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Abstract:  

 

In the present work, UVA light-driven g-C3N4/TiO2 photocatalyst was synthesized for 

the photodegradation of Carbamazepine (CBZ) in aqueous medium. The 

morphological, the optical properties and the structure of the TiO2, g-C3N4 and the 
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prepared composites were analyzed using X-ray diffraction (XRD), Nitrogen 

adsorption-desorption isotherm based on BET, Raman Spectroscopy, Scanning 

Electron Microscopy (SEM) with EDX, UV-vis Diffuse Reflectance Spectroscopy (UV-

vis DRS). Optical absorption studies revealed a 2.97 and 2.78 eV of band gap for the 

developed composites for 10%g-C3N4/TiO2 (A10) and 30%g-C3N4/TiO2 (A30), 

respectively. The N2 adsorption-desorption isotherm showed an 80.64 and 59.67 

m2/g of specific surface area for A10 and A30, respectively. Photodegradation studies 

show that A10 a composite photo-catalyst can eliminate 71.41% of CBZ with 30.38 % 

of mineralization yield within 360 min of UVA irradiation at optimum conditions (10 

ppm of initial CBZ concentration and 0.1 g of 10%g-C3N4/TiO2 loading). The kinetic 

results showed that the removal of this pollutant nearly followed a First-order kinetic 

model with a regression coefficient (R2) values more than 0.98 and a Hight reaction 

rate constant recorded of 0.0034 min-1 for A10. 

Keywords: photocatalysis, g-C3N4/TiO2, UVA, Carbamazepine, mineralization. 

1. Introduction 

 

Hospitals consumed water about 750 liters per bed per day, which is 10 times higher 

than the daily consumption per citizen. This big consumption implies a significant 

amount of wastewater. In fact, more than 10% of drug residues found in the surface 

water in France come from hospitals [1,2]. The specificity of hospital effluents is their 

complex compositions. They contain 1000 times more detergents than drugs; they 

also contain pathogenic microorganisms, antibiotic-resistant bacteria, endocrine 

disruptors, metals, radioisotopes... [3]. Despite their complexity, hospital effluents are 

considered to be of the same pollutant load as urban wastewaters and are 



 

 

discharged into public sewer networks [4]. For all these reasons, the development of 

processes that will allow the pre-treatment of wastewater at health care institutions is 

necessary in order to reduce the risks of contamination of the public sanitation 

network, and therefore human and animal health. 

Nowadays, Advanced Oxidation Processes (AOP) such as photocatalysis are being 

studied more and more as a hydrogen production technique [5,6], fuel generation 

method [7] and alternative methods for the complete elimination of pollution in 

wastewater, and it’s considered one of the most promising green chemistry 

technologies [8,9]. This process is based on the formation of a strong oxidant; the 

hydroxyl radical OH° which are characterized by an oxidation potential of 

+2.80V/ENH [10]. Hence, its high reactivity and its low selectivity allow the 

mineralization of many organic and inorganic molecules, thus it can ultimately lead to 

their mineralization, with the formation of CO2, H2O and inorganic ions [10,11]. 

Titanium dioxide (TiO2) is the most widely studied, and used for environmental 

remediation, hydrogen energy production, and solar cells due to its environmental-

friendly properties, good chemical stability, high abundance, low cost, and good 

photocatalytic activity [8,12] Recently, graphite-like carbon nitride has attracted great 

interest due to its wide potential for photocatalytic application under visible light, 

owing to its band gap of 2.70 eV, good physicochemical stability, abundance, low 

cost and can be easily prepared [12,13]. However, many researchers confirm that the 

photocatalytic performances of TiO2 and g-C3N4 taken separately are still unsatisfying 

for heterogeneous photocatalysis, Owning to the low solar energy conversion 

efficiency and the high recombination of photogenerated electron hole pairs [14,15]. 

In order to overcome the drawbacks of this catalysts many strategies are studied 

such as doping [14,16], coupling with other semiconductor materials [17,18], the 



 

 

coupling of the UV and visible light, the addition of strong oxidants such as H2O2, 

SO4
•-, Fe2+, and O3 in the reaction medium are used for improving the photocatalytic 

activity [19,20]. However, coupling two semiconductors to form a heterojuntion 

structure, in other words composite is proven to be a very effective method to 

improve the photocatalytic efficiency, there are already many researchers focusing 

on the composite structure of TiO2 and g-C3N4, and the resultant catalysts prove 

higher photocatalytic activity [12,21].  

