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Abstract: This paper is about the diagnosability of fault patterns in timed stochastic discrete event systems. For this
purpose, the diagnosability problem is formulated with labeled stochastic Petri net models and pure logical fault pattern
nets. A particular composition of a labeled stochastic Petri net with a fault pattern net is proposed and is shown to
characterize in an explicit way the fault patterns, including the timing and probabilistic aspects of the underlying system.
Logical and probabilistic verifiers are derived, and used to establish a set of conditions to check not only the strong
diagnosability property but also weaker notions of diagnosability.

Keywords: Labeled stochastic Petri nets, fault patterns, diagnosability, probabilistic verification.

1 Introduction

Petri nets (PNs) comprise an important modeling tool for discrete event systems in a variety of applications (ranging
from manufacturing and process engineering to computer systems and network/traffic protocols [17], [23]). Apart from
control design issues, PNs have been studied from the perspective of fault diagnosis during the last 50 years [25]. Fol-
lowing a series of works about diagnosability using automata [37], [21], researchers have considered similar problems
formulated within the Petri net framework. One important advantage of PN models is the possibility to represent a large
variety of systems thanks to synchronisation, concurrency and weighted arcs. Another advantage is the compactness of
the PN models that results mainly from the token semantics. Compared to finite automata, PNs are also suitable to deal
with some classes of infinite state systems and to solve diagnosis problems for non-regular languages.

In its most basic form, a direct translation of the fault diagnosis problem from finite-state automata to Petri nets im-
plies the existence of a set of observable transitions, with some of them perhaps sharing the same label, and a set of silent
transitions, some of which constitute faults whose occurrence needs to be inferred after a bounded number of observa-
tions. There exists a large literature devoted to diagnosis with PNs. Some methods consider that the marking of certain
places and the firing of certain transitions are observable, and the subclass of partially observed Petri nets (POPNs) has
been defined for that purpose [26], [42], [43], [45]. Other methods assume that the markings are silent and are based on
a set of observable transitions, and the subclass of labeled Petri nets (LPN) has been defined for that purpose [3], [5],
[9], [16], [29]. Both subclasses of models have been shown to be equivalent [36]. Consequently, in this paper we will
consider only LPNs, which have a simpler formalism and more tractable notations.

Most of the existing works have been developed in the logical setting (and not in the timed / probabilistic setting
considered in this paper) and / or address the diagnosis of simple faults (thus, they are not directly applicable for the
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2 Dimitri Lefebvre, Christoforos N. Hadjicostis

follows. This paper considers the diagnosability of fault patterns [22], [18], [33], instead of the diagnosability of simple
fault events. In addition, the diagnosability problem is formulated in a timed and probabilistic setting [38], [39], [6] with
labeled stochastic Petri net models. In this paper, we show how the timed / probabilistic aspects improve the detectability
and discernability of faulty behaviours in the long run compared to the usual logical characterisations. For this purpose,
a particular composition of a labeled stochastic Petri net with a logical fault pattern net is proposed and shown to charac-
terize in an explicit way the fault patterns, including the timing and probabilistic aspects of the system. This allows us to
provide a set of necessary and sufficient conditions for the notions of strong diagnosability and tA diagnosability. Another
advantage of the proposed method is the use of a diagnoser of reduced size instead of a full size state estimator. This
reduction in size of the estimator is obtained by defining the type of output needed to return a diagnosis decision (with
respect to the considered fault pattern). Consequently, the use of such a diagnoser of reduced size is interesting if one
aims to use the diagnoser during the online operation of the system (e.g., to save on storage requirements). We propose
also a sufficient condition for the weaker notion of tAA-diagnosability. This condition is based on a simple comparison
of a set of elementary matrices that extract the timing and probabilistic aspects of each absorbing strongly connected
component of the verifier and that are useful to separate identical logical behaviours in the long run. To conclude, the
proposed model is compact, and gives an explicit understanding of the considered system and pattern.

The rest of the paper is structured as follows. Section 2 reviews related works whereas Section 3 is about the pre-
liminaries: the basic definitions of a labeled stochastic PN and a logical fault pattern net are detailed. Section 4 is about
the diagnosability of labeled stochastic PNs from the perspective of the fault patterns. In Section 5, conditions for strong
and also weaker notions of diagnosability of the fault patterns are derived. Section 6 concludes the paper.

2 Related works

This section aims to provide an overview of the diagnosis methods for discrete event systems based on PN formalisms.
Most of the existing approaches have been developed for logical nets (i.e., untimed and non-probabilistic models) where
single fault events are modeled with some silent transitions and diagnosis is developed in a centralized perspective [48].

One method is based on explanations and basis markings [8]. An explanation of an observable transition is a (possi-
bly empty) sequence of silent transitions that enable the firing of this observable transition. Assuming that there are no
cycles of silent transitions, tracking of explanations is reduced to tracking of the firing vectors of such sequences (i.e.,
without needing to track the order in which firings take place in those sequences). Basis markings that correspond to the
markings the explanations lead to, are consequently computed. Finally, a fault is detected and isolated when all minimal
explanations include the firing of the considered transition. This procedure is based on matrix multiplications and the
manipulation of integer constraint sets. In the case of bounded net systems, the basis reachability graph can be calculated
off-line to provide fast on-line diagnosis. However, a very large memory size may be required for this graph. To the best
of our knowledge, this method is restricted to simple logical faults and has not been extended to the time domain or to
complex fault patterns.

The mathematical formalism of PNs also allows the use of Integer Linear Programming (ILP) to perform diagnosis
and investigate diagnosability. Apart from a preliminary study about the structural properties of T-invariants [42], a se-
ries of works focused on the use of ILP to formulate conditions for diagnosability based on g-markings and interpreted
diagnosers [3], [15]. In addition, the authors in [45] combine a redundancy-building method and ILP formulations for
diagnosis issues. Just like the previous ones, this method is also restricted to simple logical faults; it has been extended
to the time domain in [4] but seems difficult to adapt to complex fault patterns.

Interesting approaches have also been inspired from the twin-plant/verifier approaches initialy developed for au-
tomata. In particular, the authors in [9] have developed an approach for analyzing diagnosability of unbounded Petri nets
on the basis of a net called ‘verifier net’ and the corresponding coverability graph. In fact, the verifier net is obtained by
a (parallel) composition of the PN model and a copy that depicts only the normal behavior. The authors in [29] com-
bine positive and negative basis reachability graphs in a dual verifier that is used for diagnosability verification. The
approaches based on the design of a verifier net are quite similar to our work. The idea is to design first a verification
structure and then to derive the condition for diagnosis and / or diagnosability in terms of this structure. Unfortunately,
the previous approaches are restricted to logical nets and simple fault events.

Other works have also exploited the structure of Petri nets, but in different ways: net unfoldings that avoid hav-
ing to reconstruct all possible reachable markings [5], distributed diagnosis that analyzes information in local modules
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preted Petri nets [34]. Decidability and complexity issues are studied in [46]. The problem of combinatorial explosion
in diagnosability problems has been considered in detail in [28] and some reduction rules have been proposed to reduce
computational complexity. Again, it is worth noting that the previous approaches have not been extended in the timed /
probabilistic domain and cannot handle complex fault patterns. The rest of this discussion focuses on the few contribu-
tions that have considered these aspects.

Unlike the previous works mentioned above, our interest focuses on the diagnosis of fault patterns. Patterns are used
to model behaviors of interest [22] or even system specifications [10], and they are also suitable to model faulty behav-
iors. In the diagnosis framework, patterns are a way to extend the notion of fault events by introducing more complex
behaviors (i.e., some specific ordering of events occurring in the system). An event of the pattern, when viewed inde-
pendently from other events, might not necessarily be a fault event by itself; however, the occurrence of all events of the
pattern in a specific order might trigger a fault condition. Consequently, patterns are suitable to study a wide range of
diagnosis problems: simple fault events, multiple faults, fault repetitions and more generally any behavior of interest. In
addition, using patterns has the advantage to separate explicitly the behavioral model of the system and the objectives of
the diagnosis tasks. The difficulty with the diagnosis of fault patterns is that the problem can no longer be approached
as a silent event detection problem but should instead be reformulated as a a state isolation problem in a more complex
structure (compared to the system itself) or solved with a more complicated diagnosis function. This second option is
exactly the proposition developed in [18] where the detection of fault patterns is solved according to a matching func-
tion. Unfortunately, such an approach holds only for strong (i.e., logical) diagnosability reserved for a specific subclass
of labeled Petri nets - namely labeled prioritized Petri nets. Compared to that work, our proposed approach does not
require the use of priority on the transitions and uses the timed / probabilistic setting to refine diagnosability conditions
in the long run. In [33], the same authors replace the matching function by a pattern matching product that results in
an augmented net. Thanks to a model-checking approach, they improve the computational complexity, but one should
notice that the approach is restricted to safe nets and that the proposed approach fails to provide any formal proof of the
diagnosability of a given system. Some other contributions (based on a similar composition of the system by the pattern
of interest) have been considered for the diagnosability of fault patterns in the framework of automata [22], [44]. It is
worth noting that the previous approaches have been developed for logical systems and do not take advantage of timing
information.

Our contribution considers not only logical but also timed / probabilistic aspects, and is suitable to study weaker
notions of diagnosability (i.e., tA and tAA-diagnosability) as discussed later in the paper. Only a few approches have
been developed in a timed or / and probabilistic setting with methods based on stochastic PNs. In [36], even if timing
and probabilistic aspects have not been included at the net level, the authors introduced the notion of a firing sequence
likehood in pure labeled PNs. They evaluated a fault event belief that is defined as the proportion of fault sequences
(with respect to all acceptable sequences) consistent with a sequence of logical observations. Similar to our approach,
the authors in [1] address the problem in a timed probabilistic setting using safe stochastic PNs where faults are also
simple events. They study alarm correlation by using the concurrence of events in order to separate and simplify state
estimation in a faulty system, and also evaluate the likehood of faulty sequences. Although, this approach has introduced
probabilities at the net level, it does not consider the diagnosability characterization. Moreover, this approach only ap-
plies to safe nets and for simple fault events. The diagnosis of simple fault events has been also studied with labeled
timed PNs in [4].The authors define a modified state class graph that allows an exhaustive representation of the evolution
of the timed system. The diagnosis problem is then solved by a linear programming approach in this graph. Different
from stochastic PNs, time PNs associate a time interval to each transition and probabilities are not considered. Thanks
to the timing information, it becomes possible to refine diagnosis by analysing the time when the events occur, but the
approach is not suitable to refine diagnosability of stochastic PNs in the long run because it does not include any prob-
abilistic aspect. In addition, the approach has not been extended to fault patterns. Note that similar problems have been
studied with automata in order to discuss diagnosability in a timed deterministic setting. In [12], [7], diagnosability of
fault events is considered for the deterministic timed automata introduced in [2].

