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ABSTRACT 14 

The current climate and environmental challenges demand novel and cost-effective 15 

sustainable materials with a high efficacy and eco-friendly properties. Biochar (BC) has 16 

gathered a great interest in the last years across different research fields, thanks to its 17 

special physicochemical characteristics such as high specific surface area, high porosity, 18 

ion exchange capacity and because of scientific evidence in removing various 19 

contaminants from soil, water, and air. This review aims to give the state of the art on the 20 

removal of toxic organic pollutants from wastewater using biochar, activated biochar, 21 

functionalized biochar and metal oxide or clay base biochar composites, commenting on 22 
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the substrates’ physiochemical properties, the role of the most used characterization 23 

techniques toxicity, activation/functionalization and influencing treatment factors in 24 

organic pollutant removal from wastewater.   25 

The effect of different operating parameters of the water treatment process is summarized 26 

and thoroughly discussed. The toxicity of biochar components such as heavy metals, 27 

dioxins and polycyclic aromatic hydrocarbons (PAHs) is addressed. The various 28 

application processes of biochar in water treatment at both laboratory and pilot scale is 29 

also reviewed. The activation techniques, functionalization pathways and biochar based-30 

nanocomposite synthesis methods for enhancing the pollutant elimination efficiency are 31 

also extensively discussed. Finally, the paper suggests research directions in the field of 32 

biochar application in wastewater treatment. 33 

Keywords: Biochar; Characterization; Toxicity; Contaminant removal; Functionalization; 34 

Magnetization. 35 

 36 

1. Introduction  37 

The world population increase over the past two decades led to an increasing demand in 38 

water volume, both for human consumption and for the industry sector, which results to 39 

increased wastewater volumes released in the aquatic environment. A variety of pollutants 40 

are detected in wastewater streams and have been reported in literature, such as; 41 

carcinogenic heavy metals [1], petroleum hydrocarbons [2], polycyclic aromatic 42 

hydrocarbons (PAHs) [3], organic dyes [4], phenols, pesticides, pharmaceuticals and 43 

veterinary antibiotics [5]. A diversity of pollutant treatment techniques has been 44 
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extensively discussed in literature [6][7][8]. However, the design of optimal, efficient, and 45 

operational treatment methods is still considered a challenge. Among different techniques 46 

which have been the subject of research, we identified the most promising: chemical 47 

oxidation, electrocoagulation, membrane separation, reverse osmosis, filtration, 48 

adsorption and biological treatment [9][10][11].  49 

Adsorption is one of the most efficient methods for the removal of a wide variety of 50 

pollutants from gaseous and wastewater streams [12][7]. During the adsorption process 51 

the pollutants are removed from the effluent by being adsorbed on the active sites on the 52 

surface of a solid substrate (adsorbent). Certain parameters such as temperature, pH or 53 

the concentration of adsorbate of the liquid phase influence the adsorption capacity and 54 

their fluctuations can result to the desorption of the adsorbed species from the surface 55 

back into the liquid phase [13]. 56 

Common adsorbents include clays, zeolites and active carbon, the latter being widely 57 

used for efficient micropollutant removal especially in the potabilization of water.  58 

Active carbon used in Europe is usually produced from biomass transported over long 59 

distances, such as coco coir or coco shells, as well as coal. Local residual biomass and 60 

well controlled pyrolysis conditions offer the advantage of sustainably produced 61 

substrates, biochars, as an alternative to currently used active carbon [14]. 62 

The initial interest in biochar focused on the improvement of agricultural productivity via 63 

enhancement of soil fertility, increasing soil nutrient levels and water retaining capacity, 64 

while decreasing greenhouse gas emissions and carbon sequestration are drivers that 65 

gain a lot of attention currently [15][16][17]. Biochar is considered a cost-effective and 66 
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environmentally friendly material [9][10], with large surface area, high porosity, functional 67 

groups, high cation exchange capacity, stability, reusability [17][18]. These characteristics 68 

make it a suitable substrate in environmental applications which have also gained a lot of 69 

attention the last years. Some very recently published reviews demonstrate the effective 70 

application of biochar for both heavy metals and organic pollutants (pesticides, phenols) 71 

removal from contaminated soil [19][20][21]. Regarding the produced biochar properties, 72 

these are related to the nature of the feedstock (lignocellulosic biomass: green waste, 73 

organic residues, energy crops) and the preparation conditions. 74 

Biochar is a high carbon containing material with high specific surface area and a large 75 

porosity which is produced via  the carbonization of  biomass under a limited oxygen 76 

environment [15]. The carbonization process allows the valorization of diverse biomass 77 

sources like lignocellulosic residues from agro-industrial and forestry activities, animal 78 

manure, dewatered sludges, even micro algae, marine and aquatic species [22][16]. 79 

Lignocellulosic biomass pyrolyzed at high temperature (>600oC) produces biochars with 80 

high aromatic carbon content, high stability and therefore resistance to microbial 81 

decomposition. Animal manure conversion produces biochar with high ash content and 82 

therefore a very high pH value, due to the nutrients present in the feedstock. As a 83 

consequence, biochar may act as a slow-release fertilizer and alkalinity regulator for acidic 84 

soils. The high nutrients content of biochar is linked to its potential for soil cation exchange 85 

capacity (CEC), water holding capacity and plays a role in the nitrogen cycle in soil. 86 

The term carbonization includes the technologies of pyrolysis, hydrothermal 87 

carbonization, flash carbonization, gasification and torrefaction [23][17][24]. These 88 

technologies vary with respect to their relative co-products and their maximum yields 89 
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which are linked to the operating conditions such as pressure and  temperature, its heating 90 

rate and its residence time in the reactors [20][25]. Low carbonization temperatures 91 

(<300–400 ◦C) result in low porosity biochars. Medium carbonization temperatures (400–92 

700 ◦C) yield biochars with the highest porous development and a higher aromaticity, the 93 

latter promoting electron donor interaction [12]. At moderate pyrolysis temperature, the 94 

biochar surface may contain oxygen and nitrogen surface groups, which add 95 

functionalities and could act as electron acceptors. Biochar prepared at temperatures 96 

above 700 °C are hydrophobic and recalcitrant, and have no apparent functionality 97 

anymore due to the loss of almost all O and H in their structure [25]. 98 

The term functional biochar refers to biochars (a) either produced at low temperature and 99 

thus still containing some O and H which allow the formation of surface functional groups, 100 

but with the drawback of low porosity and surface area, or (b) produced at usual pyrolysis 101 

conditions as presented earlier, and further treated either chemically or physically in order 102 

to enhance its functional groups while keeping its high surface area porosity and 103 

recalcitrance. 104 

By further post treating biochars it is possible to obtain functional materials for 105 

environmental applications, in water and air treatment of industrial effluents and off gases. 106 

In specific, the application of biochar in wastewater treatment is believed to overcome the 107 

problem of cytotoxic, genotoxic and mutagenic activities in living organisms resulting from 108 

the application of ozonation, hydrogen peroxide, chlorine dioxide for organics pollutants 109 

removal [26]. 110 

The adsorption efficiency of organic compounds on biochar is based mainly on 111 

electrostatic interaction, partitioning, hydrophobic interaction, pore-filling, hydrogen 112 
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bonding formation, π-π interaction between biochar and organic pollutants [27]. 113 

