perform either the set of operations {o1, o2} or 

{o3, o4}. Finally, perform o7 before the set of operations {o1, o2, o3, o4, o5} and {o1, o2, o3, o4, o5} before o6.  

The resulting structure function F of Example 1 is detailed in Fig. 1. Observe that all precedence constraints are encoded in this 

function according to the three composition functions S, C and P and according to the arbitrary order used to enumerate the 

operations of Example 1. 

 

 

Fig. 1. Structure function F for the job of Example 1 

 

3. STRUCTURED TPNs 

In this section we introduce a new class of timed Petri nets – namely structured TPNs – that will be used to model structured 

FMSs. This modeling takes its inspiration from the S3PR and S4R models. 

  

3.1 Timed Petri nets 

First, we recall some basic definitions about PNs and TPNs. 

 

Definition 6 : A PN is defined as G = <P, T, WPR, WPO>, where P = {p1,…, pn} is a set of n places and T = {t1,…, tq} is a set of 

q transitions with indexes {1,…q}, WPO ∈ (N) n×q and WPR ∈ (N) n×q are the post and pre incidence matrices (N is the set of 

non-negative integer numbers), and W = WPO – WPR is the incidence matrix. <G, MI > is a PN system with initial marking MI. 

 

The vector M ∈ (N) n represents the PN marking. In addition, P(M) stands for the support of marking M (i.e. the subset of 

places that have a non-zero number of tokens at M). The enabling degree of transition tj at marking M is given by nj (M) = 

min{mk / wPR
kj : pk ∈ °tj} where °tj stands for the preset of tj (i.e., set of input places), mk is the marking of place pk, wPR

kj is 

the entry of matrix WPR in row k and column j. A transition tj is enabled at marking M if nj (M) ≥ 1, this is denoted as M [tj  >. 

When tj is enabled it may fire, this is denoted by M [tj > M’  and M’ can be computed as  M’ = M +W. X(tj) where X(tj) ∈ (N) q 

is the firing count vector corresponding to the firing of tj. A firing sequence σ fired at marking MI is defined as σ = t(j1) 

t(j2)…t(jh) where j1,... jh are the indexes of the transitions. X(σ) is the firing count vector associated to σ that specifies the 

number of times each transition appears in σ, |σ| = h is the length of σ, and σ = ε stands for the empty sequence. A marking M 

is said reachable from initial marking MI if there exists a firing sequence σ such that MI [σ >M and σ is said feasible at MI. 

R(G, MI) is the set of all reachable markings from MI.  

 

Timed Petri nets are PNs whose behaviors are constrained by a timing structure [10]. For this reason, timed PNs have been 

intensively used to describe discrete event systems like production systems [7]. This paper concerns T-timed PNs (TPNs) [40].  
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Definition 7 : A TPN system is defined as <G, MI, D> where <G, MI> is a PN system and D ∈ (R+)q is the vector of the firing 

delays of the transitions (R+ is the set of non-negative real numbers): the jth entry of D –namely dj – represents the minimum 

firing delay of transition tj. If tj is enabled at a given time τ, it does not fire before τ + dj ; if it fires at a time instant τ’ ≥ τ, we 

call remaining duration the duration δ = max (0, τ + dj - τ’). 

The considered TPNs have a time semantic defined according to an infinite server policy and an enabling memory policy [14]. 

In case of choice between two transitions, a preselection is used to decide which one fires. Finally, the considered TPNs 

behave with an earliest firing policy: consider a fireable sequence σ = t(j1) t(j2)…t(jh) , then each transition t(jk) of the sequence 

fires at earliest when (1) the preceding transition t(jk-1) in σ has fired; (2) the remaining duration of t(jk) is 0.  

 

Definition 8: A path pth = x1 x2 … xK in a PN is an orderly sequence of K nodes with xk ∈ T∪P and xk+1 ∈ (xk)° for k = 1,…,K-

1.  

 

The duration of a path pth is defined by: 

 

χ���ℎ� = ∑ 	
��∈ ����∩ ��  (1) 

 

The set of paths from departure node x1 to destination node xK is referred to as PTH(x1, xK). A path pth ∈ PTH(x1, xK) is said of 

minimal duration if there does not exist any other path in PTH(x1, xK) with a smallest duration. We refer to a path of minimal 

duration from x1 to xK as to pth*(x1, xK)  and to its duration as χ*(x1, xK). 

 

Example 2: Fig. 2-left is an example of TPN with a set of places � = ���, … , ��� and a set of transitions � = ���, … , ���. 

Matrices ��� ,  ���  are both of dimensions 9 × 7. For example, ������, ���  =  ������, ���  =  ������, ���  = ������, ���  =  1 describes how transition �� is connected to the rest of the net. The vector of the minimal firing delays of the 

transitions is defined as D = (2 4 0 7 9 8 7)T and the time delays are shown next to the transitions in Fig. 2-left so that “��: 2” 

means that transition �� should be enabled during 2 Time Units (TU) before it fires. The initial marking "#  in this example is 

such that " ���� =  2 and " ���� =  1. The transition �� is enabled at "# with a degree 1. An example of path in PTH( p1, p6) 

is ��ℎ = �� �� �� �� �% �& �' with duration (���ℎ� = d7 + d1 +d2 = 13 TU. Note that another path exists in PTH( p1, p6): ��ℎ′ =������ �� �* �% �' of duration (���ℎ′� = d7 + d3 +d4 = 14 TU. An example of valid firing sequence is + =  �� �� �* that will 

lead the system from "#  to marking M such that "����  =   "��%�  =   "��&�  =  1. When this sequence fires with earliest 

firing policy, its duration is 16 TU. 



8 

 

        

Fig. 2. An example of extended structured TPN (left); an example of structured TPN (right) 

3.2 Structured TPNs 

In this section we introduce a subclass of TPN models that will be used to model the structured jobs. Let us first introduce the 

following elementary PN structures that will be used to represent the composition functions S, C and P introduced in the 

previous section.  

 

Definition 9: Let G = <P, T, WPR, WPO> being a PN. 

• An elementary sequence (Fig. 3a) is a pair of transitions tj1, tj2 ∈ T such that there exists a place pi ∈ P with: (1) tj1° = 

°tj2 = {pi}, (2) °pi = { tj1}, (3) pi° = { tj2}. 

• An elementary choice (Fig. 3b) is a pair of transitions tj1, tj2  ∈ T such that there exist 2 places pi1, pi2 ∈ P with: (1) °tj1 

= °tj2 = {pi1}; (2) tj1° = tj2° = {pi2}. 

• An elementary parallelism (Fig. 3c) is a pair of transitions tj1, tj2 ∈ T such that there exist 4 places pi1, pi2, pi3, pi4 ∈ P 

with: (1) °tj1 = {pi1} and tj1° = {pi2} and °tj2 = {pi3} and tj2° = {pi4}, (2) °pi1 = {tj3} and pi1° = {tj1} and °pi3 = {tj3} and 

pi3° = {tj2} and °pi2 = {tj1} and pi2° = {tj4} and°pi4 = {tj2} and pi4° = {tj4}. 

 

        

Fig. 3: Elementary PN structures: sequence (a), choice (b), parallelism (c) 

For any G = <P, T, WPR, WPO> and subset T’ ⊆ T with q’ transitions, let us define WPR (P,T’) ∈ (N) n×q’ and WPO (P,T’) ∈ (N) 

n×q’ as the submatrices of WPR and WPO that are restricted to the transitions in T’. A nested structure is recursively defined as: 

  

 a b c 
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Definition 10: (T’, WPR (P,T’), WPO (P,T’)) is a nested structure if a partition of T’  = T’1 ∪ T’2 exists such that: 

• |T’1|= 1 or (T’1, WPR (P, T’1), WPO (P, T’1)) is a nested structure, 

• |T’2|= 1 or (T’2, WPR (P, T’2), WPO (P, T’2)) is a nested structure, 

• If |T’1|= 1 and |T’2|= 1, then {T’1, T’2} is either an elementary sequence, an elementary choice, or an elementary 

parallelism. 