The improvement of g-C3N4/TiO2 catalyst performance is attributed to the 

formation of a good heterojunction between the materials leading to a synergetic 

effect. This includes the increasing of surface area, reduction of band gap, improved 

charge transfer at the interface as well as the inhibition of their recombination. 

However, knowing the mechanism involved in the g-C3N4/TiO2 heterostructure is very 

important to explain the enhancement of the catalytic efficiency. Several techniques 

were employed for this purpose including quenching tests, electron paramagnetic 

resonance (EPR) analyses, spectroscopic analyses (XPS) and density functional 

theory (DFT) calculations. The combination of these methods has significantly 

contributed on identification of the real type of constructed heterostructure. For many 

years, the mechanisms of charge transfer were mainly explained by II-type 

heterojunction and Z-scheme [22,23]. 

Unfortunately, these mechanisms presented some limitations from 

thermodynamically and kinetically plans particularly, thus reduce both oxidant and 

reductant power of the photocatalyst [24,25]. Consequently, a new heterojunction 

called step-scheme “s-scheme” has been recently proposed by Fu et al. (2019) 

research group to overcome these drawbacks [25]. In this mechanism, not only the 



 

 

migration of electrons is accelerated, but their reduction performance is effectively 

exploited [26].  

Briefly, S-scheme heterojunction involves two n-type semiconductors where 

the one with high conduction band (CB) energy is considered as reduction 

photocatalyst and the other as oxidation photocatalyst [27]. When irradiated, the 

electrons in the CB of OP were moved to VB of RP for recombination. Meanwhile, 

both endowed with high redox potential, electrons accumulated in CB of RP and 

holes contained in VB of OP were largely available for redox reactions [24,28]. As a 

result, recent advances on designing g-C3N4 heterostructures based on s-scheme 

mechanism have significantly contributed to the improvement of photocatalytic 

degradation of pollutants [29-33]. 

In this present paper we report the elaboration of g-C3N4/TiO2 composites with 

different amount of g-C3N4 and starting from the synthesis of basic materials based 

on ecological criterion. The photocatalytic performance of as-prepared materials was 

evaluated through the photodegradation of Carbamazepine under UVA. The 

degradation mechanism was also discussed. We choose to study the degradation of 

Carbamazepine because it’s one of the most frequently used drugs for the treatment 

of epilepsy, bipolar disorder and as mood stabilizing [34]. The large-scale use and its 

resistance to conventional and biological water treatment explain its presence and its 

persistence in the surface waters, furthermore CBZ is categorized as toxic to aquatic 

life including bacteria, invertebrates, algae and fish [19, 35]. 



 

 

2. Experiment 

2.1. Chemical reagents 

 

Titanium isopropoxyde (TTiP, 99%) was purchased from Sigma Aldrich, acetic acid 

(CH3COOH), dicyandiamide (C2H4N4), methanol (CH3OH) and carbamazepine 

(C15H12N2O) were purchased from VWR. All reagents were of analytical grade and 

were used without further purification. Ultra-pure water was used throughout the 

experiments carried out in this study to avoid any external contamination. The 

physicochemical properties of CBZ are presented in table 1. 

 

Table 1: Physicochemical properties of CBZ. 

Propriety Carbamazepine 

Empirical formula C15H12N2O 

Molecular weight (g/mol) 236,27 g/mol 

Abbreviation CBZ 

λmax (nm) 265 nm 

Chemical structure 

 

 

2.2. Synthesis: Catalyst preparation  

2.2.1. Synthesis of titanium dioxide (TiO2) 
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The TiO2 nanoparticles were prepared by the sol-gel method, based on the previous 

literature [17]. Typically, 20 mL of titanium isopropoxide were dissolved in 40 mL of 

acetic acid. To homogenize, the solution was set under constant stirring for 15 min, 

the hydrolysis was accomplished by adding 120 mL of deionized water drop by drop, 

and then the solution was maintained under stirring for 2 h. Afterwards, the gel was 

placed in the oven at 90°C for 12 h. Sallow-white crystals were obtained by drying 

the gel at 200°C for 2 h. The sample was pulverized in a porcelain mortar, and then 

annealed in air at 400 °C for 4 h. 