The wide range of biomass feedstock used in the production of biochar in combination 114 

with the production conditions applied, lead to a range of products with variable physico- 115 

chemical composition and properties. There is a strong interest in linking biochar 116 

physicochemical characteristics and their potential application. 117 

Concerted efforts are being done to regulate and define quality requirements related to 118 

biochar, develop guidelines for biochar and substrates used for its production. At this 119 

moment, certain organizations are developing quality standards, namely the European 120 

biochar certificates (EBC) in Europe, and the International Biochar Initiative (IBI) at 121 

international level. The EBC indeed provides good suggestions to produce biochar that 122 

can potentially be used in various applications but it is not their objective to make an 123 

elaborate correlation between physicochemical characteristics and potential application. 124 

This further elaboration of quality standards is the objective of ongoing research and 125 

demonstration projects at EU level (ThreeC, HortiBlueC), to name a few.  126 

Recent reviews aim to categorize the large amount of information of biochar 127 

physicochemical properties and their effect on removal mechanisms by attributing 128 

preparation technologies, functionalization techniques, to certain biochar characteristics 129 

and propose specific applications, as for example in Wang et al and Patel et al.[28][29]. 130 

The knowledge of biochar characteristics and their possible effect on adsorption 131 

mechanisms towards various types of pollutants in aqueous media is necessary to clarify 132 

what steps to take towards improving biochar characteristics by means of various 133 

treatments like activation and functionalization.  134 
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Table 1 gives a global overview of biochar properties, their function, their role in pollutant 135 

adsorption and relevant production parameter of biochar 136 

 137 

Table 1: Global overview of biochar properties, their function, their role in pollutant 138 

adsorption and relevant production parameter of biochar 139 

Biochar Property Function  Application/ 
mechanism involved 

Biochar production 
parameter 

SSA, porosity sorption capacity   
 

Immobilization of 
contamination from 

solid, liquid and 
gaseous media 

Residence time, high 
temperatures 

Ion-exchange 
properties on surface 

electrostatic 
interactions with polar 
or non-polar groups 

adsorption of organic 
contaminants  

 

post functionalization 
(acidic or base 

treatment) 

high mechanical and 
chemical stability 

  high temperatures 
. 

Surface functional 
groups 

Chemical bonding with 
certain molecules 

Absorption and 
immobilization of 

certain toxins and drugs 

Low temperature 
production, post 

treatment 
(functionalization) 

pH and pHpzc 

Negatively or positively 
charged surface 

Attraction/repulsion of 
ionically charged 

molecules 

Feedstock (high ash 
content biomass leads 
to high pH biochars), 
post functionalization 

(acidic or base 
treatment) 

 140 

This review aims to give the state of the art on the removal of toxic organic pollutants from 141 

wastewater using biochar, activated biochar, functionalized biochar and metal oxide or 142 

clay base biochar composites, commenting on the substrates’ physicochemical 143 

characteristics, toxicity, activation/functionalization techniques and the link with the 144 

adsorption process parameters.   145 

The impact of adsorption process parameters such as temperature, biochar loading, 146 

pollutants initial concentration, initial pH, presence of ions and contact time is discussed, 147 

to evaluate the activation/modification of biochars and their effect on the treatment 148 
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efficiency. This review paper also addresses recent biochar characterization techniques 149 

giving information on the interpretation of analysis results mainly for FTIR, XPS, XRD, 150 

TGA and Raman. The role of each technique on evaluating biochar properties is 151 

underlined. Furthermore, the modification of certain biochar characteristics via activation, 152 

functionalization and nanocomposite incorporation is discussed. The link between biochar 153 

treatment/post-modification process and biochar proprieties is highlighted. This review 154 

aims to contribute to the ongoing discussion and research efforts in EU and globally on 155 

biochar quality standards, that may complement and elaborate the existing EBC and IBI 156 

standards (European Biochar Certificate and International Biochar Initiative). This review 157 

focuses on the applications of biochar in physicochemical treatments and does not 158 

address biological processes that may include biochar at some stage.  159 

 160 

2. Biochar characterization techniques  161 

 162 

Recent studies prove the importance of thorough biochar characterizations to help identify 163 

agronomic and environmental applications and to distinguish biochar from other organic 164 

matter that provide comparable functions, either as soil improver or environmental 165 

applications [30][31]. The application area of biochar is large, depending on its 166 

characteristics such as specific surface area, surface functional groups, stability and 167 

structure and, to a lesser degree, elemental composition [32]. These characteristics make 168 

the choice of appropriate characterization techniques for biochar of a great interest and a 169 

difficult task at the same time. A judicious and complete characterization of biochar 170 

preceding to any target applications requires a high level of understanding the correlations 171 
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between biochar production conditions and the physiochemical properties of the biochar 172 

[33][34]. The properties of biochar can be classified in four main categories: i) chemical 173 

properties (chemical composition, functional groups, pH, ion exchange capacity; ii) 174 

physical properties (porosity, pore size distribution, specific surface area); iii) structure 175 

and surface and morphology); iv) and thermal stability properties; each category requires 176 

specific characterization techniques as shown in figure 1.  177 

 178 

 179 

 180 

Figure 1: Classification of characterization techniques versus biochar properties 181 

reported in biochar literature. 182 

 183 

We would like to comment that the stability of biochar may be defined differently if one 184 

considers focusing on the evolution of physicochemical properties during applications as 185 
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a stability indicator. Stability of biochar in the soil for example, is evaluated in several ways 186 

that include protocols of accelerated aging using chemical reagents, the objective of which 187 

tests is to estimate the long-term carbon storage capacity of biochars in the carbon credit 188 

context, or in GHG emission tests during incubation experiments to estimate the effect of 189 

biochar/hydro char in compost. These applications deviate from the objective of this 190 

review and will therefore not be further analyzed. 191 

The characterization techniques reported in literature include Fourier Transform Infrared 192 

Spectrometer (FTIR), Cation Exchange Capacity (CEC) [35], Scanning Electron 193 

Microscopy (SEM), X-Ray Diffraction (XRD), X-Ray photoelectron spectrometry (XPS) 194 

[36], Thermo Gravimetric Analysis (TGA), Differential scanning calorimetry (DSC), 195 

Nuclear Magnetic Resonance (NMR), Raman spectroscopy, Brunauer Emmett Teller 196 

(BET) [37].  197 

Emerging pollutants appear in very low concentrations, in the range from ng·L−1 to µg·L−1, 198 

so their elimination using conventional water treatment technologies is difficult. Only with 199 

the development of novel analytical techniques or the further development of existing 200 

ones, such as liquid chromatography coupled with mass spectrometry (LC-MS), can we 201 

safeguard detection of micro pollutants. On the other side of the pollutant removal 202 

challenge is the necessity for advanced solid materials characterization techniques, to 203 

evaluate the effect of various production parameters and treatment techniques on biochar 204 

and achieve therefore the necessary links among properties and applications, which is 205 

much needed in standardization efforts of biochar quality. Research is advancing in the 206 

development of both, accurate analytical techniques to quantify pollutants in very low 207 

concentrations and in the development and characterization technologies for novel 208 
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functional biochar-based materials. These challenges go hand in hand and the effort to 209 

categorize and standardize is a long and tedious task.  210 

Biochar characterization techniques are crucial to evaluate the performance of novel 211 

materials and to optimize the treatment process. Advances in characterization 212 

technologies help in the direction of novel composites, however a review and deeper 213 

analysis of characterization technologies is not in the scope of this article, beside 214 

recommendations on the characterization technique chosen that will be commented upon. 215 