 

Definition 11: Let G = <P, T, WPR, WPO> being a PN, G is a structured PN if: 

• G is an ordinary PN (i.e. arc weights equal 1), 

• G is an acyclic net with a single source transition, namely tin, and a single sink transition, namely tout, 

• (T, WPR, WPO) is a nested structure. 

 

Observe that structured PNs are different from workflow nets [44], the latter do not require to be structured.  

 

4. MODEL OF STRUCTURED FMSs WITH TPNs 

In this section, structured FMSs without intermediate buffer are modeled with TPNs. For this purpose, we represent each 

structured job of an FMS with a structured net. Note that there is no difficulty to extend this modeling schema to structured 

FMSs with intermediate buffers (in that case the reservation and release of the resources is separated and deadlocks do no 

longer occur in the possible schedules). 

 

4.1 Model of a structured job 

An operation oj is modeled by a transition tj as shown in Fig.6. The operation oj has an input buffer represented by a place pin j 

and an output buffer represented by a place pout j (that is in the same time the input buffer of the next operation of the job when 

intermediate buffers do not exist). The duration dj of oj is represented by the firing delay D(tj) of tj. In addition, each resource rk 

used to perform oj is represented by an additional place prk that is simultaneously in the preset and postset of tj (and can also 

belong to the preset and postset of other transitions to model resources that are shared by several operations). Consequently, a 

set O of q operations is represented by a set T of q transitions.  

 

Fig.6: Operation modeling with TPNs 

 

The modeling process of a structured job (O, cap, exe, F) with a structured net is based on the use of the structure function F. 

The construction starts with the set of transitions T that results from the modeling of the operations and from an empty set of 

places P and the empty matrices WPR and WPO. Each node (j, type, j1, j2) of the structure function with type ∈ {S, C, P} is 

successively used to create new places and define iteratively the incidence matrices of the TPN model. 
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• If type =S, then a place pi is added in P with °pi = { j1} and pi° = { j2}. A row vector i of size q is added to the matrices 

WPR and WPO and WPO (i, j1) = WPR (i, j2) =1 (the others entries of row i being 0). 

• If type =C, then 2 places pi1, pi2 are added in P with pi1° = pi2° = { j1, j2 }. Two row vector i1 and i2 of size q are added 

to the matrices WPR and WPO and WPO (i1, j1) = WPO (i1, j2) = WPR (i2, j1) = WPR (i2, j2) =1 (the others entries of rows i1 

and i2 being 0). 

• If type =P, then 4 places pi1, pi2, pi3, pi4 are added in P with °pi1 = {tj3}, pi1° = {tj1}, °pi3 = {tj3}, pi3° = {tj2}, °pi2 = {tj1}, 

pi2° = {tj4}, °pi4 = {tj2} and pi4° = {tj4}. Four row vector i1 to i4 of size q are added to the matrices WPR and WPO and 

 WPO (i1, j1) = WPO (i3, j2) = WPR (i2, j1) = WPR (i4, j2) =1 (the others entries of rows i1 to i4 being 0). 

 

In order to end the model of a structured job, the acyclic structured net is completed with three particular places: pexec whose 

initial marking represents the number n of times the job is expected to be performed, pcap whose initial marking represents the 

lot size of the job, and pref that counts the total number of executions of the job. The resulting TPN model is defined as an 

extended structured net: 

 

Definition 12: Let G = <P, T, WPR, WPO> being a PN and P = P’ ∪ { pexec, pcap, pref } being a partition of the set of places. G is 

an extended structured PN if: 

• G’ = <P’, T, W’PR, W’PO > is a structured net, where W’PR = WPR(P’, T) and W’PO = WPO(P’, T) (i.e. the submatrices 

extracted from WPR and WPO when only the places in P’ are considered), 

• pexec is such that °(pexec) = ∅ and (pexec)° = tin, 

• pcap is such that °(pcap) = tout and (pcap)° = tin, 

• pref is such that °(pref) = tout and (pref)° = ∅.  

Note that with the addition of the place pcap, G is strongly connected with a single cycle.  

 

Example 4: Consider again Example 1 and the structure function detailed in Fig. 1. The TPN model of this system is reported 

in Fig. 2-left. Observe that the set of operations O = {o1, o2, o3, o4, o5, o6, o7}is represented by the set of transitions T = {t1, t2, 

t3, t4, t5, t6, t7} with tout = t6 and tin = t7. The precedence constraints defined with the function F are encoded in the structure of 

the net. The places pexec, pcap and pref are connected as specified. 

 

4.2 Resources and supervisor 

As previously mentioned, a set of resources Rj is generally required to perform each operation oj. Each type of resource rk ∈ Rj 

is represented by a specific places prk with an initial marking that indicates how many resources of type k are available to 

perform the different operations. More precisely, for each type of resources required to perform the job, a place prk is added in 

P with °(prk) = (prk)° = { tj such that rk ∈Rj }. A row vector of size q is added to the matrices WPR and WPO and WPO(k,j) = 

WPR(k,j) =1 for all tj ∈ °(prk) (the others entries of row k being 0). 

 

Supervisory control approach can be adopted to manage resources in order to avoid deadlocks. In particular, the synthesis of a 

set of monitor places turns out to be very useful for the considered scheduling problem. A monitor place is a place suitable 

connected with input and output transitions of resource places so that the acquisition and the release of each resource can be 
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managed to avoid deadlocks. Indeed, each monitor place acts as a supervisor since it represents an addition precondition for the 

enabling of transitions which is connected to. The firing of a transition yielding a deadlock state results to be disabled by 

monitor places. As far as ordinary nets are considered, for each monitor place pck ∈ CONT, a row vector of size q is added to 

the matrices WPR and WPO with entries equal to 1 or 0. The synthesis of monitor places to avoid deadlock is outside the scope 

of this paper and the reader can refer to [5], [9], but it is important to notice that “supervised” system is still modeled by a PN.  

 

In order to model a structured FMS with a set of jobs J, one design first the model of each structured job of the FMS, then 

aggregate the different models. Finally, the reference place pref, the common resource places prk and the common monitor 

places pck are merged (as far as they are used by several jobs). Observe that the resulting global model is no longer a nested 

structure (due to the merging of the places pref, prk and pck) but this global model is still composed by several subnets each of 

them being a nested structure. As explained in Section VI, in particular with Proposition 5, the proposed approach is fully 

applicable for structured FMS. 

 

Example 5: Fig. 7 is the TPN model of a structured FMS with two jobs that have no intermediate buffers.  The job J1 is a 

structured job with 7 operations o1 to o7 and a choice between the sequences of operations {o1,…,o5} and {o6, o7}. The lot size 

for J1 is: cap1 = 1 and n1 = 5 is the number of times this job needs to be performed. The job J2 is also a structured job with 5 

operations o8 to o12 and is structured with a parallelism between the sequences of operations {o8,…,o11} and { o8, o12, o11 }. 

The lot size and number of executions for J2 are: cap2 = 1 and n2 = 3. The two jobs need 5 resources pr1 to pr5 (represented in 

red in Fig. 7). Table 1 details the durations and resources for each operation. This model (without considering the supervisor in 

blue) has 502 reachable markings and 31 deadlocks when n1 = 5 and n2 = 3 that occur when the resources are reserved for the 

jobs 1 and 2 in an unappropriated way. A supervisor can be computed for this system [27] in order to avoid all deadlocks, 

excepted the deadlock that corresponds to the final marking M(pref) = n1 + n2 = 8 where both jobs have been performed the 

expected number of times. This supervisor consists of 2 monitor places pc1 and pc2 (represented in blue in Fig. 7). The whole 

model with the supervisor has 352 reachable markings.  