Finally, some approaches have been proposed for the diagnosability of simple fault events in a timed / probabilistic
setting with methods based on stochastic automata. In [39], diagnosability is considered for stochastic timed automata
defined as continuous-time Markov models and the notions of A and AA diagnosability (previously studied by the author
in [38] and [6] for stochastic untimed automata) are extended in the time domain. More specifically, the notions of tA−
and tAA-diagnosability are introduced and analyzed based on the structure of a suitable diagnoser. Our contribution is
developed in the same context and extends the previous results in the following directions: (i) by replacing stochas-
tic automata by stochastic PNs, the modeling aspects are improved to consider a larger class of systems (allowing for
parallelism and synchronization); (ii) by considering fault patterns instead of simple fault events, the application of the
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4 Dimitri Lefebvre, Christoforos N. Hadjicostis

3 Preliminaries

3.1 Petri nets

Definition 1 The structure of a Petri net model for a given discrete event system (DES) is defined as PN = (Ps,T s,W s
PR,

W s
PO), where Ps = {p1, ..., pn} is a set of n places, T s = {t1, ..., tq} is a set of q transitions and W s

PR ∈ Nn×q and W s
PO ∈

Nn×q are respectively the pre- and post-incidence matrices (N is the set of non-negative integer numbers).

Matrix W s =W s
PO−W s

PR is the incidence matrix and (PN,Ms
I ) denotes a marked PN (or equivalently a PN system)

with initial marking Ms
I ∈ Nn. Ms ∈ Nn denotes the net marking vector and Ms(p) is the marking of place p (the indices

of the places are used in the next to refer to the position of the entries in a given marking vector or incidence matrix).
Let us define the preset of a given transition t (resp. a given place p) as the subset of places p′ (resp. the subset

of transitions t ′) such that ws
PR(p′, t) > 0 (resp. ws

PO(p, t ′) > 0). Here ws
PR(p′, t) and ws

PO(p, t ′) refer to the entries of
matrices W s

PR and W s
PO corresponding to place p′ or p and transition t or t ′ (the indices of the places and transitions are

used in the next to refer to the rows and columns of entries in matrices). The preset of t (resp. p) is denoted as •(t)
(resp. •(p)). Similarly, the postset of a given transition t (resp. a given place p) is defined as the subset of places p′

(resp. the subset of transitions t ′) such that ws
PO(p′, t) > 0 (resp. ws

PR(p, t ′) > 0). The postset of t (resp. p) is denoted
as (t)• (resp. (p)•). By firing t, we obtain a new marking M′s = Ms +W s(:, t), where W s(:, t) denotes the column of
W s corresponding to transition t. This fact can be denoted by Ms[t〉M′s and T s(Ms,M′s) ⊆ T s is defined as the subset
of transitions t such that Ms[t〉M′s (t can fire from Ms only if Ms−W s

PR(:, t) ≥ 0). A firing sequence σ is a sequence of
transitions that consecutively fire from a given Ms; one writes Ms[σ〉M′s and M′s is said to be reachable from Ms. Such
a firing sequence is written as σ = t j1t j2 · · · t jh , where j1, j2, . . . , jh are the indices of the transitions. When σ fires from
marking Ms, it is associated to the trajectory

(σ ,Ms) = Ms(0)[t j1〉Ms(1)[t j2〉 · · ·Ms(h−1)[t jh〉Ms(h), (1)

where Ms(0) = Ms. We call Ms(h) the final marking of (σ ,Ms). In the next, K-bounded nets are considered (i.e., nets for
which the marking of each place does not exceed K). In this case, the number of markings that are reachable from the
initial marking Ms

I is finite, and is denoted by Ns. We use Rs = {Ms
1,M

s
2,M

s
3, ...,M

s
Ns} to denote the set of all reachable

markings from Ms
I . In addition, we use L (Ms

I ) to refer to the set of firing sequences σ ∈ (T s)∗ such that Ms
I [σ〉 ((T s)∗

refers to the set of firing sequences of finite length (but arbitrarily long), composed of transitions in T s). In a certain
sense, L (Ms

I ) can be viewed as the language of the net.

3.2 Labeled stochastic Petri nets

Stochastic Petri nets have been defined to deal with stochastic and timing aspects in DESs [31], [20].

Definition 2 A stochastic Petri net (SPN) system is defined as (PN,Ms
I ,µ), where (PN,Ms

I ) is a Petri net system and
µ ∈ (R+)q (where R+ is the set of strictly positive real numbers) is a firing rate vector. It is assumed that (i) the firing
delays of all transitions are exponentially distributed with independent random variables; (ii) the time semantic is char-
acterized by monoserver, race and resampling memory policies [20].

In details, the firing delays of a given transition t ∈ T s are exponentially distributed with firing parameter µ(t) ∈ R+

and measured in time units (TU). The monoserver1 policy allows a single instance of firing of t at Ms if Ms[t〉). Race is
used as a choice policy in case of conflict or concurrence: the transition that will fire next is the transition with the shortest
firing delay. Finally, at each firing, the clocks of all enabled transitions are reset. Observe that other time semantics may
also be defined [20].

Important characteristics about the transient and the steady state of the SPN behavior can be obtained from the
analysis of a continuous time Markov model that can be obtained from the reachability graph of the net and represents
the timing and probabilistic aspects of the marking variation [20]. Given a certain time τ ∈ R+, the marking of the
SPN (resp. of the place p) at τ will be referred to as Ms(τ) (resp. Ms(p,τ)) and the probability that at τ the marking

1 The monoserver policy can be explicitly incorporated at the PN structure level by adding a place in self-loop with each transition, such
that its initial marking equals 1.
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Diagnosability of fault patterns with labeled stochastic Petri nets 5

(resp. the marking of a certain place p) has a certain value α will be referred to as Prob(Ms(τ) = α),α ∈ Nn (resp.
Prob(Ms(p,τ) = α),α ∈ N. In addition, the matrix Gs of dimension Ns×Ns is the generator matrix of the underlying
continuous time Markov process that is defined by

– for all Ms,M′s ∈ Rs, Ms 6= M′s, Gs(Ms,M′s) = ∑t∈T s(Ms,M′s) µ(t),
– for all Ms ∈ Rs, G(Ms,Ms) = ∑M′s 6=Ms−G(Ms,M′s).

A timed firing sequence στ fired from some marking Ms is written as στ = (t j1 ,τ1) (t j2 ,τ2) · · ·(t jh ,τh), where
j1, j2, . . . , jh are the indices of the transitions, τ1,τ2, . . . ,τh represent the firing instants, and 0 ≤ τ1 ≤ τ2 ≤ ·· · ≤ τh.
Note that τ(στ) = τh is the duration of στ . Given στ and a time τ ≥ τh, the timed trajectory associated with στ within
[0,τ), starting at Ms is defined by

(στ ,Ms,τ) = Ms(0)[(t j1 ,τ1)〉Ms(1)[(t j2 ,τ2)〉 · · ·Ms(h−1)[(t jh ,τh)〉Ms(h), (2)

where Ms(0) = Ms. Observe that there is no firing within [τh,τ).

Labeled Petri nets (LPNs) have been intensively used for diagnosis issues with Petri nets. We assume that the transi-
tions of the net can be partitioned into two subsets: the subset of observable transitions T s

o that deliver a label in a set of
labels Q and the subset of silent transitions T s

u that do not. The labeling function L : T s→Q∪{ε} is defined such that for
each t ∈ T s

o , L(t) ∈ Q and for each t ∈ T s
u , L(t) = ε , where ε stands for the empty string. There is no difficulty to extend

L recursively to any firing sequence: L : (T s)∗→ Q∗ such that L(ε) = ε and L(σt) = L(σ)L(t).

Definition 3 A labeled Petri net system LPN = (PN,Ms
I ,L) is a Petri net system (PN,Ms

I ) where the firing of some
transitions is observable according to the labeling function L.

A labeling function in the time domain is also defined recursively by Lτ : (T s×R+)∗→ (Q×R+)∗ with (i) Lτ(ε)= ε ,
(ii) Lτ((t jh ,τh)) = (L(t jh),τh) if t jh ∈ T s

o and (Lτ((t jh ,τh)) = ε if t jh ∈ T s
u , (iii) Lτ(στ(t jh ,τh)) = Lτ(στ)(L(t jh),τh) if

t jh ∈ T s
o and Lτ(στ(t jh ,τh)) = Lτ(στ) if t jh ∈ T s

u . In addition, a mask function that erases the time stamps is defined
by H : (T s ×R+)∗ → (T s)∗ with (i) H(ε) = ε , (ii) H((t jh ,τh)) = t jh , (iii) H(στ(t jh ,τh)) = H(στ)t jh . Observe that
L(H(στ)) = H(Lτ(στ)).

Definition 4 A labeled stochastic Petri net system LSPN = (PN,Ms
I ,L,µ) is a stochastic Petri net system (PN,Ms

I ,µ)
where the firing of some transitions is observable according to the labeling function L.

To avoid unbounded silent firing sequences, consistent with a given finite sequence of observed labels σo, the silent
part of the considered LSPN is assumed to be acyclic.

Example 1: Consider the example of the LSPN in Fig. 1 where Ps = {p1, p2, p3, p4, p5}, T s = {t1, t2, t3, t4, t5, t6}
and Ms

I = (2,0,0,0,0)T . Q = {a,b,c} is the set of labels and the labeling function is defined such that L(t2) = L(t5) = a,
L(t3) = b, L(t6) = c, L(t1) = L(t4) = ε . In addition, a rate µ(t) is defined for each transition t ∈ T s. For simplicity, these
rates are all assumed to equal to 1. In Fig. 1, labels and rates are reported near the transitions.

Fig. 1 An example of an LSPN model.
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6 Dimitri Lefebvre, Christoforos N. Hadjicostis

In the context of fault diagnosis, some particular sequences of transitions (eventually some individual transitions) are
of interest because such sequences correspond to faulty behaviours of the considered systems [22], [44]. They will be
referred to as fault patterns in the next.

Definition 5 A fault pattern ΣF of a given PN system (PN,Ms
I ) is defined as a set (possibly of infinite cardinality) of

firing sequences of finite length (but arbitrarily long): ΣF ⊆L (Ms
I ).

In this paper, the fault patterns are represented with a particular subclass of Petri net systems, namely logical fault
pattern nets and a synchronization function that explains how the fault pattern net is connected with the LSPN.