 216 

Figure 2 shows the reporting frequency (%) of each characterization technique used in 217 

biochar literature based on 100 scientific research articles (articles dated from 2018 to 218 

2021). It seems that the surface imaging characterization techniques such as SEM and 219 

TEM are the most applied with a frequency of 92/100, followed by specific surface area 220 

quantification (BET) with 83/100, FTIR with 81/100 and then XRD, XPS and porosity with 221 

63%, 55% and 47%, respectively. Nevertheless, the CEC, XRF and Boehm titration 222 

remain the less used techniques applied to evaluate the physicochemical properties of 223 

biochar. It can be concluded that surface morphology, crystallinity, the specific surface 224 

area and surface functional groups are the most demanded properties and determining 225 

factors in biochar engineering for organic pollutants removal. Concerning heavy metals 226 

content quantification, Inductively Coupled Plasma (ICP) is much more broadly applied 227 

than XRF. 228 

 229 
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 230 

 231 

Figure 2: Frequency of applying certain techniques for biochar characterization (data 232 

recorded from 100 studies). 233 

 234 

Table 2 shows a variety of functionalized novel biochar -based materials, with the potential 235 

to eliminate a variety of pollutants (antibiotics, dye, pesticides and steroides) at different 236 

treatment conditions. The categorization of table 2 is based on pollutant rather than 237 

biochar materials because at this stage of research it is not yet possible to discuss 238 

categories of novel functional materials and link “products” to pollutants to be removed. In 239 

the reported literature the efficiency of biochar in eliminating a pollutant is expressed both, 240 

as a removal efficiency (%) or as an adsorption capacity (mg/g). We observed that the 241 

acidic treatment is the most applied one for biochar modification/activation. 242 

 243 
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Table 2: Biochars applied in the treatment of organic pollutants. 244 

Biochar 
material 

Treatment of biochar  
Pollutant 

(initial 
Concentration) 

Removal yield 
or adsorption 

capacity 
(qmax) 

References 

Medicine (antibiotics) 

Cobalt-
gadolinium 
modified biochar 

 

Ciprofloxacin (20 
mg/L) 

Tetracycline (20 
mg/L) 

99.55% (6 h) 
99.23% (6 h) 

[38] 

Sulfamic acid 
modified biochar 

 
Tetracycline (100 

mg/L) 
412.95 mg/g 

biochar 
[39] 

Activated 
biochar 
derived from 
cotton shell 

 
Sulfadiazine (10 

mg/L) 
≈95% (1400 

min) 
[36] 

Rice husk 
Carbonization at 
500 ◦C 

H2SO4 or KOH 
treatments activation 

biochar 

Tetracycline (20 
mg/L) 

 
93.1% (180 

min) 

[40] 
 

Rice straw and 
swine manure 
Carbonization at 
700 ◦C 

H3PO4 modified 
biochar  

Tetracycline (C0 = 
30–200 mg·L 

−1) 
 

T = 25 ◦C 
pH = 5.0–9.0 
qmax = 167.5 

mg·g−1 

[41] 

Iron oxide 
nanoparticle 
loaded biochar 

 
Ofloxacin (30 

mg/L) 
96% (5 h) [42] 

Bamboo 
Carbonization at 
380 ◦C  

H3PO4 treatment 
Sulfamethoxazole, 
sulfathiazole and 
sulfamethazine 

T = 21–30 ◦C 
pH = 1.0–10.0 
qmax SMX = 
88.1 mg·g−1 
qmax STZ = 
237 mg·g−1 
qmax SMZ = 
65.7 mg·g−1 

[43] 

Anthriscus 
sylvestris-
derived activated 
biochar 

NaOH treatment 
Diclofenac (DF) 

Cephalexin (CPX) 

qmax = 392.94 

mg g−1 for DF 

qmax = 724.54 

mg g−1 for CPX 

[44] 

Dyes 

CaWO4-biochar 
nanocomposites 

 

Rhodamine (0.01 
mM) 

Methyl orange 
(0.05 mM) 

71% (30 min) 
73% (30 min) 

[45] 

ZnO/biochar 
nanocomposites 

 
Methylene blue 

(160 mg/L) 
95.19% (225 

min) 
[46] 

Fe, N codoped 
biochar 

 
Acid orange (20 

mg/L) 
93.4% (20 min) [47] 

Pinecone  
biochar 

 Black-3 
346.856 mg 

g−1 
[48] 

Pesticides 
P doped biochar  Triazine (2 mg/L) >96% (20 min) [49] 
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Sawdust-coal 
biochar 

 
Epoxiconazole (10 

mg/L) 
97 % (400 min) [50] 

Grape pomace-
derived biochar 

 
Cymoxanil 

pesticide (100 
mg/L) 

qmax =161 mg 
/g biochar 

[51] 

CO2 activated 
biochar 

 
Phenol (0.5 mM) 
Chlorophenol (0.5 

mM) 

50 – 60% (60 
min) 

[52] 

Activated 
magnetic loofah 
sponge biochar 

KOH treatment Imidacloprid 
qmax =738 

mg.g−1 
[53] 

Steroides 
Graphene oxide 
supported on 
activated 
magnetic 
biochar 

 
17 β -estradiol 

(6 mg/L) 
qmax =46.22 
mg/g biochar 

[54] 

Iron loaded 
porous 
graphitized 
biochar 

 
17b-estradiol (3 

mg/L) 
100 % (45 min) [55] 

 245 

 246 

2.1. Physical proprieties. 247 

 248 

Physical properties include the specific surface area (SSA), particle size distribution, the 249 

bulk density, pore size and pore volume distribution [55]. These parameters are directly 250 

linked to the biochar production conditions such as reactor temperature and residence 251 

time, addition of oxygen containing media in the process (air, pure oxygen, CO2 and 252 

steam) and/or post production processing to modify the product [38]. In the work of Xiong 253 

et al., five different biochars from various feedstocks were applied on the adsorption of 254 

epoxiconazole (EPC) fungicide. The results showed that the adsorption capacity of these 255 

five biochars towards EPC is closely related to the total pore volume and specific surface 256 

area [50]. Patel et al. also reported a positive correlation between the biochar sorptive 257 

potential toward ciprofloxacin/acetaminophen, the biochar surface area, and the total pore 258 

volume [33]. 259 
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Beside total surface area also biochar surface heterogeneity plays an important role in the 260 

sorption behavior. The BET analysis is applied to study the effect of biochar modification 261 

on SSA as discussed in Figure 5 or to evaluate the effect of pyrolysis temperature on SSA 262 

of produced biochar. In their work Liu et al. reported the increase of SSA and total pore 263 

volume with increasing pyrolysis temperature. In the presence of acid  the accumulation 264 

of inorganic content and the formation of new minerals at the biochar surface further 265 

increased the SSA [39]. In addition to an increase in total pore volume, Cai et al. reported 266 

a reduction in pore size [56]. 267 

 268 

2.2. Chemical properties. 269 

 270 

Chemical properties of biochar include the point of zero charge (PZC), Cation Exchange 271 

Capacity (CEC), surface functional groups and electrical conductivity. The structural and 272 

elemental analysis are important to predict the impact of biochar on the environment [57].  273 