 

Fig.7: TPN model of the structured FMS on Example 5 with shared resources and monitor places 
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Table 1: Operations and resources for jobs J1 and J2 

oi o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 
ti t10 t11 t12 t13 t14 t15 t5 t6 t7 t8 t9 t1 
di 1TU 1TU 1TU 1TU 1TU 1TU 1TU 1TU 1TU 1TU 1TU 1TU 
Ri r1 r1, r2 r2, r3 r3, r4 r4 r1, r5 r5 r4 r3, r4 r2, r3 r2  
 

Observe that the complexity of a scheduling problems relies on different parameters including: 

• the sizing parameters: in particular, the number of jobs and the number of operations in each job, 

• the constraints due to the lot size of the jobs: how many products can circulate simultaneously in the same job,  

• the constraints due to the resources: how many types of resource are shared, how many resources of each type are 

available and how many operations need each type of resource, 

• the constraints due to the supervisor: how many monitor places are used and how many monitor tokens circulate in 

the net. 

• the objective: how many times each job should be performed. 

For simplicity, each job of the considered FMS is assumed to have a lot size of 1 in this paper. Consequently, making 

abstraction of the places pexec, pref, prk and pck the other places of the model are 1-bounded. 

 

5. A TREE STRUCTURE TO REPRESENT THE TEMPORAL INFORMATION 

In this section, the ST encoding is first introduced, then it is used also to encode the temporal information of a structured TPN. 

In particular, an important property of the structure trees is that their execution provides a precise estimation of a forthcoming 

sequence of operations based on the list of these operations (making abstraction of the order of these operations). More 

precisely, let us consider a feasible firing sequence σ, executed in a given structured TPN, under earliest firing policy and 

assume that only its firing count vector X(σ) is known (the sequence σ is unknown by itself). Next, we detail how to compute 

an interval of the duration d(σ) of σ thanks to the ST tree of the net.  

 

5.1 ST tree of structured PNs 

A structured PN may be encoded in a systematic way with a tree named ST that is designed by successive transformations of 

the original PN structure [22]. At each iteration, some places are removed and two transitions are summed up in a single one. 

Each node j of ST corresponds either to a transition of the original net or to a nested structure previously obtained. A node has 

5 attributes: 

• ST{j}.label: the index j of the node, 

• ST{j}.type: S for an elementary sequence, C for an elementary choice, P for a an elementary parallelism, j for the terminal 

node that represents the transition tj, 

• ST{j}.first: the index of the first successor of node j in ST, 

• ST{j}.second: the index of the second successor of node j in ST, 

• ST{j}.pred: the index of the unique predecessor of node j in ST. ST{j}.pred is empty if j has no predecessor 
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Algorithm 1: ST tree design 

(Inputs: WPR, WPO, T Output: ST ) 

1. initialization: E ← T, k ← q+1 

2. define the q first nodes of ST according to the transitions in T 

3. while |E| >1  

4. sort E by indexes and call N(1) the node in position 1 in E 

5.  while N’ exists within E – { N(1) }such that { N(1), N’} is an elementary sequence 

6.  create the new node N(k) with type S, label k and successors first and second are respectively N(1) and N’ 

7  define the predecessor of N(1) and N’ as N(k)  

8.  remove N(1) and N’ from E and add N(k) to E 

9.  k ← k+1 

10. end while 

11. call N(1) the node in position 1 in E 

12. while N’ exists within E – { N(1) }such that { N(1), N’} is an elementary choice or parallelism 

13.  create the new node N(k) with type C or P, label k, and successors N(1) and N’ 

14  define the predecessor of N(1) and N’ as N(k)  

15.  remove N(1) and N’ from E and add N(k) to E 

16  k ← k+1 

17.  call N(1) the (new) node in position 1 in E 

18. end while 

19.end while 

 

Proposition 1 states the existence of a tree that encodes any structured PN. The proof is constructive and explains also 

Algorithm 1. Note that Algorithm 1 also provides a test to check if a given PN is structured. 

 

Proposition 1: Let G = <P, T, WPR, WPO> be a PN with q transitions and let ST be the tree obtained with Algorithm 1 for (T, 

WPR, WPO). G is structured if and only if ST has a single node j such that ST{j}.pred = ∅ (i.e, without any predecessor). 

 

Proof: The proof is based on iterative transformations of (T, WPR, WPO) in order to design ST. The transformations are 

organized in a set of iterations and each iteration has two stages. At first iteration, the first stage is to reduce all elementary 

sequences by removing the intermediate places pi and summing up the upstream and downstream transitions tj1 and tj2 in a 

single transition tS (Fig. 4a). For each elementary sequence, a node is also added in ST that is tagged with value S (as 

Sequence) and attributes first and second are defined with tj1 and tj2 respectively. When the net contains sequences with k > 2 

transitions, then k-1 elementary sequence reductions are successively performed. At the end of this process, the resulting net 

structure has no longer any sequence and is composed only of nested choices and parallelisms.  
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Fig. 4: Elementary structures reduction: sequence (a); choice (b); parallelism (c)  

The second stage is to reduce the innermost nested elementary choices and parallelisms. In the case of elementary choices, the 

transitions tj1 and tj2 are summed up in a single transition tC and no place is removed (Fig. 4b). In the case of elementary 

parallelisms, the places pi3 and pi4 are removed and the transitions tj1 and tj2 are summed up in a single transition tP (Fig. 4c). In 

both cases, a node is also added in ST that is tagged either with value C (as Choice) or P (as Parallelism) and successors tj1 and 

tj2 (for choices and parallelism the affectation of tj1 and tj2 to first and second does not matter). When the net contains choices 

(resp. parallelisms) with k > 2 branches, then k-1 elementary C (resp. P) reductions are successively performed.  Due to the 

previous transformations, the resulting PN structure has less transitions than the original one and the depth of nested structures 

is decreased by 1. Thus the same rules can be applied at iteration 2 and the transformations continue in a similar way. The net 

structure decreases in number of transitions and in the same time ST increases in number of nodes. As far as G is structured, 

the transformations can go on to result finally, after q-1 transformations (q is the number of transitions in the net) in a 

simplified net structure with only one transition. On the contrary, if the net is not structured, then the transformations stop at a 

given iteration after a number of transformations that is strictly less than q-1 and the final tree has more than one node j that 

satisfies ST{j}.pred = ∅. �  

 
Corollary 2: The complexity of the ST design in number of transformation is at most q-1 where q is the number of transitions 

in the structured PN model. 

 
Proof: From Fig. 4, one can notice that the application of each reduction rule removes exactly one transition from the original 

structure and adds one node in the ST tree. If the ST design ends with a single node j that satisfies ST{j}.pred = ∅, q-1 

successive reductions are required to build the whole tree. Note that these q-1 successive transformations are organized in a 

number of iterations in range [1, q-1] depending on the structure of the original net. If the ST design ends with several nodes j 

that satisfy ST{j}.pred = ∅, then the number of successive transformations is strictly less than q-1. �  

(a) 

(c) 

(b) 



15 

 

Note that the ST tree of a given structured net may be enforced to be a unique construction by specifying an order within the 

nodes of the tree (see Annex 1 for a detailed proof). 

 

Example 3: Consider, the PN in Fig. 2-right. This net is a structured PN with tin = t7 and tout = t6. The application of Algorithm 

1 leads to the tree of Fig. 5 (for readability the successor with attribute first is always represented as the left branch and the 

successor with attribute second is always represented as the right branch). The successive transformations of the PN structure 

require 3 iterations. The nodes with indexes 1 to 7 encode the transitions t1 to t7 and are considered in E1 to start the design. 

The elementary sequences {1, 2} and {3, 4} are consecutively encoded with S nodes of indexes 8 and 9. At the end of this 

process E1 = {5, 6, 7, 8, 9}. Then, node 10 encodes the choice {8, 9}. Finally, at the end of iteration 1, E2 is initialized with {5, 

6, 7, 10}. No elementary sequence reduction is detected at iteration 2 but node 11 encodes the parallelism {5, 10}. 