2.2.2. Synthesis of graphitic carbon nitride (g-C3N4) 

 

The bulk g-C3N4 was prepared by thermal polymerization based on previous literature 

[2,3]. Typically, 10 g of dicyandiamide was put into an alumina crucible, and then it 

was heated at 550°C in a muffle furnace for 4 hours at a heating rate of 20°C/min. 

After cooled to room temperature, the yellow sample was pulverized into powders for 

further use.  

2.2.3. Synthesis of g-C3N4/TiO2 composite 

 

The g-C3N4/TiO2 composite were achieved by wet-impregnation method [8]. In a 

typical procedure, the appropriate amount of g-C3N4 and TiO2 were dissolved 

separately by methanol in beakers. Then, the beakers were placed in an ultrasonic 

bath for 30 min. Then the tow solutions were mixed and stirred at room temperature 

for 24 h. The resulting powder was maintained under room temperature for 12 h to 

evaporate the solvent. The obtained photocatalysts were denoted as X %CN/TO (X is 

the g-C3N4 percentage mass ratio). 



 

 

The photo-catalytique treatment setup (Figure1S), its description and experimental 

conditions were reported in detail in supporting information. 

2.3. Sample characterization 

 

• The X-ray diffraction (XRD) patterns of as-prepared catalysts were made using 

a D8 Bruker spectrometer with λ=0.15418 nm as a wavelength of the beam, the 

incident angle of 2θ, 5-130° using 0,017° each step, and the acceleration tension is 

40 kV and current emission equals 30 Ma. 

• Nitrogen adsorption-desorption isotherm were obtained using a Quantachrome 

instrument at 77k. The specific surface area measures are based on Brunauer-

Emmett-Teller’s equation (BET). 

• Raman spectra were acquired by using Raman spectrometer of JobinYvon 

company model T64000. The wavelength of laser was 514.5 nm (2.41 eV) and the 

power was set at 100 mWatt. The measurement was carried out in solid state by 

dispersing the sample powder upon glass slide under air at room temperature. 

• The scanning electron microscopy (SEM) images of the photocatalysts were 

obtained using an (JEOL 5910 LV) apparatus with EDS elementary analysis using 

SDD detector (Bruker) 

• The UV-vis diffuse reflectance spectra (UV-vis DRS) of the photocatalysts 

were recorded by Cary 300 instrument with scan Rate of 600 (nm/min) in shifting 

range of 80 to 500 cm-1. 

• The chemical states of wt%g-C3N4/TiO2 composites were analyzed using X-

ray photoelectron spectroscopy (XPS) in an ultrahigh vacuum photoelectron 

spectrometer equipped with an Omicron DAR 400 X-ray source (Mg Kα 

source at 1253.6 eV) and an Omicron EA 125 hemispherical analyzer.  



 

 

3. Results and discussion 

3.1. Crystal structure 

 

The XRD patterns of the prepared samples are shown in Fig.1. For TiO2  

(figure 1a), the diffraction picks are : 2θ= 25,32°, 37,82°, 47,07°, 53,97°, 55,15°, 

62,75°, 68,72°, 70,30° and 75,12° the projections of these values on a 

crystallographic plane gives the following (hkl) coordinates : (101), (004), (200), 

(105), (211), (204), (116), (220) and (215). Based on these results we conclude that 

the crystallographic plane corresponds to Anatase phase (JCPDS 21-1272), which 

confirms that our TiO2 is mostly Anatase [36]. The g-C3N4 analysis results (figure 1b), 

shows that the compound is pure with a pic at 2θ = 13,1° that corresponds to the plan 

(100) of tri-s-triazine, and the pic at 27,4° relative to crystallographic plane (002) 

which is generated by an inter-layer stack [37,38].  