The SEM technique is coupled with energy-dispersive X-ray spectroscopy (EDX or EDS) 274 

to obtain insight to the O/C atomic ratio, elemental components composition and 275 

distribution at the surface, and further on to explain the relationship between biochar 276 

preparation parameters and its resulting properties. For example, the O/C atomic ratio 277 

reflects the carbonization degree of the biochar, and indicates the degree of aromaticity 278 

of biochars, which is linked to their stability and therefore to its carbon sequestration 279 

potential [58]. 280 

On the other hand, EDX is reported as a potential tool for the direct O/C atomic ratio 281 

measurement rather than applying the CHNS elemental measurement [58][59]. Some 282 
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works reported that the H/C and O/C atomic ratios in biochar have a positive correlation  283 

with the concentration of hydroxyl, carboxyl, and carbonyl groups and thereby to CEC 284 

[60][61]. The elemental ratios of H/C refer to the aromatization degree of carbonization 285 

[62]. However, the value of O/C also represents the hydrophilicity of biochar [63]. 286 

XPS analysis is a very valuable characterization technique to identify the components 287 

functional groups on the biochar surface and their metallic state of compounds, before 288 

and after biochar composite synthesis [64]. XPS spectral lines (C 1s, O 1s and N 1s 289 

photoelectron lines) are rich in chemical information (Table 3). Their precise positions on 290 

the energy axis reflect the local electronic environment of the photoemitting atom, a clear 291 

shift for C-O, C = O, COO– and CO3
2– carbons can be seen [65]. Zhang et al confirmed 292 

the presence of Fe-O in biochar/FexOy composite by XPS at binding energies of 711.3 293 

and 725.0 eV for the Fe 2p3/2 and Fe 2p1/2 core levels, respectively. Moreover, the 294 

adsorption of methylene blue leads to a decrease in peaks intensities for the majority of 295 

C 1s and O 1s spectrum [66]. On the other hand, the appearance of N 1s in the XPS 296 

spectrum of biochar/FexOy-MB suggested that the adsorption involves N electrostatic 297 

attraction [66][67]. The incorporation of Mn on Nano-zerovalent manganese/biochar 298 

composite resulted to  the detection of Mn2+ and Mn3+ present at binding energy values of 299 

642.5 eV (Mn 2p3/2), 653.5 eV (Mn 2p1/2) for Mn2+ and 645.3 eV that corresponds to 300 

Mn3+ [68]. Other works reported the presence of; i) O–Fe (530.12–530.26 eV) in O1 s XPS 301 

spectra of biochar/Fe composites [69]; ii) Fe2p and Co2p at 711.3 eV and 779.8 eV, 302 

respectively [70]; iii) Cr3+ at 584.20 and 575.04 eV [71]. 303 

 304 
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Table 3: Binding energy in XPS spectra for the main surface functional groups on biochars 305 

reported in literature. 306 

Biochar C 1s Line O 1s Line N 1s 

Line 

Refere

nce 

C–C C = C C–O O–C–O C=O Organic 

C=O 

Organic 

C-O 

C-N  

Biochar/FexO

y composite 

284.8 284.8 286.1 288.3  533.3 531.62 399.6 

and 

402.0 

[66] 

Biochar 284.4–

284.7 

285.0–

285.2 

 286.3

–

286.6 

289.1–

289.3 

287.8–

288.0 

531.3–

532.3 

533.3–

533.9 

399–

401 

[65] 

Biochar/Fe 

composites 

     531.44–

531.57 

532.23–

533.08 

 [69] 

Graphene 

oxide 

/CoFe2O4
- 

sludge 

biochar 

composite 

284.8 284.8 286.5      [70] 

Iron-loaded 

biochar 

284.8 284.8      400.2 [71] 

Biochar-

based iron 

oxide 

284.4  285.6  288.5    [72] 
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Sludge-

derived 

biochar 

  285.9

–

286.4 

288.7–

289.0 

287.1–

287.2 

   [73] 

N-doped 

graphite-like 

mesoporous 

structure 

biochar 

  285.0 

286.4 

 288.8   398.4, 

400.0, 

400.9 

[74] 

Magnetic 

sludge 

biochar 

284.8 284.8 286.5  288.7    [75] 

Ga2S3/S-

modified 

biochar 

285.62 

283.77 

285.6

2 

283.7

7 

284.0

3 

285.3

4 

  532.27, 

531.71, 

and 

530.32 

  [76] 

Hickory chip 

biochars 

284.8 284.8 286  288.5 531.5 533.0  [77] 

 307 

XPS can also be used to evaluate the elemental O/C molar ratio that may be considered 308 

as an indication for biochar stability [78].  309 

The use of Fourier Transform Infrared spectroscopy (FTIR) in biochar surface 310 

characterization is also very common. This technique gives detailed information on the 311 

oxygen-containing functional groups present on the surface of biochar (Table 4), 312 

evaluates the success of metal binding during surface treatment and/or the surface 313 

functional groups transformation after pollutants adsorption [54]. Al-Wabel et al reported 314 

the increase of the broad absorption band attributed to O–H stretching vibrations (at 315 
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around 3320 cm-1) in biochar with the moisture increase, however the presence of C–O–316 

C stretching vibrations band indicated the occurrence of non-decomposed oxygenated 317 

groups [79]. FTIR can analyze organic functional groups commonly observed in biochars, 318 

as carbon-hydrogen (C-H), C = C, C=O, C-O, and silicon-oxygen (Si-O)[80][81]. Table 4 319 

shows the functional groups and their wavenumber in published literature on biochar and 320 

biochar composites. 321 

 322 

Table 4: Peak positions of the main surface functions in FTIR spectra of biochar and 323 

biochar-based composites reported in literature. 324 

Biochar O–H C–O–

C 

C = C Carboxyl 

C=O 

C-O C–H 

aromatic 

C-N Reference 

Biochar/FexOy 

composite 

3368-

3429 

 1620 1386 1049 826  [66] 

Alkali-modified 

SCG biochars 

3160-

3430 

1150-

1050 

 1600 – 

1450 

   [82] 

Nano-zerovalent 

manganese/biochar 

3320  1580     [68] 

Graphene oxide 

/CoFe2O4- sludge 

biochar composite 

3423–

3444 

 1562–

1628 

 1035–

1081 

  [70] 

Biochar derived 

from sugarcane 

bagasse 

3430  1625 1710 1030 865–

750 

 [83] 
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Biochar-supported 

MnFe2O4 

3361  1495 and 

1283 

  875  [84] 

Bidirectional 

activated biochar 

from sugarcane 

3744  1615, 

1580, 

1582,1497 

 1415 

and 

1381 

 1384, 

1379 

[85] 

Biochar-based iron 

oxide 

3400–

3500 

 1500 1600 1040   [72] 

Sludge-derived 

biochar 

3420 1035  1590 1035 700–

900 

 [73] 

Natural iron ore – 

biochar 

3426  1588  1099 807  [86] 

Pyrrolic N-rich 

biochar 

3428  1592 1714 1064  1236 [56] 

N-doped graphite-

like mesoporous 

structure biochar 

3160   1683–

1590 

  1344 [74] 

Magnetic Pristine 

biochar 

3451  1584  1118   [87] 

Biochar from oil 

palm frond 

3460  1615 1736  878, 

809 and 

764  

 [88] 

Biochars produced 

from rice straw, 

bagasse, and 

eucalyptus wood 

3400  1620 1730 1100   [89] 
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Cornstalk, orange 

peel, and peanut 

hull drived biochar 

3430  1620 1580 1080   [90] 

Biochars from 

forest and agri-food 

wastes 

3440  1633   877  [91] 

Modified magnetic 

biochar from pine 

nut shells 

3360 1030 1640    1050 [92] 