Definition 6 Given a K-bounded labeled stochastic Petri net system LSPN = (Ps,T s, W s
PR,W

s
PO, Ms

I ,L,µ), and a subset
Tsync ⊆ T s of r transitions, a logical fault pattern net is a pair (FPN,SF) such that FPN is a Petri net system FPN =
(PF ,T F ,W F

PR,W
F
PO, MF

I ) and SF is a synchronization function having the following properties:

– PF = {N1, ...,Nm,F} is a set of m+1 places where F is the single trapping place of the net: (F)• = /0,
– T F is a set of m× r transitions,
– SF : Tsync× (PF \{F})→ T F is a bijective function, i.e., SF associates each transition t ′ in T F with a single pair

(t, p) ∈ Tsync× (PF \{F}),
– (PF ,T F ,W F

PR,W
F
PO,M

F
I ) is a state graph: every transition has one incoming arc (i.e., |• (t ′) |= 1, t ′ ∈ T F ), and one

outgoing arc (i.e., | (t ′)• |= 1, t ′ ∈ T F ), and all reachable markings have exactly one token,
– each place p ∈ PF \{F} has exactly r outgoing arcs and r transitions in its postset such that (p)• = {SF(t, p), t ∈

Tsync}, ,
– MF

I is such that MF
I (N1) = 1 and MF

I (p) = 0 for all p ∈ PF \{N1}.

Observe that the transitions in set Tsync characterize the pattern of interest. The set {N1, ...,Nm} corresponds to the
normal places of FPN, whereas F corresponds to the single fault place. There is no difficulty to extend the previous
definition to nets that characterize multiple fault patterns by introducing a set of multiple fault places {F1,F2, ...}, but
this will not be pursued further in the interest of simplicity.

Example 2: In Fig. 2, we consider several examples of logical fault pattern nets for the DES modeled with the LSPN
in Fig. 1. For each transition t ′ ∈ T F , the denomination within brackets (t j,p) refers to the transition t j ∈ Tsync and to the
place p ∈ PF \{F} of the LSPN in Fig. 1 such that t ′ = SF(t, p). Such denominations will be used later in a particular
composition of the LSPN with the fault pattern net according to the synchronization function.

(FPNa,SFa) in Fig. 2(a) is the fault pattern net corresponding to the situation where the transition t1 of the LSPN
in Fig. 1 is considered as a simple fault transition: N is the single normal place and F is the fault place. Tsync = {t1}
and the synchronization function is defined by SFa(t1,N) = t ′1. (FPNa,SFa) aims to detect the set of sequences ΣFa =
{(T s \{t1})∗t1(T s)∗} in the LSPN.

(FPb,SFb) in Fig. 2(b) recognizes the repetition of the firings of t1 at least twice during the system operation
no matter how the system behaves between the two firings of t1. Observe that the two transitions t ′1 and t ′2 of FPNb
correspond to the two successive firings of the same transition t1 of the LSPN in Fig. 1. N = {N1,N2} is the set of
normal places and F is the fault place. Tsync = {t1} and the synchronization function is defined by SFb(t1,N1) = t ′1, and
SFb(t1,N2) = t ′2 and leads to the denominations t1,N1 for the first firing of t1 and t1,N2 for the second firing of the same
transition. (FPNb,SFb) aims to detect the set of sequences ΣFb = {(T s \{t1})∗t1(T s \{t1})∗t1(T s)∗} in the LSPN.

(FPNc,SFc) in Fig. 2(c) recognizes the occurrence of either one of two possible fault transitions t1 and t4 in
the LSPN in Fig. 1: N is the single normal place and F is the fault place. Tsync = {t1, t4} and the synchronization
function is defined by SFc(t1,N) = t ′1, and SFc(t4,N) = t ′2. (FPNc,SFc) aims to detect the set of sequences ΣFc =
{(T s \{t1, t4})∗t1(T s)∗,(T s \{t1, t4})∗t4(T s)∗} in the LSPN. Note that (FPNc,FSc) does not identify which fault has
occurred (or which fault has occurred first). If one is interested in fault isolation, there is no difficulty to design two fault
pattern nets, the first one with a place F1 detecting that fault transition t1 occurred first and the second one with a place
F2 detecting that fault transition t4 occurred first.

(FPNd,SFd) in Fig. 2(d) is sensitive to the occurrence of the firing sequences that contain both t1 and t4 in the
LSPN in Fig. 1, regardless of the order in which the two transitions fire and how the system behaves between the
firings of t1 and t4: N = {N1,N2,N3} is the set of normal places, F is the fault place, Tsync = {t1, t4} and the synchro-
nization function is defined by SFd(t1,N1) = t ′1, SFd(t4,N3) = t ′2, SFd(t1,N3) = t ′3, SFd(t4,N1) = t ′4, SFd(t1,N2) = t ′5
and SFd(t4,N2) = t ′6. (FPNd, SFd) aims to detect the set of sequences ΣFd = {(T s \{t1, t4})∗t1(T s \{t1, t4})∗t4 (T s)∗,
(T s \{t1, t4})∗t4(T s \{t1, t4})∗t1(T s)∗} in the LSPN.

(FPNe,SFe) in Fig. 2(e), with N = {N1,N2,N3} being the set of normal places and F being the fault place, is sensitive
to more complex faulty behaviours in the LSPN in Fig. 1: the repetition of the firing of t1 twice during the system
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Diagnosability of fault patterns with labeled stochastic Petri nets 7

operation without experiencing the firing of t4 more than once between the two successive firings of t1 (but perhaps
experiencing other transition firings). Tsync = {t1, t4} and the synchronization function is defined by SFe(t1,N1) = t ′1,
SFe(t1,N3) = t ′2, SFe(t4,N3) = t ′3, SFe(t4,N1) = t ′4, SFe(t4,N2) = t ′5 and SFe(t1,N2) = t ′6. (FPNe,SFe) aims to detect the
set of sequences ΣFe = {(T s \{t1, t4})∗t1(T s \{t1, t4})∗t1(T s)∗, (T s \{t1, t4})∗t1(T s \{t1, t4})∗t4(T s \{t1, t4})∗t1(T s)∗}
in the LSPN.

Fig. 2 Examples of logical fault pattern nets.

4 Diagnosability of LSPN

In order to study the diagnosability properties of a K-bounded LSPN with respect to a fault pattern, a three-step approach
is proposed.

1. First, we define a particular composition of the LSPN with the fault pattern net (FPN,SF). This composition syn-
chronizes some transitions of the LSPN with the transitions of FPN according to the synchronization function SF .
We further prove that the resulting net, referred to as a fault pattern stochastic net (FPSN), is also a K-bounded
LSPN that is able to track exactly the marking probabilities of the original system. The aim is to characterize the
pattern of interest with the marking of the place F , i.e., determine whether the marking of the resulting FPSN satisfies
M(F) = 1.

2. Second, we compute the logical observer of the FPSN by making abstraction of probabilistic and timing aspects. For
this purpose, we propose to search for the reachability graph R of the FPSN and represent this graph as a labeled finite
automaton A (ignoring the timing aspects) from which we can derive the logical observer using a standard method.
This observer is a deterministic finite automaton. Observing that only an estimation of the marking of place F is
needed to detect the occurrence of the fault pattern, a diagnoser of reduced size (compared to the logical observer) is
computed thanks to a standard reduction method.

3. Third, we perform the parallel composition of A with the observer or diagnoser. On the one hand, we show that strong
diagnosability and tA-diagnosability can be characterized according to structural properties of such a composition.
On the other hand, we establish that tAA-diagnosability can be characterized according to probabilistic properties of
the continous time Markov model that one can derive from the resulting composition.
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8 Dimitri Lefebvre, Christoforos N. Hadjicostis

In this section, we introduce a particular composition of the LSPN with the fault pattern net previously defined, according
to the synchronisation function SF and refer to the result of this composition as a fault pattern stochastic net (FPSN).
For short, we write FPSN = (LSPN) ×SF (FPN).

Let us refer to the r synchronisation transitions as Tsync = {tk1 , ..., tkr}. As far as SF is a bijective function from
Tsync× (PF \{F}) to T F , observe that SF defines a partition of the set T F and one can write T F = T F

1 ∪ ...∪T F
r with

T F
h = {t ∈ T F such that t = (tkh , p), p ∈ PF −{F}}, h = 1, ...,r. Each subset T F

h ⊆ T F is composed by exactly m transi-
tions. For readability, and according to the notation already introduced in Fig. 2, let us refer to the transitions in T F

h as
tkh,N1 , ..., tkh,Nm . The FPSN is formally defined as follows.

Definition 7 Consider a K-bounded labeled stochastic Petri net system LSPN = (Ps,T s, W s
PR,W

s
PO,M

s
I , L, µ), a subset

Tsync ⊆ T s with r transitions, a fault pattern ΣF represented by (FPN,SF) with FPN = (PF ,T F ,W F
PR, W F

PO,M
F
I ) with

m+ 1 places and m× r transitions, and a given synchronisation function SF. The fault pattern stochastic net FPSN =
(LSPN) ×SF (FPN) is the net defined by FPSN = (P,T,WPR,WPO,MI ,L,µ) with:

– P = Ps∪PF a set of n+m+1 places,
– T = T s∪T F a set of q+m× r transitions,
– the incidence matrices are defined by:

– wPR(p, t)=ws
PR(p, t) and wPO(p, t)=ws

PO(p, t) for p ∈ Ps and t ∈ T s,
– wPR(p, tkh,p)=wF

PR(p, tkh,p), wPO(p, tkh,p)=wF
PO(p, tkh,p) for p ∈ PF and tkh,p ∈ T F

h , h = 1, ...,r,
– wPR(p′, tkh,p)=ws

PR(p′, tkh) and wPO(p′, tkh,p)=ws
PO(p′, tkh) for p′ ∈ Ps and tkh,p ∈ T F

h , h = 1, ...,r,
– wPR(p, t)=wPO(p, t)=0 for p ∈ PF and t ∈ T s \Tsync,
– wPR(F, t)=wPO(F, t)=1 for t ∈ Tsync,

– the firing rate of each transition tkh,p ∈ T F
h is defined by µ(tkh,p) = µ(tkh) (the firing rates of the transitions t ∈ T s

being unchanged),
– the label of each transition tkh,p ∈ T F

h is defined by L(tkh,p) = L(tkh) (the labels of the transitions t ∈ T s being
unchanged),

– MI is the initial marking that satisfies MI(N1) = 1, MI(p) = 0, for all p ∈ (PF \{N1}), and MI(p) = Ms
I (p) for all

p ∈ Ps.

In the next, we will refer to the marking of a given FPSN as M, compared to the marking of the original LSPN that is
referred to as Ms.The FPSN has the advantage of characterizing in an explicit way the fault pattern we are interested in.
In particular, as stated in Lemma 1 below, it has a property of monotonicity with respect to the marking of the place F .
Observe also that, for a given h = 1, ...,r, it is not possible for two transitions tkh,p and tkh,p′ to be simultaneously enabled
in the FPSN as long as the fault pattern net is a safe net.

Lemma 1: Given an FPSN and two given times τ,τ ′ ∈ R+, τ ′ ≥ τ , then M(F,τ ′) = 1 if M(F,τ) = 1.