Regarding to composite materials (fig.1c), we notice that TiO2 and g-C3N4 

coexist in composites, the peaks appeared on the XRD patterns of both g-C3N4 and 

TiO2 can be observed without obvious change. The effect of thermal treatment of g-

C3N4 under Argon was also discussed in fig 2S and 3S. 
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Figure 1: DRX of; (a) TiO2 with A for Anatase (b); g-C3N4, (c) the composite 

wt%g-C3N4/TiO2 and (d) Raman spectra of wt%g-C3N4/TiO2 

 

The crystallinity of the composites 10% and 30% of g-C3N4 was measured by 

Raman spectroscopy (Fig. 1d). The figures display the presence of TiO2 anatase 

phase, which is correlated with diffraction analysis (The main bands of interest are 

143 cm−1, 195 cm−1, 395 cm−1, 515 cm−1, and 640 cm−1) [39], while the g-C3N4 does 

not appear on the Raman spectrum because of its fluorescence.  

3.2. Specific Surface Area (SSA) 

 

The N2 adsorption-desorption isotherm of TiO2, g-C3N4, A10 and A30 are shown 

in table 2. According to the Brunauer-Emmett-Teller (BET) theory, pure TiO2 had a 

high surface area of 125.57 m2/g, while g-C3N4 had a relatively low surface area of 

10.51 m2/g. This means that the elaborated TiO2 would be able to better fix the 

molecule to be degraded than g-C3N4. Moreover, the initial surface area of TiO2 

gradually diminish as carbon nitride presence rises, the value goes from 80.65 m2/g 

to 59.67 m2/g for 10% and 30% of carbon nitride respectively. This is due to the effect 

of the incorporation of the carbon nitride into the TiO2 pores. 
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Table 2: The specific surface area of the samples  

Materials g-C3N4 TiO2 A10 A30 

Specific surface area (m2/g) 10.51 125.57 80.65 59.67 

3.3. Morphology and elemental analysis 

 

The morphology and microstructure of as-prepared samples were further 

investigated by SEM images (Fig. 2). The SEM studies of the composite 10%wt of 

carbon nitride (Fig. 3a) showed agglomerated TiO2 nanoparticles attached on to the 

sheet-like structure of g-C3N4. Thus, we can conclude that the composite A10 

present a good homogeneity. From Fig. 3c, it can be seen that the composite with 

30%wt of carbon nitride present less good homogeneity comparing to A10, but steel 

have a good morphology, and A30 could present a good ability to ensure a good 

separation of the charges. Thus, this will allow decreasing the rate of recombination. 

Moreover, the EDX analysis clearly confirms, the purity of the all our samples 

and also confirms the presence of g-C3N4 in lower amount with respect to TiO2 in 

both composites. The good homogeneity between TiO2 and g-C3N4 should facilitate 

the efficient removal of photo-generated electrons accumulate on (101) facets of 

TiO2, leaving holes left on (001) facets. This efficient special separation of photo-

generated electron-hole pairs in the composite should benefit the photocatalytic 

activity.1 

                                                           
1 Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 

photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2. 



 

 

     

Figure 2: SEM images of A10 and A30 

  

 

Figure 3: SEM images with EDX spectra respectively (a) & (b) for A10; (c) & (d) for 

A30. 

The XPS spectra of the Ti 2p, C 1s, O1s and N1s core levels are presented in Fig. 4 

for A10 and A30. Slight differences between the two wt%g-C3N4/TiO2 composite 

spectra are detected. For A30, a pure TiO2 phase is shown by the Ti2p (Ti2p3/2 at 

458.3 eV) and O1s peak decompositions, and the gC3N4 phase is observed in the 
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C1s (N-C=N at 288.5 eV) and N1s (C-N=C at 398.4 eV) peak decompositions [40]. 

These results point out the fact that there are very weak interactions between the 

TiO2 and the gC3N4 particles. For A10, the TiO2 phase is also revealed in the Ti2p 

and O1s peak decompositions but a slight widening of the Ti2p peak is observed 

which may be due to the formation of Ti3+ or to the possible interaction with gC3N4. 