Magnetic sludge 

biochar 

3429–

3432 

1031–

1090 

1618–

1649 

    [75] 

Cassava ethanol 

sludge derived 

biochar 

3425–

3433 

1066–

1087 

 1633–

1635 

   [93] 

 325 

2.3. Surface structure and morphology 326 

 327 

The surface morphology and chemical composition are important attributes of biochar. 328 

Scanning electron microscope (SEM) and transmission electron microscope (TEM) are 329 

valuable tools to evaluate the development of surface structure, porosity and pores 330 

distribution of biochar before and after modification [38].  331 

Raman spectroscopy is considered a powerful technique for exploring the graphitization 332 

or defects on carbonaceous materials. In biochar engineering and development, the 333 

interest focuses on two bands; i) the D band which represents the disorder and defect 334 

degree caused by vacancies, edges and functional groups, ii) the G band which is related 335 
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to the crystalline and graphitic structures [94]. Meanwhile, the estimated intensity ratio of 336 

the D band relative to the G band (ID/IG) reflects the disorder and level of defect of the 337 

analyzed biochar (Table 5). It is suggested that an increase in ID/IG ratio due to the 338 

addition of iron suggests an increase of defective sites [95]. It is also reported that the 339 

increase in pyrolysis temperature until a certain value increases the defected sites formed 340 

on biochar [73]. Also a low ID/IG ratio meant a relatively high degree of graphitization [93]. 341 

Generally, the ID/IG value increases with increasing pyrolysis temperatures, indicating 342 

that high pyrolysis temperatures are beneficial for the growth of defect structures in 343 

produced biochar [96][97]. 344 

 345 

Table 5: The position of D band and G band in Raman spectra of biochar reported in 346 

literature. 347 

Biochar D band position 

(cm-1) 

G band position 

(cm-1) 

ID/IG Reference 

Sludge-derived 

biochar 

1350 1580 0.84 and 1.06 [73] 

Magnetic 

biochar derived 

from banana 

peels 

1338 1589 0.94 and 0.99 [95] 

Pyrrolic N-rich 

biochar 

1343 1588 0.79 and 1.07 [56] 
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Multi-porous 

biochar from 

lotus biomass 

1340 1585 1.67, 1.48, 

1.30, and 1.56 

[98] 

Cassava ethanol 

sludge derived 

biochar 

1368 1594 0.389 and 

0.407 

[93] 

Graphitic biochar 1310 1590 1.94–2.56 [99] 

Nanoscale zero-

valent iron 

(nZVI) supported 

on rice stalk (RS) 

derived biochar 

composite 

1309.1 

 1349.6 

1561.7 

1590.6 

0.99, 1.04, 

1.08, 1.05 and 

1.10 

[97] 

 348 

The X-Ray Diffraction (XRD) technique is applied to determine the crystal structures and 349 

phase composition in a solid material. It can also evaluate the ratio of crystalline and 350 

amorphous phase and define the material modification such as metal oxide loading [64], 351 

magnetic biochar composite synthesis [70]. The technique can evaluate the stability of 352 

biochar components after modifications, for example SiO2 modification [66]. The use of 353 

XRD spectra is reported to evaluate the interlayer spacing of the activated biochar 354 

according to Bragg’s formula and/or the average crystalline size with the help of the 355 

Scherrer equation [83]. 356 

Bragg’s equation: 357 
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𝑑 =
𝜆

2𝑠𝑖𝑛𝛳
 358 

In which λ is the X-ray wavelength whose value is 0.154 nm generally, and θ is the angle 359 

of the peak position. 360 

Scherrer equation 361 

This equation is used to evaluate the average crystalline size along c-axis (Lc) and the 362 

size of the layer planes (La). 363 

𝐿 =
𝑘𝜆

𝐵𝑐𝑜𝑠𝛳
 364 

In which k is the value of the shape factor (k = 0.9 and 1.84) which are used frequently for 365 

the purpose of calculation of Lc and La respectively. B is the value of line broadening at 366 

half width of the peak known as FWHM (Full width half maximum) in radians. 367 

 368 

2.4. Biochar stability  369 

 370 

Thermogravimetry analysis (TGA) is applied to evaluate the thermal stability of biochar 371 

[74] and characterize its structure, as it gives information about the pyrolysis yield, the 372 

content of moisture and the different structural components such as hemicellulose, 373 

cellulose, and lignin [100]. Generally, the weight loss in TG analysis can be divided into 374 

three stages shown in Table 6 below; the first stage represents the loss due the water 375 

evaporation, and decomposition of bonded hydrated compounds, during the second stage 376 

the major loss observed is explained by the thermal decomposition of polar organic 377 

compounds derived from most cellulose, hemicellulose and holocellulosic precursors 378 
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[101]. Finally the last weight loss stage was attributed to the slow and gradual thermal 379 

decomposition of high molecular weight components present in the biomass [89]. 380 

 381 

Table 6: The main weight loss stages of biochars in thermogravimetry analysis reported 382 

in literature. 383 

Biochar 1st weight loss 2nd weight loss 3rd weight loss Reference 

Biochars produced 

from rice straw, 

bagasse, and 

eucalyptus wood 

7 to 9 % 

(0-150 °C) 

 

60 to 81 % 

(200-450 °C) 

 

(450-900 °C) 

 

[89] 

Maple leaf-derived 

biochars 

10 %  

(40-300 °C) 

 

45 % 

(300-400 °C) 

 

5 % 

(400-1000 °C) 

 

[101] 

Multi-porous biochar 

from lotus biomass 

10 % 

(0-160 °C) 

 

58 % 

(160-365 °C) 

dehydration and 

condensation of 

cellulose and 

hemicelluloses 

20 % 

(350-900 °C) 

 

[98] 

Functionalized 

magnetic biochar from 

waste poplar sawdust 

(CoFe2O4@PBC-

LDH) 

11 % 

(20-200 °C) 

loss of 

hygroscopic water 

and light 

components 

12-14 % 

(200-415 °C) 

dehydroxylation of 

LDHs and the 

release of volatile 

substances by the 

17 % 

(415-980 °C) 

 

decomposition of 

biochar 

[102] 
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interlayer CO3
2– 

anions 

 384 

3. Toxicity of biochar 385 

 386 

Biochar has an active role in environmental remediation as an adsorbent, filter medium or 387 

active catalytic composite [103], nonetheless it is imperative to systematically discuss its 388 

potentially negative environmental effects and prevent risks during application. Some 389 

studies focus on the evaluation of harmful components of biochar such as dioxins [104], 390 

heavy metals [105], polycyclic aromatic hydrocarbons (PAHs) [106][107], environmentally 391 

persistent free radicals (EPFRs) [108], volatile organic compounds (VOCs) and 392 

perfluorochemicals (PFCs) [109]. 393 

The content of heavy metals in biochar differs with biomass type and source [105][110], 394 

for example sludge biochar, which has a high heavy metal content [111]. The 395 

concentration of heavy metals in biochar is therefore linked to the origin biomass and is 396 

retained during pyrolysis [112]. In addition, PAHs in biochar are reported to have high 397 

biotoxicity effect on plants and microorganisms in different environmental media. The 398 

content of PAHs in biochar depends on the process itself, namely residence time, 399 

temperature and special attention should be given to avoiding the condensation of tar 400 

loaded gases on the biochar. In specific, PAH formation i) varies with the feedstock type 401 

or nature [57], ii) is reduced at sufficient heating rate during pyrolysis [107], iii) decreases 402 

while pyrolysis temperature and/or residence time in reactor increase [113].  403 