Proof : Observe that the place F is in the postset of the transitions tkh,p, h= 1, ..,r, p∈ {N1, · · · ,Nm}. On the contrary,
F is only in the preset of transitions tkh , h = 1, ..,r, and there are selfloops between F and tkh . Consequently, the token is
trapped in F and M(F,τ ′) = 1 as far as M(F,τ) = 1 and τ ′ ≥ τ . �

Proposition 1: Given a K-bounded labeled stochastic Petri net system and a fault pattern ΣF represented by (FPN,SF),
then FPSN = (LSPN) ×SF (FPN) is also a K-bounded labeled stochastic net, and satisfies Prob(M(p,τ) = α) =
Prob(Ms(p,τ) = α), for all p ∈ Ps, α ∈ N and τ ∈ R+ (where M(p,τ) refers to the marking of place p at time τ in
the FPSN).

Proof : First we prove that the net resulting from the composition of an LSPN with an FPN is a K-bounded net.
Observe that the fault pattern net is a safe net (and consequently is 1-bounded). The set of places PF is a P-invariant in
the FPN and also in the FPSN, i.e., M(N1)+ ...+M(Nm)+M(F) = 1. Consequently, the places of the FPSN that belong
to PF are 1-bounded. Now, observe how the transitions in T F are connected to the rest of the net: the P-invariants of the
LSPN are conserved by the composition induced by the synchronization function SF and consequently the places of the
FPSN that belong to Ps are K-bounded. To conclude, the FPSN is a K-bounded net.

Second, consider any place p ∈ Ps. Place p may have one or several subsets of m+1 synchronization transitions of
the form {tkh,N1 , ..., tkh,Nm , tkh} in its preset or in its postset. For a given τ ∈ R+, no concurrent firing exists within the
subset of transitions {tkh,N1 , ..., tkh,Nm , tkh}. As far as a monoserver policy is used, the probability that a token moves from
a place p ∈ Ps to another place p′ ∈ Ps is the same in the LSPN and the FPSN. Moreover, the distribution of the firing
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Diagnosability of fault patterns with labeled stochastic Petri nets 9

delays for each transition t ∈ T s is the same in the LSPN and the FPSN, and the distribution of the firing delays for each
transition tkh,p ∈ T F

h , p ∈ PF , is the same as the distribution of the firing delays of the transition tkh ∈ Tsync.We conclude
that Prob(M(p,τ) = α) = Prob(Ms(p,τ) = α) for any p ∈ Ps. �

Example 3: Consider the example of the LSPN in Fig. 1 and the fault pattern ΣFb represented by (FPNb,SFb)
in Fig. 2(b). The resulting FPSN is detailed in Fig. 3. This net is a labeled stochastic Petri net that is 2-bounded. The
reachability set R of this net has 33 markings that are detailed in Table 1.The markings of the places N1, N2 and F
correspond to the three last entries of vector M. One can notice that the place F of the FPSN provides explicit information
about the occurrence of the fault pattern under interest. All markings M such that M(F) = 1 result from a firing sequence
(originating from MI) that includes at least two firings of transition t1, whereas all markings M such that M(F) = 0 result
from a firing sequence that includes zero or one firing of the transition t1.

Fig. 3 FPSN obtained by composing the LSPN in Fig. 1 with the pattern ΣFb.

4.2 Logical observer and diagnoser design

To obtain a logical diagnoser of a given LSPN with respect to a fault pattern net ΣF , we build first the FPSN and compute
its reachability graph. The FPSN is a K-bounded net, consequently its reachability graph has a finite number of NA
markings. Making abstraction of the timing aspects, the reachability graph is associated to a labeled finite automaton
A = (XA,T,∆A,xA0,L,Q∪{ε}) where XA is the set of NA states, each state being associated to a given marking; T is the
set of transitions of the FPSN, and it is interpreted as the set of events; ∆A is the transition relation such that ∆A(M,q,M′)
is defined if there exists a transition t ∈ T with M[t〉M′ and L(t) = q with q ∈ Q∪{ε}; xA0 corresponds to the initial
marking M0, and L and Q are respectively the labeling function and the set of labels. A is basically a non-deterministic
automaton due to the labeling function that erases the labels of unobservable transitions and makes indiscernible the
transitions that share the same label.

A standard approach (that transforms a non-deterministic automaton into a deterministic one) is used to compute
the logical observer of A [11]. Each state of the resulting observer is a subset of markings in the reachability set R . The
markings include not only the complete information about the system states but also the information about the occurrence
of the fault pattern. In particular, M(F) = 1 indicates that the fault pattern has occurred. We propose also in this section a
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10 Dimitri Lefebvre, Christoforos N. Hadjicostis

Fb.

M Detail M Detail

M0 (2 0 0 0 0 1 0 0)T M17 (0 0 0 0 2 1 0 0)T

M1 (1 1 0 0 0 0 1 0)T M18 (1 0 1 0 0 0 0 1)T

M2 (1 0 0 1 0 1 0 0)T M19 (0 1 0 1 0 0 0 1)T

M3 (0 2 0 0 0 0 0 1)T M20 (0 0 0 2 0 0 1 0)T

M4 (1 0 1 0 0 0 1 0)T M21 (1 0 0 0 1 0 1 0)T

M5 (0 1 0 1 0 0 1 0)T M22 (2 0 0 0 0 0 0 1)T

M6 (0 0 0 2 0 0 1 0)T M23 (0 0 1 1 0 0 0 1)T

M7 (1 0 0 0 1 1 0 0)T M24 (0 1 0 0 1 0 0 1)T

M8 (0 1 1 0 0 0 0 1)T M25 (0 0 0 1 1 0 1 0)T

M9 (2 0 0 0 0 0 1 0)T M26 (1 0 0 1 0 0 0 1)T

M10 (0 0 1 1 0 0 1 0)T M27 (0 0 1 0 1 0 0 1)T

M11 (0 1 0 0 1 0 1 0)T M28 (0 0 0 0 2 0 1 0)T

M12 (0 0 0 1 1 1 0 0)T M29 (0 0 0 2 0 0 0 1)T

M13 (0 0 2 0 0 0 0 1)T M30 (1 0 0 0 1 0 0 1)T

M14 (1 1 0 0 0 0 0 1)T M31 (0 0 0 1 1 0 0 1)T

M15 (1 0 0 1 0 0 1 0)T M32 (0 0 0 0 2 0 0 1)T

M16 (0 0 1 0 1 0 1 0)T

logical diagnoser that is devoted to the estimation of M(F). In most of the cases, the size of the diagnoser will be smaller
than the size of the observer.

In order to define the logical observer, the following subsets of markings are introduced:

– for each marking M ∈ R, let X(M,ε) be the set of markings reachable from M by firing zero or more silent transitions
t (i.e., L(t) = ε);

– for each marking M ∈ R and for each label q ∈ Q, let X(M,q) be the set of markings that are reachable from M by
firing exactly one transition t such that L(t) = q;

– for each marking M ∈ R and for each label q ∈ Q, let Xε(M,q) be the set of markings that are reachable from any
marking M in X(M,q) by firing zero or more silent transitions.

Definition 8 The logical observer for a given FPSN is defined as the triplet (OBS,YP, γP) where OBS is a deterministic
finite automaton OBS = (X ,Q,∆X ,x0) and γP : X → 2NA is an output function that associates each state x ∈ X to the
subset of markings in YP that is consistent with the observer state x:

– X is a set of states;
– YP ⊆ 2NA is a set of marking subsets;
– Q is the set of observable labels;
– ∆X is the transition function and γP is the output function that are defined for all x ∈ X and q ∈ Q by ∆X (x,q) = x′

and γP(x′) = ∪M∈γP(x)Xε(M,q) if ∪M∈γP(x) Xε(M,q) 6= /0 (in such a case, there exists at least one combination of an
observable transition t with L(t) = q, a silent firing sequence σ and two markings M ∈ γP(x), M′ ∈ γP(x′) such that
M[tσ〉M′);

– x0 is the observer initial state and γP(x0) = X(M,ε).

Algorithm 1 details the computation of OBS, YP and γP. This algorithm searches iteratively the states of the observer.
Each new state is temporarily saved in the list UNEx and the algorithm ends when the list UNEx is emptied. The final
structure OBS has a complexity in space of O(2NA).
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Diagnosability of fault patterns with labeled stochastic Petri nets 11

Algorithm 1: Logical observer OBS of the FPSN
Require: R, M0, L, Q
Ensure: X , ∆X , x0, YP, γP

1: x← 0, x0← x, X ←{x}, UNEx←{x}, k← 0
2: γP(x)← X(M0,ε), YP←{γP(x)}, ∆X ← /0
3: while UNEx 6= /0 do
4: let x be the first element of UNEx
5: remove x from UNEx
6: for each label q ∈ Q do
7: z′← /0, y′← /0
8: for each M ∈ γP(x) do
9: z′← z′∪X(M,q)

10: end for
11: for each M ∈ z′ do
12: y′← y′∪X(M,ε)
13: end for
14: if y′ /∈ YP then
15: k← k+1, x′← k, γP(x′)← y′

16: X ← X ∪{x′}, YP← YP∪{y′}, UNEx←UNEx∪{x′}
17: else
18: x′← k
19: end if
20: ∆X (x,q)← x′

21: end for
22: end while

The diagnoser for a given FPSN results from a simplification of the observer. For this purpose, we define the output
function γPF : X → YF with YF = {{0},{1},{0,1}} as:

– γPF(x) = {1} if M(F) = 1 for all markings M ∈ γP(x). In such a case, the fault pattern has certainly occurred thus
far;

– γPF(x) = {0} if M(F) = 0 for all markings M ∈ γP(x). In such a case, the fault pattern did not occur thus far;
– γPF(x) = {0,1} if M(F) = 0 for some markings M ∈ γP(x) and M(F) = 1 for some other markings M ∈ γP(x). In

such a case, no conclusion can be stated for the occurrence of the fault.
The modified observer (OBS,YF ,γPF) can be viewed as a Mealy machine [30], [35] (i.e., a deterministic finite state
automaton with inputs and outputs) with outputs γPF(x), x ∈ X . Consequently, using a standard reduction method [19],
(OBS,YF ,γPF) is simplified in the input / output sense such that the same sequence of input labels, produces the same
sequence of outputs within YF . During the simplification process, some states of X are merged so that the total number
of states after simplification is, in general, much smaller than the number of states in X .

Let us define the triplet (DIAG,YF ,γF) as the result of this simplification where DIAG = (Y,Q,∆Y ,y0) is a determin-
istic finite automaton with Y being the set of states; Q being the set of observable labels; the output function γF : Y →YF
associating each state y ∈Y , to the subset of possible markings for the place F ; ∆Y being the transition function such that
∆Y (y,q) = y′ implies that there exists an observable transition t and two markings M,M′ ∈ R with M[t〉M′, M(F)∈ γ f (y),
M′(F) ∈ γ f (y′), and L(t) = q ∈ Q; and y0 being the diagnoser initial state. (DIAG,YF ,γF) is a logical diagnoser because
each state y ∈ Y has an output that indicates explicitly if one can state that the fault pattern has occurred.