This last interpretation is strengthened by the energy shift observed in the C1s (N-

C=N at 289.7 eV) and N1s (C-N=C at 397.8 eV) peaks. Moreover, the XPS results 

are consistent with EDX analysis showing no contamination.  
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Figure 4: the XPS spectra for A10 and A30. 
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3.4. Optical absorption studies (UV-vis Diffuse Reflectance) 

 

We carried out the diffuse spectral analysis (DRS) of the calcined TiO2, the 

pure g-C3N4 and the two composite A10 and A30, in order to study the absorption 

spectra and the change of the band gap of our samples caused by the heat treatment 

and the addition of 10 and 30%wt of g-C3N4. According to the obtained results of the 

DRS as displayed in Fig. 5 (a) the absorption sharp edges of TiO2, the pure g-C3N4 

and the two composites A10 and A30 were found to be around 399.11, 459.72, 

446.5, 415.13 nm respectively. Moreover, the band gap values (Eg) of TiO2, the pure 

g-C3N4 and the two composites A10 and A30 were calculated as 3.11, 2.7, 2.99, and 

2.78 eV, respectively. Similar results for g-C3N4 (Eg= 2.84 eV) are reported by Liao et 

al [41]. It is obvious that the TiO2 and the two composites will absorb in visible region, 

the band gap was decreased because of the addition of the g-C3N4 and because of 

the creation of the oxygen vacancies due to the thermal treatment. Indeed, 

comparing to the pure TiO2, the composites exhibited enhanced absorption at higher 

wavelengths due to the optimal heterojunction created between the two basic 

materials. 

 

    

Figure 5: (a) Diffuse Reflectance Spectra of pure g-C3N4, TiO2 and the tow 

composites g-C3N4/TiO2 of 10 and 30% of g-C3N4. (b) Plot of transferred Kubelka-
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Munk versus energy of the light absorbed of pure g-C3N4, TiO2, and the tow 

composites g-C3N4/TiO2 of 10 and 30% of g-C3N4. 

3.5. Evaluation of photocatalytic activity of samples 

3.5.1. Photocatalytic tests 

 

The effect of photolysis on CBZ degradation (fig 4S) and the photocatalytic activities 

of TiO2, g-C3N4 and the as prepared catalytic composites samples were firstly tested 

for CBZ degradation (Fig 5S and 6S). The results are summarized and presented at 

the Fig 6(a).  

 

 

Figure 6: (a) Degradation of CBZ by photocatalysis under UV irradiation, (b) First-

order kinetic modelling. Conditions: CBZ: 10 mg/L, Catalyst: 0.1 g, λ= 285 nm. 

 

From Fig 6(a), it can be seen that the doping of TiO2 increase the CBZ removal. After 

6 h of UV light irradiation, the degradation percentages were 5.97, 59.94, 71.41 and 

64.39% for g-C3N4, TiO2, 10% g- C3N4/TiO2 and 30% g-C3N4/TiO2, respectively. It is 

obvious g-C3N4 exhibited the lowest photocatalytic effect. This is because of its poor 



 

 

photo-response under UV area. The 10% g-C3N4/TiO2 sample shows the best 

catalytic performance because of the low band gap values (2.78 eV) compared to the 

other materials (TiO2 (3.11 eV) and 30% g-C3N4/TiO2, (2.99 eV)) evaluated from 

Diffuse Reflectance Spectra, which can lead to an enhancement of the absorption of 

UV light. Both composite materials possess higher degradation activity than pure 

TiO2, which highlight the synergetic effect between the two raw materials through the 

electron-hole separation [42,43]. In addition, the performance of composite material 

revealed that A10 is better than A30, meaning an optimal value of g-C3N4 loading is 

10%. This behavior could be explained by two reasons: in one hand, the loading of 

excess amount of g-C3N4 particles in TiO2 may reduce the availability of catalytic 

sites for CBZ degradation by a formation of a barrier layer coating the surface of TiO2 

[44]. This clearly is in consistent with the less homogeneity structure of A30 compare 

to A10 observed in SEM images (Fig 2) as well as the BET surface area of the 

samples (Table 2). Secondly, the superior light absorption for A30 means it could be 

more sensitive in higher wavelengths according to UV-Vis absorption spectra and 

then it might be have good catalytic activity in this light area compare to the one used 

in this study. 