Dioxins also form during the biochar production process, the factors that influence are; i) 404 

Chloride (Cl) content in feedstock, as reported by Wiedner et al. [114], ii) reactor 405 
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temperature, with dioxins forming as temperature reduces, usually when the flue gas cools 406 

down [107]. EPFRs can be produced during pyrolysis process with lignin, cellulose and 407 

hemicellulose in biomass fibers acting as a precursor [115], [116]. In addition, the content 408 

of these free radicals increases with the pyrolysis temperature [117]. It may pose a 409 

potential environmental risk since they can induce the formation of reactive oxygen 410 

species with high cytotoxicity and phytotoxicity within environmental media [118]. 411 

Other potential risks of biochar are due to adsorbed pollutants on the  biochar surface, the 412 

presence of residual chemicals in biochar originating from the plant residues persisting 413 

the pyrolysis process, and finally the leaching out of various components from the 414 

biodegradation under natural conditions of aged biochar [119]. 415 

The voluntary biochar quality standards that apply in Europe with the European Biochar 416 

Certificate (EBC) [120], in the UK with the biochar quality mandate (BQM) and in the USA 417 

with the International Biochar Initiative-Biochar Standard (IBI-BS) propose limits for 418 

certain harmful components in biochar such as; PAH, benzo (a) pyrene, polychlorinated 419 

biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), polychlorinated 420 

dibenzofurans and heavy metals [120][121]. However, these standards are safeguarding 421 

biochar production rather than final applications, therefore prior to applying novel 422 

adsorbents with potential ecotoxic effects the national safety regulations for air, soil and 423 

water need to be secured at all times.  424 

 425 
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4. Factors influencing pollutants removal  426 

The elimination of pollutants and the adsorption capacity of biochar are greatly affected 427 

by its physicochemical properties as well as of the target pollutants nature, and the 428 

operating conditions of the treatment, as reported in Tables 1 and 2 [122]. Several works 429 

report the effect of different parameters and their interaction on the removal efficiency of 430 

pollutants with the help of multivariate optimization approach [123][124]. Figure 3 shows 431 

the factors influencing the removal of organic pollutants by biochar. In general, biochar 432 

concentration and initial pH of the solution are the most discussed. 433 

 434 

Figure 3: The main influencing parameters in organic pollutants removal by biochar. 435 

 436 
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4.1.  Effect of biochar dose 437 

The impact of biochar dose on pollutant removal efficiency is reported in detail in most of 438 

the adsorption studies, because of the high correlation observed between adsorbent 439 

dosage and adsorption capacity. However there is an optimum value of biochar dose, 440 

beyond this threshold there is no enhancement in the pollutant elimination anymore [42]. 441 

This tendency is explained by the optimum use of the active adsorption sites for pollutant 442 

adsorption [125]. Beyond the optimum point, the decrease in the adsorption capacity may 443 

be due to the inadequate availability of pollutant molecules for spare active sites [126]. In 444 

another study the increased biochar quantity results to a faster achievement of the 445 

reaction equilibrium, indicating the increased availability of vacant reactive sites on the 446 

adsorbent surface, which leads to a high adsorption rate at the beginning of the process 447 

[127]. However the increase in biochar dosage decreases the adsorption capacity 448 

exponentially but moderately at lower dosages and slightly at higher dosages [128]. 449 

 450 

4.2.  Effect of initial solution pH 451 

The pH of pollutant solution is a factor which influences the removal efficiency because of 452 

the predominant role on the charge characteristics through the protonation and 453 

deprotonation of oxygen-containing groups on the biochar or biochar composite surface 454 

[129]. The pH value also influences the degree of ionization of the adsorbate [130]. Wang 455 

et al reported that anion adsorption is favored at pH less than the point of zero charge 456 

(PZC) because the adsorbent surface is positively charged. However, when the surface 457 

is negatively charged at pH values above the PZC the cation adsorption is favored [131]. 458 
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In the work of Chaukura et al, a maximum adsorption of methyl orange was recorded at 459 

pH value lower than the PZC of biochar, this was explained by possible electrostatic 460 

attraction of the dye molecules to biochar surface since the dye molecules existed as 461 

anions at the reported conditions [132]. Generally, the organic dyes adsorption capacity 462 

by biochar or nano-metal biochar composites decrease with increasing solution pH values  463 

[133].  464 

4.3.  Effect of pollutant concentration  465 

The initial concentration of the adsorbate plays a crucial role in the efficiency of the 466 

adsorption process. It is reported that the adsorption capacity decreases with the increase 467 

in the initial concentration of pollutants [134]. This is attributed to the occupation of active 468 

sites on the adsorbent material surface by the targeted pollutants [127]. Some works 469 

reported a proportional relationship between pollutant initial concentration and adsorption 470 

capacity of biochar; however, the removal yield of pollutant decreases [135][136]. An 471 

explanation of this can be that at higher concentration, the mass transfer driving force 472 

increased [85], which enhanced the diffusion rate and the probability that molecules 473 

reached the material surface increases [137]. We would like to comment that if the 474 

diffusion rate is enhanced, one may observe positive correlation between concentration 475 

and rate of adsorption, instead of adsorption capacity [135][136], as the latter should be 476 

dependent of the total available sorption site amount on biochar. 477 

Sayin et al. reported a decrease of adsorption efficiency with increasing the ciprofloxacin 478 

initial concentration from 50 to 150 mg/L, and this was explained by the gradual saturation 479 

of specific active site for antibiotic molecules adsorption [138]. Nnadozie and P.A. Ajibade 480 



 

31 
 

studied the adsorption of Indigo Carmine (IC) dye using C. odorata biochar, the result 481 

showed a decrease in the removal efficiency with increasing dye concentration from 10 to 482 

100 mg/L with the same biochar dose [139]. 483 

4.4. Effect of anions presence 484 

The pollutant molecules may compete with various coexisting anions such as NO3
–, Cl–, 485 

SO4
2- and PO4

3- during adsorption in aqueous environment. Wang et al reported a 486 

decrease in the removal efficiency of p-arsanilic acid in the presence of PO4
3- because of 487 

the stronger competitiveness for the adsorptive sites on the surface of biochar [140]. The 488 

increase in NaCl content decrease the adsorption capacity of biochar [54], which was 489 

explained by the reduction of repulsion force between adsorbent particles and hence the 490 

increase of aggregation of nanomaterials [141]. However, beyond a certain dose of NaCl 491 

increase, the adsorption capacity increases, which was attributed to the increase of ionic 492 

strength which improved the activity coefficient of hydrophobic organic compounds, 493 

resulting in a decrease in solubility (i.e. salting-out effect), thus was conducive to pollutant 494 

adsorption [142]. It can also be explained by surface charge neutralization of the 495 

carbonaceous adsorbents by the double layer compression and the reduced solubility of 496 

the micropollutants in the presence of high Na+ concentration [82]. 497 

4.5. Effect of contact time 498 

The effect of contact time needs to be considered in the evaluation of the biochar 499 

adsorption system. Published research reports a fast increase in the adsorption capacity 500 

at the beginning of the treatment and a gradual slow-down of the adsorption capacity until 501 
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adsorption equilibrium is reached, when the sorption sites were fully occupied [135][143]. 502 