Consequently, 5 and 10 are removed from E2 and E3 is initialized with {6, 7, 11}. Finally, the S node 12 encodes the sequence 

{6, 11}, the S node 13 encodes the sequence {12, 7} and the construction ends. 

 

Fig. 5. ST tree that encodes the structured PN in Fig. 2-right 

 

5.2 Encoding the temporal information of a structured TPNST  

In [22], the authors have started a study to approximate the minimal duration d(σ) from the ST tree encoding and the firing 

count vector X(σ). They have also noticed that for some specific structured TPNs it is not possible to compute the exact 

duration of a sequence from the knowledge of its firing count vector only, (see [22] for more details). Consequently, an 

estimation of d(σ) is defined as an interval to which d(σ) necessarily belongs. Starting from the entries of the firing count 

vector, and using D and ST, it is possible to evaluate a time interval for one complete execution of any nested structure and to 

calculate another time interval if the nested structure is partially executed. Five additional attributes are considered for each 

node of ST: 

• ST{j}.x: number of executions of node j, 

• ST{j}.dinf and ST{j}.dsup : respectively the minimal and maximal durations to execute the node j, 

• ST{j}.rinf and ST{j}.rsup respectively the minimal and maximal residual durations when the node j is partially executed. 

Finally, the duration d(j) of the execution of the node j belongs to the time interval defined by (2): 
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d(j) ∈ [ST{j}.x × ST{j}.dinf  + ST{j}.rinf : ST{j}.x × ST{j}.dsup + ST{j}.rsup ] (2) 

The values of attributes ST{j}.x, [ST{j}.dinf : ST{j}.dsup] and [ST{j}.rinf : ST{j}.rsup] are successively computed from the 

terminal nodes to the root node of ST. The process propagates ST{j}.x and [ST{j}.dinf : ST{j}.dsup] from the terminal nodes to 

the root node. The residual durations of the partially executed structures are also propagated with [ST{j}.rinf : ST{j}.rsup]. The 

minimal duration d(σ) belongs to an interval obtained with Proposition 3. The proof is constructive. 

Proposition 3: Consider a structured TPN that behaves under earliest firing policy, a feasible sequence σ of duration d(σ) and 

X(σ) = X =(x(tj))j=1,…,q. Then d(σ) satisfies: 

 

d(σ) ∈ [ST{j0}.x × ST{j0}.dinf  + ST{j0}.rinf : ST{j0}.x × ST{j0}.dsup + ST{j0}.rsup ]  (3) 

 

when ST{j}.x=x(tj) for the terminal nodes j, j=1…q of ST and j0 is the unique node that satisfies ST{ j0 }.pred = ∅. 

 

Proof: The terminal nodes j, j=1…q of ST are first tagged according to ST{j}.x= x(tj), ST{j}.dinf= ST{j}.dsup=dmin j and 

ST{j}.rinf= ST{j}.rsup= 0. Then, the attributes ST{j}.x, ST{j}.dinf, ST{j}.dsup and ST{j}.rinf, ST{j}.rsup propagate from the 

terminal nodes to the root node with a systematic exploration of ST that satisfies all specifications of the TPN time semantics. 

 

• For a S-node j with successors j1 and j2: 

ST{j}.dinf = ST{j1}.dinf + ST{j2}.dinf 

ST{j}.dsup = ST{j1}.dsup + ST{j2}.dsup 

ST{j}.x = min{ ST{j1}.x, ST{j2}.x} 

ST{j}.rinf = (ST{j1}.x - min{ ST{j1}.x, ST{j2}.x}) × ST{j1}.dinf + (ST{j2}.x - min{ ST{j1}.x, ST{j2}.x}) × ST{j2}.dinf + ST{j1}.rinf 

+ ST{j2}.rinf 

ST{j}.rsup = (ST{j1}.x - min{ ST{j1}.x, ST{j2}.x}) ST{j1}.dsup + (ST{j2}.x - min{ ST{j1}.x, ST{j2}.x}) × ST{j2}.dsup + ST{j1}.rsup 

+ ST{j2}.rsup  

 

• For a C-node j with successors j1 and j2: 

ST{j}.dinf = min{ ST{j1}.dinf, ST{j2}.dinf} 

ST{j}.dsup = max{ ST{j1}.dsup, ST{j2}.dsup} 

ST{j}.x = ST{j1}.x + ST{j2}.x 

ST{j}.rinf = ST{j1}.rinf  + ST{j2}.rinf 

ST{j}.rsup = ST{j1}.rsup  + ST{j2}.rsup 

 

• For a P-node j with successors j1 and j2: 

ST{j}.dinf = max{ ST{j1}.dinf, ST{j2}.dinf} 

ST{j}.dsup = max{ ST{j1}.dsup, ST{j2}.dsup} 

ST{j}.x = min{ ST{j1}.x, ST{j2}.x} 

ST{j}.rinf = max((ST{j1}.x - min{ ST{j1}.x, ST{j2}.x}) × ST{j1}.dinf, (ST{j2}.x - min{ ST{j1}.x, ST{j2}.x}) × ST{j2}.dinf, 

ST{j1}.rinf, ST{j2}.rinf) 
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ST{j}.rsup = max((ST{j1}.x - min{ST{j1}.x, ST{j2}.x}) × ST{j1}.dsup, (ST{j2}.x - min{ST{j1}.x, ST{j2}.x}) × ST{j2}.dsup, 

ST{j1}.rsup, ST{j2}.rsup)  

Notice that the duration estimation for a P-node takes into account the effects of interleaving and filters it. Moreover, in a 

single step it adds to the tree the timed information essential to the estimate of the sequence duration. 

 

The minimal duration d(σ) required to execute a feasible sequence σ consistent with X satisfies d(σ) ≥ ST{j0}.x × ST{j0}.dinf  + 

ST{j0}.rinf and d(σ) ≤ ST{j0}.x × ST{j0}.dsup + ST{j0}.rsup.�  

 

Example 6: Consider again the TPN of Fig. 2-left with D = (2 4 0 7 9 8 7)T, its ST tree reported in Fig. 5, the sequence σ1 = 

t7t1t2 t5t6t7t3t4t5t6 and X1 = X(σ1) = (1 1 1 1 2 2 2)T. Table 2 illustrates the determination of the estimation d(σ1) with Proposition 

3. The iterations refer to Fig. 5. The final approximation, obtained at iteration 3, leads to d(σ1) ∈ [48 : 48]. In the present case, 

one can conclude that d(σ1) =48 TU. But, as mentioned previously, the estimation does not necessarily coincide with the exact 

value: consider again the same example of TPN with D’ = (0 4 0 3 0 5 0)T. For X = (1 1 1 1 2 2 2)T the true duration of all 

sequences consistent with X is 17 TU and Proposition 3 leads to the estimation d(σ1) ∈ [16 : 18].  

 

Table 2: Estimation of d(σ1) with Proposition 3 

Iteration ST{j}.x ST{j}.dinf ST{j}.dsup 

1 

ST{j}.x = 1, j = 

1,…,4 

ST{j}.x = 2, j = 5, 6 

,7 

ST{j}.dinf = dj, j = 1,…,7 ST{j}.dsup= dj, j = 1,…,7 

ST{8}.x = 1 

ST{9}.x = 1 

ST{8}.dinf = 6 

ST{9}.dinf = 7 

ST{8}.dsup = 6 

ST{9}.dsup = 7 

ST{10}.x = 2 ST{10}.dinf = 6 ST{10}.dsup = 7 

2 ST{11}.x = 2 ST{11}.dinf = 9 ST{11}.dsup = 9 

3 
ST{12}.x = 2 

ST{13}.x = 2 

ST{12}.dinf = 17 

ST{13}.dinf = 24 

ST{12}.dsup = 17 

ST{13}.dsup = 24 

 

 

6. SCHEDULING OF STRUCTURED FMSs 

In this section we consider the problem to optimize the makespan for structured FMSs. The method is based on a variant of the 

BS algorithms - namely Hybrid Filtered Beam Search (HFBS) algorithm - that prevents the combinatory explosion. This 

method is an exploration algorithm that decides the regions to be explored in the reachability graph according to a cost 

function that is used to sort and select the markings of interest.  