Example 4: Consider the example of the LSPN of Fig. 1 and the fault pattern ΣFb represented by (FPNb,SFb) in
Fig. 2(b). The FPSN in Fig. 3 is obtained. The logical observer (OBS,YP,γP), the transformation of (OBS,YP,γP) into
(OBS,YF ,γPF) and diagnoser (DIAG,YF ,γF) are respectively presented in Figs. 4, 5 and 6. The details of the states and
outputs of (OBS,YP,γP) and (DIAG,YF ,γF) are reported in Table 2 (skip for now the last column of the table). For each
reachable marking (see Table 1), the number of tokens in F-place is also reported in brackets in Table 2. Observe that
the number of states of the diagnoser is much smaller than the number of states of the observer.

In the remainder of Section 3, we consider a labeled stochastic Petri net system LSPN = (Ps,T s,W s
PR,W

s
PO,M

s
I , L,

µ) that is K-bounded and has a set of synchronization transitions Tsync ⊆ T s. ΣF is the fault pattern and (FPN,SF) with
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12 Dimitri Lefebvre, Christoforos N. Hadjicostis

Fig. 4 Logical observer (OBS,YP,γP) obtained for the LSPN in Fig. 1 with respect to the pattern ΣFb.

Fig. 5 Construction of (OBS,YF ,γPF ) from (OBS,YP,γP).

Fig. 6 Diagnoser (DIAG,YF ,γF ) obtained for the LSPN in Fig. 1 with respect to the pattern ΣFb.

Table 2 States and outputs of the logical observer and diagnoser for the LSPN in Fig. 1 with respect to the pattern ΣFb.

x γP(x) y γF (y) F-certain

x0 {M0(0),M1(0),M2(0),M3(1),M5(0),M6(0)}

x1 {M4(0),M7(0),M8(1),M10(0),M11(0),M12(0)} y0 {0,1} uncertain

x2 {M13(1),M16(0),M17(0)}

x3 {M3(1),M9(0),M14(1),M15(0),M19(1),M20(0)}

x4 {M8(1),M18(1),M21(0),M23(1),M24(1),M25(0)} y1 {0,1} uncertain

x5 {M13(1),M27(1),M28(0)}

x6 {M3(1),M14(1),M19(1),M22(1),M26(1),M29(1)}

x7 {M8(1),M18(1),M23(1),M24(1),M30(1),M31(1)} y2 {1} F-certain

x8 {M13(1),M27(1),M32(1)}

FPN = (PF ,T F , W F
PR,W

F
PO,M

F
I ) being the fault pattern net that represents ΣF . FPSN = (P,T,WPR,WPO, MI , L, µ) is the

fault pattern stochastic net associated to the labeled finite automaton A = (XA,T,∆A,xA0,L,Q∪{ε}). (OBS,YP,γP) with
OBS = (X ,E,∆X ,x0) and (DIAG,YF ,γF) with DIAG = (Y,E,∆Y , y0) are respectively the observer and diagnoser.

4.3 Strong diagnosability

Strong (i.e., logical) diagnosability requires that every occurrence of the fault pattern leads to observations distinct
enough to enable identification of the fault pattern within a finite delay. A formal definition of strong diagnosability of
fault patterns can be found in [44] for automata and in [18] for Petri nets according to the matching operator. In this
work, we propose first a reformulation of the definition of diagnosability of fault patterns with LPN that gets rid of the
matching operator.

Definition 9 A given LSPN is said to be strongly diagnosable with respect to the fault pattern ΣF if the following holds:
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(∃n > 0),(∀σ1 ∈ ΣF such that Ms
I [σ1〉Ms),(∀σ2 ∈ (T s)∗ such that Ms[σ2〉)

if |σ2|> n then L−1(L(σ1σ2))⊆ ΣF ,

where L−1 is defined for any sequence σ enabled at Ms by L−1(L(σ)) = {σ ′ ∈ (T s)∗ such that Ms[σ ′〉 and L(σ ′) =
L(σ)}.

In order to evaluate the diagnosability of a given LSPN with respect to a given fault pattern in a logical setting, the
proposed approach aims to do a parallel-like composition of the automaton A (obtained from the reachability graph of
the FPSN) by its logical diagnoser, in order to compute a fault pattern logical verifier, denoted by FPLV = A||DIAG.

Definition 10 The fault pattern logical verifier of an LSPN with respect to a given fault pattern ΣF is defined as a
deterministic finite automaton FPLV = (S,T,∆ ,s0) with

– S⊆ XA×Y ;
– ∆(s, t) = s′ for all s= (M,y)∈ S, s′= (M′,y′)∈ S, if there exists t ∈ T with ∆A(M, t) =M′, ∆Y (y,q) = y′ and L(t) = q;
– s0 = (M0,y0).

The complexity in space of the FPLV is O(NA× 2NA). Observe that it is difficult to evaluate the gain in complexity
resulting from the replacement of the full size observer by the reduced size diagnoser because of the incompletness of
the modified observer (OBS,YF ,γF) that is used for reduction purposes. In the worst case, no reduction is possible and
the complexity of the diagnoser is similar to the one of the observer, i.e., O(2NA) in the worst case; however, in most of
the cases, we expect that the diagnoser will be much smaller than the observer.

The output function ΓF can be trivially defined for the FPLV from γF : for s = (•,y), ΓF(s) = γF(y). Consequently, an
F-certain state s ∈ S, s = (M,y) of the FPLV is equally characterized by γF(y) = {1} or ΓF(s) = {1}. To discuss strong
diagnosability with respect to the FPLV, we introduce the notions of F-states and F-certain states.

Definition 11 A marking M of the FPSN that satisfies M(F) = 1 is said to be an F-marking. In such a case, the fault
pattern has occurred. In addition, a state of XA that corresponds to an F-marking and a logical verifier state s = (M,y)
with y ∈ Y such that M is an F-marking are also called F-states. Finally, s = (M,y) is named an F-certain state if
γF(y) = {1} or equivalently ΓF(s) = {1}. In such a case, from the observation of the diagnoser states captured thus far,
one knows that the fault pattern has certainly occurred.

We also extend the notions of F-states and F-certain states to the cycles of the verifier : a cycle is called an F-cycle
if the states in the cycle are F-states. In addition, an F-cycle is F-certain if at least one of its states is F-certain. As stated
in Lemma 2, the FPLV has a property of monotonicity with respect to F-states and F-certain states.

Lemma 2: Let FPLV = (S,T,∆ ,s0) be the fault pattern logical verifier of an LSPN with respect to the pattern ΣF .
Let s ∈ S and t ∈ T . If s is an F-state and ∆(s, t) = s′ then s′ is also an F-state. In addition, if s is F-certain, then s′ is also
F-certain.

Proof : If s is an F-state , then s=(M,y) with M(F)= 1. Observe that the place F is such that wPR(F, t)=wPO(F, t)=
1, for all t ∈ Tsync and wPR(F, t) = wPO(F, t) = 0 otherwise. Consequently, the token is trapped in place F . In addition, as
far as M(F) = 1, M(N1) = ...= M(Nm) = 0 and no other token can enter F (because {N1, ...,Nm,F} is P-invariant in the
FPSN and M(N1)+ ...+M(Nm)+M(F) = 1). Finaly, if s′ = (M′,y′) with ∆(s, t) = s′, then M′(F) = 1 and s′ is also an
F-state.

If, in addition, s is F-certain, ΓF(s) = {1}. With the same reasonning, if s′ = (M′,y′) with ∆(s, t) = s′, then ΓF(s′) =
{1} and s′ is F-certain. �

Proposition 2: A given LSPN is strongly diagnosable with respect to the pattern ΣF if and only if all F-cycles of its
FPLV are F-certain.

Proof : On the one hand, assume that all F-cycles of the FPLV are F-certain. Observe first, that, according to Lemma
2, all states of the cycles are necessarily F-certain. In addition, all states s′ with reached via a sequence of transitions from
a state s in an F-certain cycle are also F-certain and the system is strongly diagnosable. On the other hand, assume that
an F-cycle exists in the FPLV that is not F-certain. Then, the cycle has no F-certain state and the system may experience
an infinite repetition of this cycle. Such a system is not strongly diagnosable. �
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14 Dimitri Lefebvre, Christoforos N. Hadjicostis

To conclude, checking strong diagnosability of an LPN is the same as checking strong diagnosability of the underly-
ing logical PN. However, it is worth noting that the proposed approach, developed in the next sections for weaker notions
of diagnosability, also includes the information required for the verification of strong diagnosability. Observe that an
alternative solution would be to evaluate the diagnosability directly on the diagnoser (by analysing its cycles). However,
one objective of this paper is to propose a systematic and unified approach for different notions of diagnosability (not
only strong diagnosability but also weaker notions that require timing and probabilistic aspects). To include such timing
and probabilistic aspects in the analysis, it becomes necessary to keep track of the runs in the system, and for this reason
an approach based on the parallel composition of the FPSN and its diagnoser is preferred.

Example 5: Consider again the LSPN system in Fig. 1 and the fault pattern ΣFb represented by (FPNb,SFb).
The diagnoser obtained in Fig. 6 has only one F-certain state (see Table 2). The FPLV that results from the parallel
like product of A with the diagnoser DIAG (detailed in Fig. 6), has 45 states, each one composed of a marking and
a diagnoser state. The FPLV is composed by one absorbing strongly connected component C1 of dimension 15 and a
transient component of dimension 30. The transient has 6 cycles Ci, i = 1, ...,6, that are detailed in Table 3. All cycles in
the transient contain only uncertain states. Consequently, the system in Fig. 1 is not strongly diagnosable.

Table 3 Cycles of the FPLV for the LSPN in Fig. 1 with respect to the pattern ΣFb.

Cycle Detail F-certain

C1 {(M0,y0),(M2,y0),(M6,y0),(M7,y0),(M12,y0),(M17,y0)} uncertain

C2 {(M1,y0),(M5,y0),(M11,y0)} uncertain

C3 {(M4,y0),(M10,y0),(M16,y0)} uncertain

C4 {(M9,y1),(M15,y1),(M20,y1),(M21,y1),(M25,y1),(M28,y1)} uncertain

C5 {(M14,y1),(M19,y1),(M24,y1)} uncertain

C6 {(M18,y1),(M23,y1),(M27,y1)} uncertain

C7 {(M3,y2),(M8,y2),(M13,y2),(M14,y2),(M18,y2),(M19,y2), ...

...(M22,y2),(M23,y2),(M24,y2),(M26,y2),(M27,y2),(M29,y2), ... F-certain

...(M30,y2),(M31,y2),(M32,y2),}

4.4 Conditional diagnosability

In order to compute the conditional diagnosability (conditioned on the fact that the fault pattern has occurred) as a
probability, we model in this section the timing and probabilistic aspects with a continuous time Markov model.