The kinetic degradation of CBZ has been checked according to the first-order model 

which the equation (1) is expressed below: 

𝑙𝑛
𝐶

𝐶0
= − 𝑘𝑡  (1) 

Where: 𝐶0 and 𝐶 are the initial concentration of CBZ and after a given treatment time. 

𝑘 is the apparent rate constant (min-1) and 𝑡 the time (min). 

The Fig 6(b) illustrates the plot of ln C0/C vs t. It could be observed that the 

degradation of CBZ by g-C3N4/TiO2 composite fits well the pseudo-first order model 

which can be explained by the straight line and good regression coefficient (R2 > 



 

 

0.98). Such as for the degradation percentage, the reaction rate is fastest in the case 

of A10 material (k=0.0034 min-1) compare to the other materials. The apparent 

kinetics constants were 0.0025 min-1 and 0.0029 min-1 for A30 and pure TiO2, 

respectively. This finding indicates that the photocatalytic performance has been 

promoted through the loading of g-C3N4 onto TiO2.  

The present results are compared with those reported in literature (Table 3). Even 

some works reported relatively higher photodegradation with less time taken for the 

photocatalytic treatment, the initial concentration of Carbamazepine treated in the 

present study is relatively higher than those reported in some studies. The developed 

catalyst presented a good specific area and an interesting band gap. 

 

Table 3: Comparison of present degradation efficiency with literature data. 

Photocatalyst Bande 

Gap 

(eV) 

Surface 

area 

(SBET) 

(m2/g) 

Pollutant 

(Initial.con) 

Treatment 

duration 

Degradation 

efficiency 

Referenc

es 

 

g-C3N4/TiO2 

(1:4) 

2.8 176 - - - [45] 

g-C3N4/TiO2 2.83 70.2 Rhodium 

Boride (4.79 

mg/l) 

80 min 100 % [46] 

g-C3N4/TiO2 - - Methyl orange 

(5 mg/l) 

180 min 80.33 % [47] 

g-C3N4/TiO2 

nanotube 

- - 2-Chlorophen 

(30 mg/l) 

180 min 96.6% [48] 



 

 

TiO2@g-

C3N4 

2.97 155 Indigo Carmine 

(25 mg/l) 

60 min 100 % [49] 

TiO2/g-C3N4 3.05 14.44 Diclofenac (5 

mg/l) 

90 min 93.5% [50] 

g-C3N4/TiO2 2.99 80.647 Carbamazepine 

(10 mg/l) 

360 min 71,41% Present 

Study 

 

 

The effect of some operating parameters such as calcination of catalyst and H2O2 

addition on the photo-catalytique degradation of CBZ was also investigated and 

discussed in the supporting information (Fig 7S). 

3.5.2. Mechanism of CBZ degradation  

 

For better understanding the mechanism of the augmentation of the degradation 

efficiency by 10% g-C3N4/TiO2 composite material, the charge separation at the 

interface of the two semi-conductors was investigated and the possible degradation 

mechanism of CBZ under 10% g-C3N4/TiO2/UV system was illustrated in Fig 7. 

 

 



 

 

Figure 7: Possible mechanism of g-C3N4/TiO2 heterostructure under UV irradiation 

  

The conduction (𝐸𝐶𝐵) and valence (𝐸𝑉𝐵) bands energy were calculated through the 

following equation 2 and 3 [51]:   

 

𝐸𝐶𝐵 = 𝜒 − 𝐸0 −
1

2
𝐸𝑔  (2) 

𝐸𝑔 = 𝐸𝑉𝐵 − 𝐸𝐶𝐵  (3) 

 

Where: 𝜒 is the electronegativity of the semiconductor and the value were 4.73 and 

5.81eV for g-C3N4 and TiO2, respectively [52]. 𝐸0 is the energy of free electrons vs 

NHE (4.5 eV) [53]. From UV-Vis absorption spectra the band gap energy (𝐸𝑔) 

obtained in this study were 3.11 and 2.7 eV for pure TiO2 and g-C3N4, respectively. 