 

6.1 HFBS exploration algorithm 

The HFBS algorithm is one improved variant of A* methods. This algorithm searches for sequences of minimal cost from an 

initial marking to a reference one. HFBS Algorithm uses a closed list of candidates OPEN as the key structure to model the 



18 

 

regions to be explored. The main idea behind this method is, at each iteration, to select (and then remove) the best candidate in 

OPEN, to compute its successors, then add these successors in the list OPEN, and to sort the candidates in OPEN according to 

a given cost function ( f ). What is called here an iteration is the expansion of a given candidate. The list OPEN is updated each 

time a candidate is expanded. Each candidate S = (M, σ, CAL, g, h) is a 5-tuple: 

• a marking M, 

• the sequence σ such that MI [ σ > M, 

• the calendar CAL(M) of the remaining firing times for all transitions enabled at M, 

• the duration g for the already done trajectory from MI to M, 

• an estimation h of the residual time from M to the reference marking Mref. 

The list OPEN saves only the βg best candidates for the next iteration. βg is an input parameter to be tuned. Consequently, at 

each iteration, some candidates are lost and convergence to the optimal solution is, in general, not ensured, but the numerical 

complexity is improved in space and time compared to the A* Algorithm because the size of the list OPEN does never exceed 

βg. The HFBS uses not only a global filter with parameter βg but also a local filter that selects and saves only the βl best 

successors, for each expanded candidate. This variant is motivated in order to ensure a better variability in the population of 

candidates by limiting the number of successors issued from the same parent.  

The cost function f is basically composed by the duration of the already performed trajectory ( g ) plus an estimation of the 

residual duration ( h ) to the reference. The functions g and h will be detailed respectively in Sections 6.2 and 6.3. The cost 

function f is required to sort the candidates in the lists OPEN and consequently plays a central role in the efficiency of the 

method. This cost function is formally defined for each marking M of a given trajectory (σ,MI) that aims to reach the reference 

marking Mref. For this purpose (σ,MI) is divided into two parts: the already computed trajectory (σ1,MI) from MI to M (i.e. MI 

[σ1 >M) and the unknown residual trajectory (σ2,MI) from M to Mref (i.e. M [σ2 >Mref). The cost function is written as in (6): 

 

f(MI, M, Mref) = g(σ1,MI) + h(M,Mref) (6) 

 

The function g(σ1,MI) gives the duration of the already computed trajectory and the heuristic function h(M,Mref) estimates the 

residual duration of (σ2,M). The candidates in the list OPEN are sorted by ascending order of their f values. For a given value 

of the function f (and in particular for the smallest value of the function f ) several candidates may exist in OPEN. These 

candidates could be also sorted in a second round by descending order of their g value (and this will lead to a depth-first-

exploration) or alternatively, they could be also sorted by ascending order of their g value (and this will lead to a width-first-

exploration). The efficiency of both variants depends on the scheduling problem.  

 

Algorithm 2 that encodes the HFBS method for TPNs, uses the initial marking MI, the reference marking Mref and the 

parameters βg and βl as inputs and returns the flag success = 1 if it finds a solution, otherwise it returns success = 0. It also 

returns the control sequence σ* of minimal cost and its duration f* (as found by Algorithm 2) 

 

Algorithm 2: Hybrid Filtered Beam Search  

(Inputs: < G, MI, D >, βg, βl, MI, Mref; Outputs: success, σ*, f*) 

1. initialization: h ← h(MI,Mref), OPEN ← {(MI, ε, CAL(ε,MI), 0, h)}, σ* ← ∅, f*← ∞, success ← 0 

2. while (OPEN ≠ ∅)∧( success = 0) 
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3.  remove the first candidate S = (M, σ, CAL, g, h) in OPEN  

4. if M = Mref  

5.  success ← 1, σ* ← σ, f* ← g 

6.  else  

7.   if CAL ≠ ∅ 

8.   TEMP ← ∅ 

9.   for each t enabled at M  

10.    compute M’ such that M [ t > M’ 

11.    σ’ ← σ t, CAL’ ← CAL(σ’,M’) 

12.    g’ ← g(σ’,MI), h’ ← h(M’, Mref) 

13.    TEMP ← TEMP ∪ {(M’, σ’, CAL’, g’, h’)} 

14.   end for 

15.   sort TEMP by ascending value of g+h 

16.    select the βl first candidates of TEMP and add them in OPEN 

17.   end if 

18.   sort OPEN by ascending value of g+h 

19.   save the βg first candidates of OPEN and remove the other candidates 

20. end if 

21.end while 

 

The HFBS algorithm may be viewed as a fast variant of A* algorithm and is motivated because A* is unfortunately not 

tractable for large systems due to the unlimited increase of the list OPEN. But the HFBS algorithm may present degraded 

performance compared to A*. Observe that A* Algorithm will always find a solution (as far as one solution exists) provided the 

distance between two different nodes is strictly positive and this is no longer true with the HFBS that may fill the list OPEN 

with forbidden markings (i.e., markings that will necessary lead to deadlock situations in the future). Another interesting 

property of A* algorithm is that when the heuristic function h is admissible, meaning that it never overestimates the actual 

minimal cost to reach the goal, then A* Algorithm will return the solutions that optimize the cost function. This is also no 

longer true with the HFBS that may fill the list OPEN with candidates that will not necessarily lead to an optimal solution.  

 

6.2 Computation of g cost function 

As long as an earliest firing policy is applied, Algorithm 3 [24] computes the duration g(σ1,MI) of (σ1,MI) and generates the 

calendar CAL with the remaining durations of the next possible firings. This algorithm uses the chronological firing order of 

the transitions in σ1 and the earliest firing policy to compute the firing times of the transitions in σ1 and update the remaining 

durations of the transitions already enabled at M. These transitions and their remaining firing durations are saved in CAL. More 

formally, for each marking M, obtained by firing a sequence σ at MI let us define CAL(σ,M) = {(t,  δ), t ∈ (M)°} where (M)° is 

the set of transitions enabled at M, t is a given transition in set (M)° and δ is the remaining duration to fire t. The calendar is 

initialized assuming that the trajectory starts at date 0 and that no transition is enabled before 0.  

 

Algorithm 3: Timing a sequence σ and generating the calendar CAL 
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(Inputs: < G, MI, D >, σ, M ; Outputs: CAL, σ’) 

1. initialization: τ ← 0; CAL ← {(tj, dj) such that M [ tj >}, σ’ ← (ε,0), h ← | σ |, τ ← 0 

2. for k from 1 to h 

3.  find in CAL the smallest remaining time δk of the kth transition t(jk) in σ 

4. τ ← τ + δk, remove entry (t(jk), δk) in CAL 

5. CALnew ← ∅, M’ ← M - WPR.X(t(jk))  

6. for all t’ such that M’ [ t’ > 

7.   compute the enabling degree n’(t’,M’) of t’ at M’  

8.   for j from 1 to n’(t’,M’) 

9   find the jth occurrence (t’, δ’j) of t’ in CAL 

10.   CALnew ← CALnew ∪ (t,’ max(0, δ’j – δk)) 

11.  end for 

12. end for 

13.  M” ← M’ + WPO.X(t(jk))  

14.  for all t” such that M” [ t” > 

15.   compute the enabling degree n”(t”,M”) of t” at M”  

16.   for j from 1 to n”(t”,M”) – n’(t’,M’)  

17.   CALnew ← CALnew ∪ (t”, d(t”)) 

18.  end for 

19. end for 

20.  CAL ← CALnew, σ’ ← σ’ (t(jk), τ), M ← M” 

21.end for 

 

6.3 Computation of h cost function 

The estimation h(M,Mref) of the residual duration is the core of the HFBS algorithm. As far as the list of candidates is of limited 

size, the use of an accurate approximation of the residual duration is of particular importance. This choice will not only 

influence the time the algorithm needs to converge to a solution but it will also influence the cost of the solution and even the 

success of the search. To be efficient, the estimation h(M,Mref) should have two characteristics: (1) it should never overestimate 

the true residual duration to reach the reference marking, otherwise it may eliminate good candidates; (2) the difference 

between the estimation and the true duration should be as small as possible in order to sort the candidates with enough 

accuracy. Several estimations of the residual duration from the current marking M to the reference Mref have been studied, and 

numerous are based on study of paths in the PN structure. In particular, Luo in [31] proposed an heuristic function based on the 

search of resource and operational places for P-timed Petri nets (i.e. timed Petri nets where time is associated to the places). 