Definition 12 The fault pattern probabilistic verifier of an LSPN with respect to the pattern ΣF is defined as FPPV =
(S,G,Π0) where

– S⊆ XA×Y ;
– G is an |S|× |S| matrix such that

– for all s = (M,y) ∈ S, s′ = (M′,y′) ∈ S, s 6= s′, G(s,s′) = ∑t∈T s(M,M′) µ(t),
– for all s = (M,y) ∈ S, G(s,s) = ∑s′ 6=s−G(s,s′);

– Π0 is an initial distribution of the states such that π0,s0 = 1 for s0 = (M0,y0) and π0,s = 0 otherwise.

Given a state s ∈ S and a time τ ∈ R+, πs(τ,Π0) is the probability of state s at τ assuming that the initial distri-
bution of states is Π0. In addition, the state probability vector Π(τ,Π0) of S at τ is given as an 1× |S| vector. When
there is no ambiguity about the initial probabilities Π0, we will write in the next Π(τ) and πs(τ) for notational simplicity.

Lemma 3: Let FPPV = (S,G,Π0) be the fault pattern probabilistic verifier of a given LSPN with respect to the
pattern ΣF . Let s,s′ ∈ S such that G(s,s′) > 0. If s is an F-state, then s′ is also an F-state. In addition, if s is F-certain
then s′ is also F-certain.

Proof : Observe that the FPPV and the FPLV have exactly the same set of states S and the same structure (the
difference between the FPPV and the FPLV relies on the fact that the FPPV incorporates the timing and probabilistic
information whereas the FPLV does not). Consequently, G(s,s′) > 0 in the FPPV if and only if there exists t ∈ T and
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,

Proposition 3: The fault pattern probabilistic verifier FPPV = (S,G,Π0) obtained for an LSPN and the fault pattern
ΣF represented by (FPN,SF) is a continuous-time Markov model.

Proof : The FPPV is a CTMM by construction: (i) the initial probability vector Π0 satisfies π0,s0 = 1 for s0 = (M0,y0)
and π0,s = 0 otherwise. Obviously, ∑s π0,s = 1; (ii) matrix G is a generator matrix because G(s,s′) ≥ 0 for all s,s′ ∈ S,
s′ 6= s, and G(s,s) = ∑s′ 6=s−G(s,s′). �

The complexity in space of the FPPV is the same as the one of the FPLV, i.e., O(NA×2NA).

The graph of FPPV is composed by a set C of one or more absorbing strongly connected components2 (ASCCs)
Ck, k = 1,2, . . . , |C |. The rest of the graph corresponds to the transient TR. Without any loss of generality, G can be
re-arranged (by rearranging the indices of states) as in (3) below

G =


GTR, TR GTR, C1 · · · GTR, C|C |

0 GC1, C1 · · · 0
...

...
. . .

...
0 0 · · · GC|C |, C|C |

 , (3)

where the sub-matrices of G have appropriate dimensions. To simplify notation, we refer to the probabilities of the states
of any subset X at time τ as ΠX (τ). In addition, for any subset of rows X and any subset of columns Y , we refer to the
sub-matrix extracted from G with rows X and columns Y as to GX ,Y . The steady state probabilities satisfy [27]:

ΠTR(∞) = (0)|TR|,
ΠCk(∞)×GCk ,Ck = (0)|Ck |,k = 1,2, . . . , |C |
ΠCk(∞)× (1)|Ck | = Π0,TR × (−GTR,TR)

−1×
GTR,Ck × (1)|Ck |,k = 1,2, . . . , |C |,

(4)

where (0)|X | (resp. (1)|X | ) is the column vector of size |X | with all entries equal to 0 (resp. 1). The state probability
vector Π(τ) is obtained by solving the Chapman-Kolmogorov equation related to the FPPV [32]:

dΠ(τ)

dτ
= Π(τ)×G,

Π(0) = Π0.

Let us define F∞-states and F∞-certain states as F-states and F-certain states that are recurrent, i.e., belong to an
absorbing strongly component:

Definition 13 A logical verifier state s ∈ S is called an F∞-state if s is an F-state and s ∈ (∪C∈C C). Similarly, s is called
an F∞-certain state if s is an Fcertain-state and s ∈ (∪C∈C C).

The following two subsets BF and CF in S are also introduced:

BF = {s ∈ (∪C∈C C) with s = (M,•),M ∈ R such that M(F) = 1},
CF = {s ∈ (∪C∈C C) such that ΓF(s) = {1}}.

(5)

In simple words, BF is the subset of F∞-states of the FPLV and CF is the subset of F∞-certain states. Note that CF ⊆ BF .
The sets BF and CF satisfy the following lemma.

Lemma 4: Let us consider FPPV = (S,G,Π0) of a given LSPN with respect to a pattern ΣF . Each ASCC Ck,
k = 1, ..., |C |, satisfies the following two properties:

1. Ck ∩BF = /0 or Ck ∩BF =Ck,
2. Ck ∩CF = /0 or Ck ∩CF =Ck.

2 C is an absorbing strongly connected component of a directed graph M if (1) for any nodes S,S′ ∈C, there exists a path from S to S′; (2)
for any C′ ⊆ G with C ⊆C′, C′ does not satisfy condition (1); (3) for any nodes S ∈C, S′ ∈ G, then S′ ∈C if a path exists from S to S′.
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-
certain states is conserved when (i) considering only recurrent states; (ii) performing the parallel composition by the
diagnoser. Given any absorbing strongly connected component Ck and any states s,s′ ∈ Ck, there exists a sequence of
transitions from s to s′. Consequenlty, s′ is an F∞-state (resp. an F∞-certain state) if and only if s is an F∞-state (resp. an
F∞-certain state). �

In simple words, Lemma 4 states that each ASCC of an FPPV is composed by states that (i) all result from sequences
of transitions that all include the fault pattern (such ASCCs will be referred to as an F∞-ASCCs), or all result from se-
quences of transitions that do not all include the fault pattern; (ii) are all F∞-certain states (such ASCCs will be referred
to as F∞-certain ASCCs) or are all normal or uncertain states.

The steady-state conditional diagnosability Diag(F,∞|F) (i.e., conditional diagnosability in the long run) can be
computed in a probabilistic setting as

Diag(F,∞|F) =

∑
s∈CF

πs(∞)

∑
s∈BF

πs(∞)
. (6)

4.5 Weaker notions of diagnosability for LSPN

Two weaker notions of diagnosability, namely tA-diagnosability and tAA-diagnosability have been introduced for timed
automata in [39]. In this section, we give necessary and / or sufficient conditions for tA-diagnosability and tAA-diagnosability
derived from the LSPN, the observer and the diagnoser.

To formally define these notions, let us consider a timed firing sequence στ of h consecutive firings, the associated
logical firing sequence σ = H(στ), a time τ ∈ R+ such that τ ≥ τh and a marking M such that M[σ〉. Let σoτ =
Lτ(στ) be the sequence of timed observations. We define the set of timed trajectories consistent with σoτ within [0,τ) as
L−1

τ = {(στ ,M,τ) ∈ ((T s×R+)∗×Nn×R+) such that Lτ(στ) = σoτ and τ(στ)≤ τ}. The concatenation of two timed
trajectories that have the same time origin (στ ,M,τ) with M[H(στ)〉M′, στ = (t(1),τ1) ...(t(h),τh) and (σ ′τ ,M

′,τ ′) with
σ ′τ = (t ′(1),τ ′1) ...(t ′(h′),τ ′h′), τ ′ ≥ τ ′h′ ≥ τ ′1 ≥ τ ≥ τh ≥ τ1 is also a time trajectory (σ ′′τ ,M,τ ′) with σ ′′τ = (t(1),τ1)
...(t(h),τh)(t ′(1),τ ′1) ...(t ′(h′),τ ′h′) within [0,τ ′).

Definition 14 A given LSPN is said to be tA-diagnosable with respect to the fault pattern ΣF if the following holds:

(∀α > 0),(∃τ > 0),(∀(σ1τ ,Ms
I ,τ1) with σ1τ ∈ (T s×R+)∗,Ms

I [H(σ1τ)〉Ms,
(H(σ1τ) ∈ ΣF)),(∀(σ2τ ,Ms,τ2) with σ2τ ∈ (T s×R+)∗,Ms[H(σ2τ)〉,τ2 ≥ τ),
Prob(D((στ ,Ms

I ,τ2)) = 0)< α,

where (στ ,Ms
I ,τ2) is the concatenation of (σ1τ ,Ms

I ,τ1) and (σ2τ ,Ms,τ2), and D((στ , Ms
I ,τ2)) = 1 if H(L−1

τ (Lτ(στ)))⊆
ΣF , otherwise D((στ ,Ms

I ,τ2)) = 0.

Definition 15 A given LSPN is said to be tAA-diagnosable with respect to the fault pattern ΣF if the following holds:

(∀α > 0),(∀β < 1),(∃τ > 0),(∀(σ1τ ,Ms
I ,τ1) with σ1τ ∈ (T s×R+)∗,Ms

I [H(σ1τ)〉Ms,
(H(σ1τ) ∈ ΣF)),(∀(σ2τ ,Ms,τ2) with σ2τ ∈ (T s×R+)∗,Ms[H(σ2τ)〉,τ2 ≥ τ),
Prob(Dβ ((στ ,Ms

I ,τ2)) = 0)< α,

where (στ ,Ms
I ,τ2) is the concatenation of (σ1τ ,Ms

I ,τ1) and (σ2τ ,Ms,τ2), and Dβ ((στ , Ms
I ,τ2)) = 1 if Prob(H(L−1

τ (Lτ

(στ)))⊆ ΣF)> β , otherwise Dβ ((στ ,Ms
I ,τ2)) = 0.

Proposition 4 gives a necessary and sufficient condition for tA-diagnosability of the LSPN with respect to a given
fault pattern ΣF . To discuss tA-diagnosability one is interested in the absorbing strongly connected components of the
FPPV. One advantage of the FPPV is that it describes in an explicit way both the F∞-ASCCs and F∞-certain ASCCs.

Proposition 4: A given LSPN is tA-diagnosable with respect to a given fault pattern ΣF if and only if all F∞-ASCCs
in the FPPV are F∞-certain.

Proof: To prove Proposition 4, observe that once the timing aspects are considered, the system cannot stay forever
in a cycle that belongs to the transient part of the FPPV and must necessarily reach an ASCC in the long run (with
increasing probability as we wait longer). In particular, if the system meets the fault pattern, then in its future behavior, it
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Diagnosability of fault patterns with labeled stochastic Petri nets 17

∞ τ I ,
with τ(στ) larger than a given time τ , the probability not to be in an F-certain state (and also in an F∞-certain state) is
less than an arbitrarily small value α . As far as all F∞-ASCCs are F∞-certain, the system will reach an F∞-certain ASCC
in the long run (sufficiency is proved). On the contrary, if there exists an F∞-ASCC C that is not F∞-certain, then the
probability that the system reaches and stays in C is given by α(C) = Π0,TR × (−GTR,TR)

−1×GTR,C × (1)|C| > 0 (see
Eq. (4)). The condition of tA-diagnosability is no longer satisfied for α < α(C).�

Note that an LSPN that is strongly diagnosable is also tA-diagnosable. In addition, Proposition 5 below is a corollary
of Proposition 4.