This can be explained by the gradual adsorption saturation of active sites on biochar and 503 

the gradual decrease in the differential concentration between solution bulk phase and 504 

the surface of the adsorbent [144]. Similar results were observed by Velusamy et al. [145] 505 

and Li et al., in the removal of ciprofloxacin [146]. Sayin et al., in their work on the removal 506 

of ciprofloxacin by H3PO4 modified biochar, reported the decrease of the adsorption rate 507 

of antibiotic molecules with increasing time of treatment and that until the equilibrium point 508 

of time [138]. Nguyen et al. in their study tested diverse Metal salt-modified biochars 509 

derived from different agro-waste for the removal of Congo red dye. The results revealed 510 

the different equilibrium times needed for the different biochars applied  at the same initial 511 

concentration of the dye [13]. 512 

4.6. Effect of temperature 513 

The adsorption temperature can also affect the pollutants removal capacity by biochar 514 

and its composites. However, the majority of water treatment experiments are conducted 515 

at ambient temperature (25 °C) to simulate the temperature predominant in the 516 

environments [147]. It is reported that the adsorption increases with increasing 517 

temperature in the range of 15-35°C [71], which reflects an endothermic process [148]. 518 

Similar results on the endothermicity of : i) p-nitrophenol adsorption by pine sawdust 519 

biochar was reported in the work of Liu et al [149] and ii) diclofenac  adsorption by pine 520 

wood biochar [150]. The increase in temperature increased the probability of pollutant 521 

molecules contacting the active sites [148]. However, the increase of temperature in the 522 

same range can reduce the adsorption capacity in an exothermic process [136][145]. On 523 
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the other hand there is a proportional relationship between temperature and the molecular 524 

movement acceleration, which promotes adsorbent-ion interaction and reduction of the 525 

Gibbs free energy [151][152]. The increase of temperature can enhance the formation of 526 

aromatic carbon present on the surface of biochar resulting to improved surface 527 

characteristics for adsorbing an extensive range of pollutants [153]. 528 

4.7.  Effect of chemical impregnation ratio on the removal of pollutants 529 

The ratio of the non-processed to magnetic material was studied in several works to 530 

evaluate its effect on pollutant removal efficiency. It is found that the increase of this ratio 531 

increases the adsorption capacity of magnetic biochar until an optimum value but further 532 

increase leads to a decrease of the adsorption capacity [154]. However, Son et al report 533 

that copper removal capacities decrease with decreasing biochar/Iron ratio and Fe 534 

recovery efficiency, explained by the plugging of biochar’s surface pores with iron oxide 535 

particles [155]. In addition, Yang et al. found that the increase in FeCl3/sawdust 536 

impregnation mass ratio increases the removal efficiency of mercury which was attributed 537 

to oxygen-rich functional groups formation at biochar surface and especially C=O group. 538 

However, an excess of FeCl3 can lead to; i) the aggregation of Fe3O4 particles on the 539 

magnetic biochar surface, and/or ii) the variation of textural properties and therefore a 540 

decrease in mercury removal yield [156]. 541 

5. Post-processing modification of biochar: Activation and functionalization 542 

 543 

The thermal decomposition of biomass in the absence of oxygen, or at very limited oxygen 544 

environment, produces biochars that still contain various refractory oxides, depending on 545 
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the biomass feedstock, such as Fe2O3, SiO2, KCl, Al2O3, CaSO4, CaCO3 [157]. 546 

Furthermore, the surface of most pristine biochars are often negatively charged in 547 

association with its abundant oxygen-containing function groups, thus exhibiting specific 548 

sorption to cations (e.g., heavy metals ions) [158]. However, sorption toward anionic 549 

species (i.e., oxyanion, anionic dyes and organics) is limited [159]. This limits the 550 

applications of biochar which drives researchers to introduce new and additional metal 551 

oxides with different methods to modify biochar for targeted applications [160]. 552 

In addition, biochar prepared by conventional pyrolysis of biomass may have poor 553 

physicochemical properties such as surface oxygenated groups, surface area, pore 554 

volume, and pore width. These properties fluctuate considerably and depend on feedstock 555 

types and production conditions [161]. Nevertheless, the available functional groups 556 

(carboxyl (–COOH), hydroxyl (–OH), and carbonyl (C=O)), are quite important in water 557 

treatment [162]. The hydrophilic (polarity index) or hydrophobic property (aromaticity) of 558 

biochar highly depends upon the type and nature of existing functional groups on the 559 

surface. Different techniques available have been reported to boost the abundance of this 560 

last, such as steam activation, impregnation method, chemical and heat treatments [163]. 561 

Biochar can also act as an excellent photocatalyst when combined with other catalysts, 562 

because of the resulting favorable physicochemical properties such as; high surface area 563 

with high active site, enhanced charge separation, higher availability of functional groups, 564 

high porous volume, better catalyzing ability, stability and recoverability [164]. However, 565 

the synthesis of photocatalyst-based biochar must be optimized [165]. As reported by Yu 566 

et al., the addition of an appropriate amount of ZnO into biochar enhanced both the 567 

adsorption capacity and the photocatalytic ability of the nanocomposites [46]. Similar 568 
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results were reported in the application of Mn-loaded and Fe-loaded biochar for the 569 

atrazine elimination in aqueous solution with heterogeneous catalytic ozonation [166].  570 

Ahmaruzzaman reported a different synthesis technique of biochar supported 571 

photocatalyst like Sol-gel method, Ultrasound assisted synthesis, Thermal 572 

polycondensation technique, Solvothermal process, Hydrothermal process [164]. 573 

As seen in the Figure 4, the different post-modification methods of biochar are classified 574 

into four main categories; 1) modifications to increase the surface area and porosity; 2) 575 

modifications to render the biochar surface positively charged; 3) Increasing surface 576 

oxygen-containing functional groups and 4) magnetization of biochar in order to 577 

facilitate/enhance the biochar particles recovery. It may be that one treatment can 578 

enhance two or more proprieties at the same time, for example the case of H2SO4 579 

treatment which enhances the specific surface area and increases the oxygen-containing 580 

functional groups. There are different classifications for these modifications reported in 581 

literature [167][18] such as the classification according to physicochemical characteristics 582 

of biochar targeted by the modification [161], or according to the nature of process 583 

(chemical, physical or composite) [168]. 584 



 

36 
 

 585 

Figure 4: Typical engineered biochar modifications and its classification. 586 

 587 

Figure 5 shows the effect of different modification treatments on the biochars’ specific 588 

surface area (SSA) as reported in literature. We observe that: i) the result for a treatment 589 

technique varies from one biochar to another (case of Mn-BC modification and H3PO4 590 

treatment for example); ii) some treatments lead to a decrease in SSA (case of FeCl3-BC 591 

and AlCl3-BC); iii) some techniques presented a considerable increase in the SSA such 592 

as CO2 activation and K2CO3 treatment. The Increase of biochar SSA resulting from 593 

different posttreatment techniques does not always mean the improvement of its 594 

performance towards the removal of organic pollutants. 595 

 596 
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 597 

Figure 5: The evolution of specific surface area (SSA) of biochar according to different 598 

modification techniques in some reported works ([13], [169], [170], [171], [172], [173], 599 

[77], [174], [175],[76],[75],[90],[90],[56],[86],[69],[176],[177],[39],[178], [179],[180], [52], 600 