The estimation is then based on the search of the shortest paths from the marked places to a given reference place. In [33] this 

heuristic was discussed and in [23], the authors adapt the heuristic function to the T-timed Petri nets. Basically, the residual 

time was approximated with h1(M,Mref) as defined by (7): 

 

h1(M,Mref) = max{ χ*(pi, pref) such that pi ∈ P(M)} (7) 
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For TPNs that reserve the tokens in order to fire the enabled transitions, the estimation can be refined with a term that corrects 

the remaining firing duration of the first transition in each path pth*(pi, pref) according to the remaining duration in CAL(σ1,M). 

This correction prevents to overestimate the duration of a firing that has already started at M but is not completed. One can 

notice that the correction term is negative because δj ≤ d j  and bounded because δj ≥ 0.  

 

ℎ�,", "-./0 = max 45χ∗,�6 , �-./0 + ∑ , δ8 − 	80�� ∈ ;<=�>?,@�
∩ χ∗,�A,�BCD0  

E  such that �6  ∈ K�"�L (8) 

 

However, the heuristic function h1(M,Mref) based on paths provides a poor lower bound of the residual time to Mref in numerous 

structured jobs. The problem occurs when parallelisms exist in some jobs. This is due to the fact that χ*(pi, pref) is defined as 

the minimal duration over all paths from pi to pref. In case of a parallelism, the path of minimal duration may be far from the 

true duration and for this particular structure one should consider instead the path of maximal duration. In a structured job that 

may combine several choices and parallelisms, an improved estimation function should be considered. In Section 5, we have 

shown that a time interval can be computed to estimate the duration of a given firing count vector for structured TPNs that 

behave under earliest firing policy. In the next, we use this result to propose an improved estimation of the residual time to the 

reference for structured jobs.  

First, the residual firing count vector X(M, Mref) from M to Mref can be obtained by solving the following integer linear 

programming problem: 

 

X(M, Mref) = argmin {(D)T × X: X∈(N) q such that W × X=(Mref – M)} (9) 

 

Using equation (9) to compute the firing count vector of a possible firing sequence can lead, in some particular cases, to 

unfeasible solutions (i.e., sequences that are not fireable in the considered PN model). In such cases, the resulting residual time 

obtained from this vector will be strictly less than the true duration. This estimation is however acceptable because it will not 

overestimate the true duration. 

 

Second, an heuristic function h2(M,Mref) that estimates the residual duration to the reference is obtained with the ST tree of the 

structured TPN. Observe that Proposition 3 provides an interval d(σ) that includes the true duration of the residual sequence. 

Consequently, h2(M,Mref) can be defined by (10).  

 

h2(M,Mref) = ST{j0}.x × ST{j0}.dinf  + ST{j0}.rinf + ∑ , δ8 − 	80�� ∈ ;<=�>?,@�
∩ ��M�@,@-./�� 

 (10) 

 

where ST{j}.x, j=1…q satisfies ST{j}.x = x(M, Mref, tj) (i.e. the entry j of vector X(M, Mref) given by (9)) and T(X(M, Mref)) is 

the support of X(M, Mref). Proposition 4 proves that h2(M,Mref) defined by (10) is a lower bound of the residual duration to the 

reference marking.  
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Proposition 4: Consider a structured job with a lot size of 1 modeled with an extended structured TPN. The heuristic function 

h2(M,Mref) obtained with (10) is a lower bound of the residual duration to the reference marking. 

 

Proof: At a given marking M, the residual firing count vector X(M, Mref) to the reference is computed with equation (9). 

Observe that the remaining time of the transitions tj that belong to T(X(M, Mref)) and that also appear in CAL(σ1,M) may be 

smaller that dj. For such transitions, a correction similar to the correction already used in (8) is applied to prevent to 

overestimate the duration of their firing. As a consequence, h2(M,Mref) is a lower bound of the residual duration. �  

 

From the previous, result it becomes possible to compute a lower bound of the residual duration to the reference marking for 

structured FMSs.  

 

Proposition 5: Consider a structured FMS with K jobs with lot size equal to 1 and the K structured TPNs with their ST trees 

that model the K jobs. The heuristic function h2(M,Mref) computed with (11) is a lower bound of the residual duration to the 

reference marking. 

 

h2(M,Mref) = max{hk
2(M,Mref) such that k = 1,…,K} (11) 

 

with hk
2(M,Mref) is computed with (10) for the kth job. 

 

Proof: First, observe that Proposition 4 is applicable to each job Jk and hk
2(M,Mref) is a lower bound of the residual duration 

required to perform job Jk. Second, the estimation hk
2(M,Mref) is also a lower bound of the residual duration required to perform 

all jobs of the FMS, because the resource constraints increase the makespan by slowing down the execution of the jobs. 

Consequently, h2(M,Mref) computed with (11) is a lower bound of the residual duration to the reference. �  

 

In simple words, Proposition 5 states that using the maximal value of the residual durations, computed with (10) for each job, 

remains a lower bound of the true makespan and, consequently, good candidates are not eliminated. This explains why the 

method is fully applicable for structured FMS (even if the global TPN model of the FMS is not a structured net). 

 

Example 7: In order to illustrate the performance of the proposed estimation function, compared to the usual estimation 

function that is based on paths, let us consider again the TPN of Example 2, detailed in Fig. 2-left. Note that the makespan to 

execute once this job is obtained as Cmax = d6 + d7 + max(d, d’) where d and d’ are the times required to execute each branch of 

the parallelism. Consequently, d = d5 and d’ is the minimal time required to execute o1 then o2 or o3 then o4. Finally, Cmax = d6 

+ d7 + max(d5, min(d1 + d2, d3 + d4)) = 24 TU (for the operation durations detailed in Example 2). The use of the LMI (9) and 

the function h2 provides an exact estimation h2(MI,Mref) = 24 TU of Cmax whereas the use of function h1 leads to an estimation 

h1(MI,Mref) = d6 + d7 + min(d5, d1 + d2, d3 + d4) =21 TU. Additional comparisons of the performance obtained with the cost 

functions h1(M,Mref) and h2(M,Mref) are proposed in Section 7.  
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7 EXAMPLES 

In this section, the proposed approach is applied on two examples. The first example is an FMS that is studied with three 

different resource configurations without deadlocks. It illustrates the advantage of the proposed cost function h2(M,Mref) 

compared to the usual cost function h1(M,Mref) based on paths. The second example is an FMS with resources and deadlocks 

that is studied first without monitor places and then with monitor places that eliminate the deadlocks and some forbidden 

markings. This example illustrates the combined use of h2(M,Mref) and supervisory control. 

 

Example 8: In order to validate the proposed approach, a set of 100 different structured FMSs with a common structure is 

designed (Fig. 8). Each FMS is composed of 2 jobs. The first job J1 is composed of 11 operations {o1,…,o11} that are 

structured with 3 sequences S1 = {o1,…,o5}, S2 = {o6, o7}, and S3 = {o8,…,o11}, one parallelism P between S2 and S3 and finally 

one sequence between S1 and P whereas the second job J2 is composed of a simple sequence S4 = {o12,…,o16} with 5 

operations. The durations of the operations are randomly chosen in the range [0 : 10] TU and are different for each FMS. The 

lot size of each job is assumed to be equal to 1 and the objective is to execute each job once. Three different configurations that 

correspond to 3 levels of resource constraints are tested: 

• Configuration A: FMSs without resource, 

• Configuration B: FMSs with 2 resources r1 and r2 that are shared by 8 operations: r1 is required to perform operations 

o9 and o10 in J1 and also o12 and o13 in J2; r2 is required to perform operations o4 and o5 in J1 and also o15 and o16 in J2. 