Proposition 5: A given LSPN is tA-diagnosable with respect to a given fault pattern ΣF if and only if condition (7)
is satisfied.

ΠCF (∞)× (1)|CF |
ΠBF (∞)× (1)|BF |

= 1. (7)

Proof: To prove Proposition 5, one can use Proposition 4 and observe that all F∞-ASCCs of the FPPV are F∞-certain
if and only if Diag(F,∞|F) = 1. Then, replacing Diag(F,∞|F) by its analytical characterization (6) leads immediately to
Eq. (7). �

Example 6: Consider again the LSPN system in Fig. 1 and the fault pattern ΣFb represented by (FPNb,SFb).
The structure and states of the FPPV are similar to the ones of the FPLV previously described: this continuous time
Markov model has 45 states. It is composed by one absorbing strongly connected component C1 of dimension 15 that is
F∞-certain (see Table 3) and a transient component of dimension 30. This system is tA-diagnosable with respect to the
pattern ΣFb.

Now, consider, as another example, the LSPN system that results from the same system as the one in Fig. 1 with
a labeling function defined as L(t2) = L(t5) = a, L(t3) = L(t6) = b, L(t1) = L(t4) = ε . The diagnoser of this LSPN has
a single state that is uncertain and the FPPV of this system is a continuous time Markov model with 33 states. It is
composed by one absorbing strongly connected component C1 of dimension 15 and a transient component of dimension
18, both of them containing only uncertain states. Consequently, this system is not tA-diagnosable with respect to the
pattern σFb.

Proposition 6 below gives a sufficient condition for tAA-diagnosability of an LSPN with respect to a given pattern
ΣF . For this purpose, we need to define an extended fault pattern probabilistic verifier obtained from the logical observer
(the complexity in space of the Ext-FPPV is also O(NA× 2NA)). The motivation to pursue the analysis with the Ext-
FPPV instead of the FPPV (that is based on the reduced size diagnoser) is that the Ext-FPPV tracks the set of markings
that are consistent with the observations thus far. As we will see, in some particular cases, the refinement resulting from
the use of the full size observer allows to separate pairs of ASCCs that cannot be separated using a reduced size diagnoser.

Definition 16 The extended fault pattern probabilistic verifier of an LSPN with respect to a given fault pattern ΣF is
defined as Ext−FPPV = (S′,G′,Π ′0) where

– S′ ⊆ XA×X;
– G′ is an |S′|× |S′| matrix such that

– for all s = (M,x) ∈ S′, s′ = (M′,x′) ∈ S′, s 6= s′, G′(s,s′) = ∑t∈T s(M,M′) µ(t),
– for all s = (M,x) ∈ S′, G(s,s) = ∑s′ 6=s−G(s,s′);

– Π ′0 is an initial distribution of the states such that π ′0,s = 1 for s0 = (M0,x0) and π ′0,s = 0 otherwise.

The extended fault pattern probabilistic verifier results from the parallel composition A||OBS and is a continuous-
time Markov model. Notation π ′s(τ,Π

′
0) (or π ′s(τ) for simplicity) refers to the probability of state s at τ assuming that the

initial distribution of states is Π ′0 and Π ′(τ,Π ′0) (or Π ′s(τ) for simplicity) is the probability vector of dimension 1×|S′|
of the Ext-FPPV.

Next, we focus on some average frequencies and probabilities in the Ext-FPPV after the system has reached a given
F∞-ASCC Ck that is uncertain (if such an ASCC does not exist, the system is tA-diagnosable and Proposition 4 or 5 can be
used). The objective is similar to the one followed in [40] for logical stochastic systems: to track the occurrence of faults
according to the probabilistic equivalence of the ASCCs. Equivalence of logical stochastic automata is a well-studied
problem that can be decided in polynomial time [41], [24]. There are some important differences compared to [40]. First,
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no need for such an additional model, because the complete behaviors and observations are already incorporated in the
construction of the Ext-FPPV (according to the parallel composition with the logical observer). Second, the necessary
and sufficient condition in [40] was proposed for logical stochastic systems and is too restrictive for timed stochastic
systems. The properties of empirical conditional probabilities that are at the core of the method proposed in [40] fail to
incorporate the additional information provided by the time elapsed between symbols. Thus, for timed behaviors, proper-
ties of average conditional frequencies (which take into account the average time between different observable symbols)
should be considered. Third, the results in [40] concern automata whereas our contributions are formulated in the Petri
net framework. The sufficient condition proposed in this paper is obviously weaker and more general than the sufficient
condition proposed for tAA-diagnosability in [39].

The problem that is considered here is to separate, thanks to timing and probabilistic aspects, the observed behaviours
in two ASCCs C and C′ of the Ext-FPPV that have the same logical observable language (C being an F∞-ASCC and C′

being a non F∞-ASCC). In particular, one can consider the repeated observations of the labels in the ASCCs C or C′. For
a given state of the logical observer x ∈ X , the subset S′(x) ⊆ S′ is defined as the subset of FPPV states that correspond
to x: S′(x) = {s ∈ S′ such that s = (•,x)} and C(x) = S′(x)∩C. In addition, the following matrices are defined.

– G′(ε,C(x)) is the matrix of dimension |C(x)|× |C(x)| whose entries are defined for any states s,s′ ∈C(x) as G′s,s′(ε ,
C(x)) = G′s,s′ if there exists a silent jump from s to s′ or if s = s′, and G′s,s′(ε,C(x)) = 0, otherwise. In simple words,
G′(ε,C(x)) is obtained from matrix G′C(x),C(x) by removing all observable jumps.

– Given a label q∈Q , G′(q,C(x)) is the matrix of dimension |C(x)|×|C(∆X (x, q))| (with ∆X (x,q) being the successor
of state x in OBS by a q-jump, i.e., a jump in OBS that delivers a label q) whose entries are defined for any pair of
states (s,s′) ∈ C(x)×C(∆X (x,q)) as G′s,s′(q,C(x)) = G′s,s′ if there is a q-jump from s to s′, and G′s,s′(q,C(x)) = 0,
otherwise. In simple words, G′(q,C(x)) is the matrix of the q-transitions from C(x) to C(∆X (x,q)).

Then, we prove the following lemma that computes some elementary probabilities and frequencies, in particular: (i)
the probability of the label q′ conditioned on the previous observation q captured at the observer state x; (ii) the frequency
of the label q conditioned on the observer state x.

Lemma 6: Assume that the system has reached a given ASCC C and consider two labels q′,q ∈ Q and a given
observer state x ∈ X . The conditional probability Prob(q′|x, q,C) that a q′-jump occurs after having observed a q-jump
at x is given by

Prob(q′|x,q,C) =
ΠC(x)(∞)× (−G′−1(ε,C(x)))×G′(q,C(x))× (−G′−1(ε,C(x′)))×G′(q′,C(x′))× (1)|C(x′′)|

ΠC(x)(∞)× (−G′−1(ε,C(x)))×G′(q,C(x))× (1)|C(x′)|
, (8)

where ΠC(x)(∞) is the average state distribution in C(x), x′ = ∆X (x,q) and x′′ = ∆X (x′,q′). Similarly, the conditional
frequency Freq(q|x,C) of the label q at x is given by

Freq(q|x,C) =
ΠC(x)(∞)×G′(q,C(x))× (1)|C(x′)|

ΠC(∞)× (1)|C|
. (9)

Proof: To prove Eq. (8), let us first compute the conditional probability Prob(q|x,ε,C) to observe the label q when
one knows that the ASCC C has been reached and the observer state is x , i.e. the average probability to exit C(x) by
a q-jump. Such a probability depends on (i) the average state distribution within C(x), (ii) the silent behaviours within
C(x) and (iii) the observable jumps that leave C(x) and reach C(∆X (x,q)) while generating a label q. In the long run, the
average normalized3 distribution Π ′N(x,C) in C(x) given by

Π
′
N(x,C) =

ΠC(x)(∞)

ΠC(x)(∞)× (1)|C(x)|
.

In addition, the silent evolutions within C(x) are characterized by the matrix G′(ε,C(x)) and the observable jumps that
leave C(x) by the q-transition rate matrix G′(q, C(x)). More details about the meaning of these terms can be found in
[27]. Finally, Prob(q|x,ε,C) is computed as

Prob(q|x,ε,C) = Π
′
N(x,C)× (−G′−1(ε,C(x)))×G′(q,C(x))× (1)|C(x′)|. (10)

3 A probability vector is normalized if the sum of its entries equals 1.
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= X , .
tion Π ′N(x

′,C,q) immediately after entering in C(x′) from C(x) with a q-jump:

Π
′
N(x
′,C,q) =

ΠC(x)(∞)× (−G′−1(ε,C(x)))×G′(q,C(x))
ΠC(x)(∞)× (−G′−1(ε,C(x)))×G′(q,C(x))× (1)|C(x′)|

.

Again, the silent evolutions within C(x′) are characterized by the matrix G′(ε,C(x′)) and the observable jumps that leave
C(x′) are characterized by the q′-transition rate matrix G′(q′, C(x′)). Finally, we have

Prob(q′|x,q,C) = Π
′
N(x
′,C,q)× (−G′−1(ε,C(x′)))×G′(q′,C(x′))× (1)|C(x′′)|,

that leads obviously to Eq. (8).

The reasonning to compute the conditional frequency Freq(q|x,C) is quite similar. Observe that Eq. (9) can be rewrit-
ten as Freq(q|x,C) = Π ′N(x,C)×G′(q,C(x))× (1)|C(x′)|, whereas Π ′N(x,C)×G′(q,C(x)) corresponds to the average rate
to leave each state within C(x) by a q-jump. Consequently, Eq. (9) holds. �

For each ASCC C ∈ C , the finite sets of elementary probabilities and frequencies of labels are defined:

– PC = {Prob(q′|x,q,C)|x ∈ X ,q,q′ ∈ Q},
– FC = {Freq(q|x,C)|x ∈ X ,q ∈ Q}.

These sets are used to compare the timing and probabilistic aspects of two ASCCs (including the more difficult case
of identically structured ASCCs with same states, same transitions, and same symbols on the transitions, except for the
fact that the time parameters in the second ASCC are different from the rates of the first one) as detailed in Proposition
6.

Proposition 6: A given LSPN, assumed not to be tA-diagnosable, is tAA-diagnosable with respect to the fault pat-
tern ΣF represented by (FPN,SF) if for any ASCCs C and C′, C being an F∞-ASCC, and C′ not being an F∞-ASCC,
we have (PC, FC) 6= (PC′ , FC′), i.e., there exist two labels q,q′ ∈ Q and a given x ∈ X such that Prob(q′|x,q,C) 6=
Prob(q′|x,q,C′) or Freq(q|x,C) 6= Freq(q|x,C′)).