Then, the 𝐸𝐶𝐵 and 𝐸𝑉𝐵 were calculated and the values were of -0.25 and +2.86 eV for 

TiO2, whereas the values were -1.12 and +1.58 eV for g-C3N4.  

Additionally, it is widely reported that the energy level of Fermi for pure TiO2 is less 

than pure g-C3N4 [54,55]. However, when they are in contact such as the present 

case, the electrons migrate continuously from g-C3N4 to TiO2 up to reaching the 

same Fermi energy. As a result, those movements of electrons provoke the upward 

and downward band edge of TiO2 and g-C3N4, respectively. This migration of electron 

also leads to the creation of partial charges on each semiconductor and a built of an 

internal electric field with TiO2 positively charged whereas g-C3N4 is negatively 

charged. The obtained 𝐸𝐶𝐵 value of TiO2 (-0.25 eV) superior than redox potential of 

O2/O2
●– (-0.33 V vs. NHE, pH = 7) [32], obviously suppose that reaction of reduction 

of adsorbed O2 to form O2
●– cannot occur on CB of TiO2. In the same way, the H2O 

oxidation to form HO● at g-C3N4 VB could not be possible due to fact that the 



 

 

𝐸𝑉𝐵 value (+1.58 eV) is less positive than potential of HO●/H2O (2.27 V vs. NHE, pH = 

7) [56]. Consequently, the charge migration exhibited in this work obeys also to the 

typical S-scheme heterojunction mechanism [27,29-30,33]. The photocatalytic 

mechanism of CBZ degradation could be explained as follows: when the composite 

material is irradiated by UV light, the electrons were moved from VB to CB of TiO2
(δ-). 

Subsequently, these electrons were transferred to the VB of g-C3N4
(δ+) for 

recombination with holes. Therefore, free electrons in CB of g-C3N4 and holes in VB 

of TiO2
 were effectively used in oxidizing reactions for CBZ removal while owing in 

the same time the long life of useful photo-generated species. This inhibition of 

electron-holes pair recombination in this S-scheme heterojunction is responsible in 

the improvement of photocatalytic activity. 

3.5.3. Mineralization studies 

 

In order to test the catalytic ability of the composite for mineralization of CBZ, the 

total organic carbon (TOC) has been measured after 6 h of irradiation. The result is 

displayed at the Fig 8. 

 



 

 

 

Figure 8: Mineralization of CBZ by photocalysis under UV irradiation. Conditions: 

CBZ: 10 mg/L, Catalyst: 0.1 g, λ= 285 nm. 

 

From Fig 8, the mineralization percentages were 29.64, 30.38 and 30.54% for pure 

TiO2, A10 and A30, respectively. The trend of catalytic activity for destruction of total 

organic pollution was quite same for the new composite materials prepared in this 

study. This result revealed also the good performance of A10 and A30 for 

mineralization of CBZ in water environment. 

It is to be noticed that the degradation efficiency for all photocatalytic samples are 

higher than the mineralization efficiency, it seems that the generated reactive oxygen 

species (ROS) destroyed in the first step the target molecules until certain 

degradation percentage and then mineralized the obtained intermediate products, as 

a second step, similar results were reported in the works of Zeghioud et al. (2019) 

and Sirtori et al. (2009) [57,58]. 



 

 

4. Conclusion 

 

The new catalytic materials g-C3N4/TiO2 were prepared by wet-impregnation method. 

Different amounts of g-C3N4 were successfully loaded onto TiO2 according to the 

characterization analyses. The thermal treatment contributes to create the oxygen 

vacancies. The A10 material showed well distribution of g-C3N4 on TiO2 and the 

morphology reveals a quite homogeneity structure. The materials were tested for the 

photodegradation of CBZ under UV irradiation. The 10% g-C3N4/TiO2 showed 

remarkable catalytic activity with the best degradation percentage of 71.41% and the 

highest reaction rate (0.0035 min-1). The enhancement of catalytic efficiency of the 

composite was attributed to the good heterojunction between the two semiconductors 

leading to a synergetic effect. This, through an increasing of the surface area, 

diminution of band gap and the efficient electron-hole pairs separation. This study 

demonstrates an efficient approach to improve the performance of heterogeneous 

photocatalysis applied in the field of wastewater treatment. 
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