This configuration illustrates the cases when only a few resources are shared and when the resources are shared by a 

few operations.  

• Configuration C: FMSs with 4 resources that are shared by 16 operations: in addition to r1 and r2 already defined in 

configuration B, r3 is required to perform operations o11 in J1 and also o12 and o13 in J2; r4 is required to perform 

operations o2, o3, o6 and o8, in J1 and also o15 and o16 in J2. This configuration illustrates the cases when more 

resources are shared and when the resources are shared by a lot of operations (Fig. 8, red lines).  

 

The parameters for HFBS are  βg = βl = 10 and a maximal number of 1000 candidates is expanded before the algorithm stops. 

Table 3 sums up the results for configurations A, B and C. Four indicators are evaluated for validation and comparison issues: 

• the success rate is the percentage of the FMSs for which a control sequence was found before reaching the maximal 

number of 1000 candidates, 

• the optimality rate is the percentage of the FMSs for which an optimal control sequence was found (i.e. a sequence 

that leads to the minimal makespan), 

• the complexity in space is evaluated as the mean number of expanded candidates for a given FMS, 

• the complexity in time is the mean computation time required to compute a schedule for a given FMS. 
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Fig. 8: FMSs with different resource configurations 

 

Considering first the FMS without resource (configuration A). The success and optimality rates are degraded with the use of 

the heuristic function h1 compared to h2 (Table 3). Indeed, with h1, the performance will depend on the time parameters (that 

are randomly chosen for the set of considered FMSs). In particular, the durations required to execute the two branches of the 

parallelism will affect the selection of the best candidates and may prevent the search algorithm to converge onto the optimal 

solution or even to find any solution. The complexity is space is also from 5 to 20 times larger with h1 compared to h2. This 

excessive space expansion with h1 is due to the exploration of non-promising candidates. Fig. 9 reports the histograms of the 

number of candidates with HFBS when the heuristic functions h1 (in red) and h2 (in blue) are respectively used. One can notice 

the strong dispersion of the number of candidates with h1. Finally, note that the complexity in time is more or less similar with 

h1 and h2 despite the few number of expanded candidates with h2. Indeed, each candidate expanded with h2 leads to the 

resolution of an ILP of the form (9) before evaluating the residual duration with (10) and (11). The resolution of ILP is the 

stage of the exploration that requires the main part of the computational resource.  
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Table 3: Results for a set of 100 FMSs for configurations A, B and C 

 Configuration A B C 

h1 

Success rate 92% 99% 100% 

Optimality 83% 94% 99% 

Complexity in space 479 cand. 276 cand. 322 cand. 

Complexity in time 1.4s 0.6s 0.7s 

h2 

Success rate 100% 100% 100% 

Optimality 100% 100% 100% 

Complexity in space 87 cand. 73 cand. 72 cand. 

Complexity in time 3.5s 1.8s 1.8s 

 

 

Fig 9: Histogram of the number of candidates for 100 FMSs with HFBS and  βg = βl = 10 

 

When resources are added to the FMSs, one can notice an improvement of the performances obtained with h1 (configuration 

B). In the same time, the performances obtained with h2 remains optimal. In fact, adding resources in the FMSs restricts the 

variability of the possible schedules to be explored in order to reach the reference marking. Thus, the sorting and selection of 

the best candidates are less affected by the poor estimation of the residual time with h1. The conclusion is similar if the number 

of resources continues to increase (configuration C).  

 

Example 9: Consider again Example 5 detailed in Fig. 7 and Table 1. A set of instances is studied for this workshop by 

varying n1 and n2 (i.e., the numbers of times that each job should be performed). Table 4 reports the size of the reachability 

graph without (first line) and with supervisor (second line) with respect to n1 and n2. Without supervisor the number of 

deadlock markings increases to 73 as n1 and n2 increase. Observe that the two monitor places (see Fig. 7) eliminate all 

deadlocks (excepted the deadlock that corresponds to the final marking M(pref) = n1 + n2 where both jobs have been performed 

the expected number of times). Observe also that the number of legal markings accepted by this supervisor is much less than 

the number of markings reachable in original system (without the addition of the supervisor). Consequently, the minimal 

processing time Cmax may increase when the supervisor is used. Tables 5 and 6 report the Cmax obtained respectively without 

and with supervisor with respect to n1 and n2. Tables 5 and 6 also report the duration of the schedule computed with the HFBS 

algorithm in both cases. For this purpose, three sets of beam parameters have been tested (βg, βl) ∈ {(5, 2), (10, 4), (20, 4)} and 

the best results are reported (note  that the HFBS method does not necessarily improve the performance by increasing βg and 

βl). The instances for which the computed schedule exceeds Cmax but with a difference less than 10% are highlighted in grey 

and the ones for which the difference exceeds 10% are also highlighted in dark grey. The use of a supervisor generally 

TU 
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decreases the difference (even if it increases Cmax by itself); this is mainly due to the reduction of the number of legal states 

accepted by the supervisor. Another conclusion is that the complexity of the exploration (that is measured as the number of 

explored candidates in list OPEN) significantly decreases thanks to the use of the supervisor. Consequently, exploration is 

speeded up thanks to the supervisor; this is not only due to the reduction of the number of legal markings accepted by the 

supervisor but also because problematic markings are eliminated at first. Without supervisor, such markings may be selected as 

promising candidates (i.e., candidates with a low value of h2 function) by the HFBS algorithm at a given iteration and removed 

latter because they lead to deadlocks. This may slow down the whole exploration.  

To conclude, the combined used of HFBS with supervisory control is an interesting strategy to accelerate the convergence of 

the exploration. The main limitation is due to the specification of the supervisor that generally degrades the makespan. 

Consequently, application to scheduling issues should be carefully addressed.  

 

Table 4: Number of states and of deadlocks (within parenthesis) without (first line) and with supervisor (second line) 

n1 \ n2 1 2 3 4 5 6 

1 44 (3) 
34 (1) 

81 (5) 
61 (1) 

118 (7) 
88 (1) 

155 (9) 
115 (1) 

192 (11) 
142 (1) 

229 (13) 
169 (1) 

2 80 (5) 
60 (1) 

147 (9) 
107 (1) 

214 (13) 
154 (1) 

281 (17) 
201 (1) 

348 (21) 
248 (1) 

415 (25) 
295 (1) 

3 116 (7) 
86 (1) 

213 (13) 
153 (1) 

310 (19) 
220 (1) 

407 (25) 
287 51° 

504 (31) 
354 (1) 

601 (37) 
421 51° 

4 152 (9) 
112 (1) 

279 (17) 
199 (1) 

406 (25) 
286 (1) 

533 (33) 
373 (1) 

660 (41) 
460 (1) 

787 (49) 
547 (1) 

5 188 (11) 
138 (1) 

345 (21) 
245 (1) 

502 (31) 
352 (1) 

659 (41) 
459 (1) 

816 (51) 
566 (1) 

973 (61) 
673 (1) 

6 224 (13) 
164 (1) 

411 (25) 
291 (1) 

598 (37) 
418 (1) 

785 (49) 
545 (1) 

972 (61) 
672 (1) 

1159 (73) 
799 (1) 

 

 