Proof: To prove Proposition 6, first observe that if the system is not tA-diagnosable, there necessarily exists two
F∞-ASCC C and C′, where the first ASCC is F∞-certain and the second ASCC is not F∞-certain. For simplicity, we will
assume that C = {C,C′}. This means that there exists a recurrent F-state that is uncertain: s = (M,x) in C with M(F) = 1
and obviously M ∈ γP(x). There exists also a marking M′ 6=M such that M′ ∈ γP(x) and M′(F) = 0 because s is uncertain.
Consequently, there exists a recurrent state of the form s′ = (M′,x) that is not an F∞-state and belongs to another ASCC
C′ that is not an F∞-ASCC. Basically the proof relies on the decomposition of conditioned frequencies and probabilities
according to Eqs. (8) and (9).

To prove sufficiency, suppose that (PC, FC) 6= (PC′ , FC′). Then, there exist two labels q,q′ ∈ Q and a given
x ∈ X such that we have either Prob(q′|x,q,C) 6= Prob(q′|x,q,C′) or Freq(q|x,C) 6= Freq(q|x,C′)). The timed obser-
vation of the repeated occurrences of q, q′ and qq′ in C(x) during a time T as large as necessary, is enough to measure
F̂req(q|x) and P̂rob(q′|x,q) (without any assumption about the ASCC that the system has reached) with a given arbitrary
precision. Then, by comparing F̂req(q|x) with Freq(q|x,C) and Freq(q|x,C′) and by comparing also P̂rob(q′|x,q) with
Prob(q′|x,q,C) and Prob(q′|x,q,C′), one can decide if the system stays in C or C′ with a given probability β (see Defi-
nition 15). Consequently, the system is tAA-diagnosable. �

Example 7: Consider the example of the LSPN detailed on the top of Fig. 7. Q = {a,b} is the set of labels and
the labeling function is defined such that L(t2) = L(t5) = a, L(t3) = L(t6) = b, L(t1) = L(t4) = ε . The firing rates of the
transitions are defined such that µ(t1) = µ(t2) = µ(t4) = 1 and µ(t3) = 2. Several values will be considered for µ(t5)
and µ(t6) (see Table 5). In Fig. 7, labels and rates are reported near the transitions. The FPSN has 15 markings detailed
in Table 4.

The diagnoser of this system is composed by a single state y0 that is uncertain. Consequently, the system is obviously
neither strongly diagnosable nor tA-diagnosable. In particular, one can observe that the FPPV obtained as the parallel like
composition FPPV =A||DIAG has three ASCC: C1 = {(M5,y0),(M9,y0),(M10,y0), (M13,y0)}, C2 = {(M3,y0),(M8,y0),
(M12,y0)}, C3 = {(M6,y0),(M11,y0),(M14,y0)}. C1 and C3 are not F∞-ASCC (when the system is trapped in one of these
components, it will never experience the fault pattern) whereas C2 is an F∞-ASCC. The reason why C1 and C3 are not
F∞-ASCC while C2 is an F∞-ASCC can be found by looking at the markings in the three ASCCs, and more precisely on
M(F), i.e., the last element of the marking vector (see Table 4 for more details).

The logical observer of this system is composed by 6 states that are all uncertain: x0 = {M0,M1,M2,M3,M5,M6},
x1 = {M4,M7,M8,M9,M10,M11}, x2 = {M12,M13, M14}, x3 = {M1,M2,M3,M5,M6}, x4 = {M8,M9,M10,M11}, x5 =
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{M3,M5,M6} (see Table 4). The Ext-FPPV is obtained as the parallel like composition A||OBS and has a transient of 17
states and 3 ASCC: C1 = {(M5,x5),(M9,x4),(M10,x4),(M13,x2)}, C2 = {(M3,x5),(M8,x4),(M12,x2)}, C3 = {(M6,x5),(M11,x4),
(M14,x2)}. Again, C1 and C3 are non F∞-ASCC whereas C2 is an F∞-ASCC. The average behaviour in the long run is
characterized by the sets of elementary probabilities and frequencies in the Ext-FPPV. In this example, the elementary
frequencies are enough to get a decision, and such frequencies are detailed in Table 5. For each value of the pair (µ5,µ6)
and for each ASCC Ci, i = 1,2,3, the frequencies Freq(q|xk,C) are detailed by a matrix where each row corresponds to
an observer state xk, k = 0, ...,5, and the two columns correspond to the two labels a and b. For example, in a first matrix
computed for C1 and µ5 = µ6 = 1, the occurrence frequency of label b is 0.67 when the observer state is x2. In the second
part of Table 5, the same was computed by using the diagnoser (DIAG,YF ,γF) instead of the observer (OBS,YP,γP).

– In the case µ5 = µ6 = 1, the frequencies of a and b in the F∞-ASCC C2 are different from the frequencies of the
same labels in ASCC C1 and C3 and the system is tAA-diagnosable. Observe that if (DIAG,YF ,γF) is used instead of
(OBS,YP,γP), the same conclusion is obtained.

– In the case µ5 = 2 and µ6 = 1, the conclusion is the same if (OBS,YP,γP) is used. In particular, if we consider
the F∞-ASCC C2 and the non-F∞-ASCC C3, we observe that the elementary frequencies are different in C2 and C3,
e.g., Freq(a|x4,C2) 6= Freq(a|x4,C3). However, with the use of (DIAG,YF ,γF) instead of (OBS,YP,γP), one is no
longer able to separate the behaviours in the ASCCs C2 and C3 by using the occurrence frequencies of a and b:
Freq(a|y0,C2) = Freq(a|y0,C3) and Freq(b|y0,C2) = Freq(b|y0,C3).

– Finally, in the case µ5 = 1 and µ6 = 2, we cannot conclude that the system is tAA-diagnosable because all elementary
frequencies in C2 are identical to the elementary frequencies in C3.

The same conclusions hold if the elementary probabilities are considered (such probabilities have not been reported in
the example for brevity). This example illustrates a case where the full size observer is more precise than the reduced
size diagnoser (in the sense that its use allows us to conclude that the system is not tAA- diagnosable whereas the use of
the reduced size observer does not). To conclude, one can use a two-step approach using first the reduced size diagnoser
and , if necessary, resorting to the full size observer . If there is a violation when using the reduced size diagnoser, the
system is not tAA-diagnosable; similarly, if there is a violation when using the full size observer, again the system is
not tAA-diagnosable. Some open questions remain that also relate to obtaining a necessary and sufficient condition for
tAA-diagnosability. One question is to obtain a structure that allows us to discriminate between different ASCCs based
only on elementary probabilities. Another question is to build a structure that is possibly more refined than the full size
observer and allows us to discriminate between different ASCCs (based on elementary frequencies and probabilities)
even when the full size observer cannot.

Table 4 Marking of the LSPN in Fig. 7 (bottom) with respect to the pattern ΣFb.

M Detail M(F) ASCC M Detail M(F) ASCC

M0 (2 0 0 0 0 1 0 0)T 0 M8 (0 1 1 0 0 0 0 1)T 1 C2

M1 (1 1 0 0 0 0 1 0)T 0 M9 (0 0 1 1 0 0 1 0)T 0 C1

M2 (1 0 0 1 0 1 0 0)T 0 M10 (0 1 0 0 1 0 1 0)T 0 C1

M3 (0 2 0 0 0 0 0 1)T 1 C2 M11 (0 0 0 1 1 1 0 0)T 0 C3

M4 (1 0 1 0 0 0 1 0)T 0 M12 (0 0 2 0 0 0 0 1)T 1 C2

M5 (0 1 0 1 0 0 1 0)T 0 C1 M13 (0 0 1 0 1 0 1 0)T 0 C1

M6 (0 0 0 2 0 1 0 0)T 0 C3 M14 (0 0 0 0 2 1 0 0)T 0 C3

M7 (1 0 0 0 1 1 0 0)T 0

5 Conclusions and future work

To sum up the main contributions of the present work we would like to emphasize that we first propose a model-based
fault diagnosis approach on labeled stochastic PNs that is able to track in an explicit way the occurrence of a given fault
pattern for diagnosability analysis purposes. Then, based on the obtained model and on the design of a logical observer
and a reduced size diagnoser, we revisit the diagnosability analysis of fault patterns in the framework of labeled Petri nets.
The second proposition is to propose logical and probabilistic verifiers that are particularly interesting as they extend in
a natural way already existing results, previously established for simple fault events. Necessary and sufficient conditions
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Fig. 7 Example of an LSPN model that may be tAA-diagnosable but not tA-diagnosable with respect to the pattern ΣFb (top) and the resulting
FPSN (bottom).

Table 5 Atomic frequencies Freq(q|xk,Ci) of the Ext-FPPV (top) and FPPV (bottom) for the LSPN in Fig. 7 (top left) with respect to the
pattern ΣFb.

ASCC µ5 = 1, µ6 = 1 µ5 = 2, µ6 = 1 µ5 = 1, µ6 = 2

C1



0 0
0 0
0 0.67
0 0

1.33 1
0.5 0





0 0
0 0
0 0.67
0 0

1.33 1.33
0.67 0





0 0
0 0
0 0.89
0 0

1.78 0.89
0.44 0



C2



0 0
0 0
0 0.57
0 0

0.57 0.29
0.29 0





0 0
0 0
0 0.57
0 0

0.57 0.29
0.29 0





0 0
0 0
0 0.57
0 0

0.57 0.29
0.29 0



C3



0 0
0 0
0 0.33
0 0

0.33 0.33
0.33 0





0 0
0 0
0 0.29
0 0

0.29 0.57
0.57 0





0 0
0 0
0 0.57
0 0

0.57 0.29
0.29 0



C1

(
1.83 1.67

) (
2.00 2.00

) (
2.22 1.78

)
C2

(
0.86 0.86

) (
0.86 0.86

) (
0.86 0.86

)
C3

(
0.67 0.67

) (
0.86 0.86

) (
0.86 0.86

)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 Dimitri Lefebvre, Christoforos N. Hadjicostis

based on the timing notions of the original labeled stochastic PN.
Future research directions for our work will include the extension of diagnosis approaches to other classes of timed

Petri nets, including PNs synchronised with input events and timed Petri nets with constant firing times or firing inter-
vals. Addressing complexity issues related to pattern diagnosability, e.g., by using a diagnoser of reduced size or a pair
verifier (as proposed in [47] and [21]). Another perspective is to replace the sufficient condition detailed in Proposition
6 by a necessary and sufficient condition. For this purpose, we aim to extend the set of computed frequencies and proba-
bilities to a set of observation sequences that contain the minimal information required to separate, thanks to the timing
and probabilistic aspects, the behaviours in two different absorbing strongly connected components that have the same
observed logical language. We will also investigate other structures that may provide a necessary and sufficient condition
by tracking the relevant information. In addition, an approach for the prognosis of fault patterns will be considered with
a similar schema.
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