Table 5: Duration of the schedule computed with of HFBS (first line), Cmax (within parenthesis) and number 

 of explored candidates in list OPEN (second line) without supervisor  

n1 \ n2 1 2 3 4 5 6 

1 4 (4) 
29 

8 (8) 
58 

12 (12) 
68 

16 (16) 
78 

20 (20) 
88 

24 (24) 
98 

2 6 (6) 
2230 

8 (8) 
1043 

12 (12) 
135 

16 (16) 
164 

20 (20) 
174 

24 (24) 
184 

3 10 (9) 
85 

9 (9) 
12981 

12 (12) 
2940 

16 (16) 
3196 

20 (20) 
3502 

24 (24) 
3762 

4 13 (12) 
88 

12 (12) 
12984 

14 (12) 
15073 

18 (16) 
4596 

22 (20) 
5064 

26 (24) 
5500 

5 16 (15) 
91 

15 (15) 
12987 

17 (15) 
15075 

21 (16) 
4599 

25 (20) 
5067 

29 (24) 
5503 

6 19 (18) 
94 

18 (18) 
12990 

20 (18) 
15078 

24 (18) 
4598 

28 (20) 
5070 

32 (24) 
5506 
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Table 6: Duration of the schedule computed with the HFBS (first line), Cmax (within parenthesis) and number 

 of explored candidates in list OPEN (second line) with supervisor  

n1 \ n2 1 2 3 4 5 6 

1 6 (6) 
51 

9 (9) 
312 

14 (13) 
93 

18 (17) 
117 

22 (21) 
141 

26 (25) 
165 

2 8 (8) 
48 

11 (11) 
238 

15 (14) 
335 

19 (18) 
391 

23 (22) 
446 

27 (26) 
501 

3 11 (11) 
54 

13 (13) 
110 

16 (16) 
457 

20 (19) 
528 

24 (23) 
599 

28 (27) 
670 

4 14 (14) 
58 

16 (16) 
116 

18 (18) 
528 

21 (21) 
1489 

25 (24) 
1922 

29 (28) 
2058 

5 17 (17) 
61 

19 (19) 
122 

21 (21) 
157 

23 (23) 
1961 

26 (26) 
1912 

30 (29) 
2308 

6 20 (20) 
64 

22 (22) 
125 

24 (24) 
161 

26 (26) 
201 

29 (28) 
2087 

33 (31) 
2331 

 

8 CONCLUSION 

Scheduling problems for a class of flexible manufacturing systems including choices and parallelisms between operations, 

have been considered in this paper. The inclusion of such structures in the different jobs of the FMS deviates the usual 

heuristic function from an acceptable estimation of the residual time required to reach the reference marking. In order to 

alleviate the exploration method from this poor estimation, we have proposed a new heuristic function that is based on the ST 

tree encoding of the TPN models of the jobs. Combined with an ILP approach, the tree encoding is useful to provide a more 

efficient estimation of the residual duration. As far as deadlock situations exist, the proposed approach can be used directly on 

the original system without taking care of the deadlocks or in combination with a supervisor that will first reduce the set of 

legal markings and eliminates the deadlocks. The first option needs generally to enlarge the list of candidates when numerous 

problematic markings exist. The second option may be considered with attention for scheduling issues as far as the addition of 

a supervisor generally degrades the makespan. 

The numerical effort to build the ST tree has been proved to be linear with respect to the number of transitions and nested 

structures in the net and also to the number of jobs in the FMS. Consequently, the numerical effort is mainly allocated to the 

resolution of the ILP and the size of the list of candidates that is handled by the exploration algorithm. In particular, the 

necessity to solve an ILP for each expanded candidate remains time consuming and may prevent to use the approach for large 

systems where numerous candidates should be expanded. Consequently, future research will focus on how to combine the 

path-based heuristic with the ST tree encoding. Instead of computing the residual firing count vector for each expanded 

candidate, we will compute the shortest paths to the reference by using the tree ST.  
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Appendix 

In order to insure the unicity of the structure tree, let us define a total order, referred to as “<<”, within the nodes of the tree. 

This order is used to decide the next step of the construction at each iteration. Consequently, it is also used to index the nodes 

of ST. 

 

Definition 13: The order “<<” is defined within the nodes of the ST tree as: 

1) ST{j} << ST{j’} if j is a node obtained at iteration k, j’ is a node obtained at iteration k’ and k < k’, 

2) ST{j} << ST{j’} if j is either a simple transition or a S node and j’ is either a C node or a P node  

3) ST{j} << ST{j’} if j, j’ are both simple transitions or S nodes (resp. C or P nodes) and j < j’.  

The first rule gives a priority that depends on the iteration at which the nodes are created. The second rule gives a priority that 

depends on type of the elementary structure at iteration i: simple transitions t and elementary sequence structures (S) have 

priority upon elementary choice structures (C) and elementary parallelism structures (P) (then the order within t and S, on one 

hand and C and P, on the other hand, is decided with the second rule). The third rule gives a priority depending on the indexes 

of the already existing nodes (the q first nodes are indexed exactly as the transitions). Algorithm 1 details how the ST tree is 

constructed with the order << from the incidence matrices and the transitions indexes of a given PN. The application of the 

order “<<” with the design strategy detailed within Proposition 1 leads also to the unicity of the resulting tree: 
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Proposition 6: The tree ST of a given structured net is unique with respect to the indexes of the transitions. 

Proof: The demonstration is recurrent. At initialization the nodes of the tree reduce only to simple transitions that are ordered 

according to their indexes (according to the rule 2 of order <<) and placed in a list E1. Consequently, the initialization of the 

tree is unique (for some arbitrary indexing of the transitions). Now assume that a partial tree with k nodes has been designed in 

a unique way up to iteration i. Let us define Ei as the initial list of i-iteration nodes and consider the two following stages 

(according to the rule 1 of order <<). 

At stage 1, the nodes ST{j} in Ei are sorted according to their index (i.e. ST{j}.label). The node in first position (i.e. with the 

smallest index) is considered and removed from Ei. There may exist at most two other nodes in Ei that form a sequences with 

ST{j}. In case such nodes exist, the one, namely ST{j’}, with the best position (i.e. with smallest index) is considered and also 

removed from Ei. {ST{j}, ST{j’}} is an elementary sequence. The next reduction rule replaces this elementary sequence with a 

new node ST{k+1} that is added in last position in list Ei. Consequently, the definition and position in Ei of node ST{k+1} is 

unique (for some arbitrary indexing of the transitions). The same reduction rules are applied to Ei as long as elementary 

sequences can be founded within the nodes of Ei.  

Let us assume that a series of elementary sequence reductions have been successfully done within the nodes of Ei (k’ new 

nodes have been created) and that no additional elementary sequence reduction is possible within Ei. If Ei is composed by a 

single node then, the construction ends, this node will be the root node of the tree and the construction is unique. Otherwise, at 

stage 2, the node ST{j} in first position in Ei (i.e. with the smallest index) is considered and removed from Ei (note that the 

nodes in Ei are almost sorted according to their indexes). As long as the net is structured there may exist one or more other 

nodes in Ei that form elementary choices or parallelisms with ST{j}. Within these candidates, the node, namely ST{j’}, with 

the best position (i.e. with smallest index) is considered and also removed from Ei. {ST{j}, ST{j’}} is an elementary structure, 

no matter the structure is a C or P one, it is uniquely defined according to the node indexes. The next reduction rule replaces 

this elementary structure with a new node ST{k+k’+1} that is added in last position of list Ei. Another time, the definition and 

position in Ei of node ST{k+k’+1} is unique. The same reduction rules are repeated to Ei as long as elementary C or P 

structures can be founded within the nodes of Ei. When all nodes in Ei have been explored and no additional structure 

reductions can be performed, then the list Ei+1 is initialized with the remaining nodes in Ei. If Ei+1 is composed by a single node 

then, the construction ends and this node will be the root node of the tree. Otherwise, the construction continues with list Ei+1, 

defined in a unique way, at iteration i+1. �  

A direct corollary of Proposition 6 is that the size of the tree does not depend on the transition indexes in the TPN. It is equal to 

2 × q – 1. Changing the transition indexes will only lead to a permutation of tree nodes. 