[64]). 601 

Moreover, as reported in detail by Barquilha and Braga, organic and inorganic pollutants 602 

adsorption on biochars can involve different mechanisms, including physical and chemical 603 

interactions. The interaction between biochars and adsorbate species is not simple and 604 

may involve different adsorption mechanisms, such as van der Waals forces, electrostatic 605 

interactions, surface complexation, ion-exchange, hydrophobic interactions, π-606 

interactions, co-precipitation, partition, and pore-filling [181]. Other studies report on the 607 
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mechanisms of dye adsorption by sewage sludge-biochar [182] and adsorption 608 

mechanisms of modified biochar on typical emerging contaminants [167]. 609 

 610 

5.1. Acid-base activation/decoration  611 

 612 

Generally, biochar modification by acidic treatment occurs in two main ways: activation 613 

and decoration. Activation is to develop porous structure and increase specific surface 614 

area by using chemical activating agents with highly etching ability. Whereas, decoration 615 

emphases on enhancing surface activity, by using zero-valent iron nanoparticles [183], 616 

Fe3O4 and FeOOH as additives [184]. Another work reported the enhancement of sorbent 617 

hydrophobicity by decoration with different acid and fatty acids such as; pure lauric acid, 618 

acetic anhydride, phosphoric acid and citric acid [185][186][187]. 619 

Gurav et al., reported the application of pinewood biochar decorated with coconut oil-620 

derived fatty acids for adsorptive removal of crude petroleum oil from water. Fatty acids 621 

composition attached to the resulted biochar (mg/g of biochar) was reported as: lauric acid 622 

(9.024), myristic acid (5.065), palmitic acid (2.769), capric acid (1.639), oleic acid (1.362), 623 

stearic acid (1.114), and linoleic acid (0.130). Decorated biochar presented a higher 624 

hydrophobicity and a good reusability with stable adsorption efficiency at 51.40% after fifth 625 

adsorption-desorption cycles [188]. The sulfamic acid modified biochar reported in the 626 

work of Liu et al., presented a specific surface area with 2.6 times larger than that of the 627 

original biochar introducing more functional groups on the biochar. Furthermore, the 628 

resulted biochar shows an improved performance for tetracycline adsorption [39]. 629 

Many studies have proved that biochar treated with a strong oxidizing agent (e.g., 630 

HNO3/H2SO4, HNO3, HF/HNO3, KMnO4, H2O2 and NaClO) enhance its sorption capacity, 631 
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creates charged and hydrophilic surface functional groups, and increases their colloidal 632 

stability and mobility [189]. The activation of biochar in one step and two steps by KOH 633 

and KMnO4 as a green activator was found to give a large pore volume, pore channel and 634 

proportion of aromatized structure, it revealed to have a high adsorption capacity for 635 

methylene blue removal [190]. The oxidation of corncob biochar by of HNO3-H2SO4 636 

mixture was found to boost the adsorption capacity of biochar, decrease hydrophobicity 637 

and increase the amounts of oxygen-containing groups [191]. The treatment of sludge 638 

biochar modified by Fe/Zn + H3PO4 presented an adsorption capacity for ciprofloxacin 639 

(CIP), norfloxacin (NOR) and ofloxacin (OFL) from water up to 20 times of those of sludge 640 

biochar only or H3PO4 modified biochar [178]. 641 

Some works reported the NaOH activation of biochar or biomass before pyrolysis in order 642 

to well-developed mesoporous structure [192], enhance the higher specific surface area, 643 

total pore volume, aromaticity [193], and graphitized orderly carbon layer in biochar [135]. 644 

The KOH treatment was also reported to increase the surface area and pore volume [194]. 645 

Apparently, biochar modification with a strong inorganic acid is one of a simple and 646 

effective processes for biochar activation. However, the scaling-up into an industrial scale 647 

will produce a large amount of acidic or basic wastewater, with negative impact to the 648 

aquatic environment. 649 

5.2. Persulfate activation 650 

 651 

Persulfate (PS) activated biochar was reported in many studies in the last years 652 

[173][195], due to the increased pollutant removal efficiency from water by combining the 653 

advantage of PS radicals effect and the high specific surface area of biochar [196][197]. 654 
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It is noticed that, compared with the traditional hydroxyl radical-based AOP, Sulfate 655 

radicals-AOP has a higher redox potential (2.5–3.1 V (SO4
•–) vs. 2.7 V (•OH)), but longer 656 

half-life time (30–40 μs (SO4
•–) vs. <1 μs (•OH)) and wide pH adaptability [198]. Fan et al. 657 

reported the slight adsorption of bisphenol A (8.1%) by sludge-derived biochar (SBC) 658 

alone and limited direct oxidation (2.4%) by sole peroxymonosulfate (PMS), nevertheless, 659 

the removal efficiency of bisphenol A was boosted to 94.5% within 60 min in the presence 660 

of both SBC and PMS. that the explanation is that PMS is bound to SBC and forming a 661 

surface reactive complex (SBC-PMS*), which would abstract the electrons from the 662 

adsorbed pollutant through the conductive carbon tunnel [199]. 663 

Furthermore, different biochar modification options can be combined to promote the 664 

elimination of aqueous pollutants, such as magnetization and peroxymonosulfate (PMS) 665 

activation, reported by You et al. [172]. 666 

 667 

5.3. Physical activation 668 

 669 

Physical activation of biochar is the partial oxidation of the material to increase its porosity, 670 

under low to medium heat treatment (<250oC) under air conditions or high temperature 671 

(>750 ◦C) treatment with CO2, steam, blends thereof. At high temperatures H2O and CO2 672 

become reactive and therefore allow for chemical reactions with the biochar matrix [200]. 673 

Jellali et al. reported the increase of the surface area and total pore volume after CO2 674 

activation by about 5.9 and 1.5 times, respectively [122]. Meanwhile the activation process 675 

with air at a low temperature (≈275 °C) for 4 h significantly enhanced the structure and 676 

texture of the biochar generated from different sewage sludge types [201]. Sewu et al. 677 

reported that the steam activation of biochar enhances the porosity and increases the 678 
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specific surface area by 5 times and the adsorption capacity of crystal violet by 4.1 time 679 

[171]. Similar results were reported by Wang et al. for the synergistic removal of Cu2+ and 680 

tetracycline (TC) with steam-activated bamboo-derived biochar [170]. Ibrahim et al 681 

reported that steam activation of carbonized Oil Palm Mesocarp Fiber presents a high 682 

removal of the chemical oxygen demand and suspended solids from 395 mg/L and 117 683 

mg/L to 122 mg/L and 7 mg/L, respectively in a treated wastewater after 6 consecutive 684 

treatment cycles [202]. Some works reported that alkali and steam treatments can be used 685 

to increase porosity and clean blocked pores [203][204]. 686 

 687 

5.4. Biochar-based composites 688 

 689 

It is reported that producing biochar-based composites allows to combine the advantages 690 

of biochar with nano-materials, where the resulting composites usually exhibit great 691 

improvement in functional groups, pore properties, surface active sites, adjusted net 692 

surface charges, catalytic degradation ability and easy for recovery [204][180]. These 693 

composites can be classified into three categories based on their synthesis process 694 

towards biochar-based nano-materials; i) nano-metal oxide/hydroxide-biochar 695 

composites, ii) magnetic biochar composites [159], and iii) clay mineral based-biochar 696 

[205].  697 

 698 

5.4.1. Nano-metal oxide/hydroxide-biochar composites 699 

 700 

Several chemical additives have been used in the synthesis of these composites, like  701 

H3PO4, NaCl, K2CO3, MgCl2, ZnCl2, KOH, CaCl2 and FeCl3, which may be added before 702 
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or after biomass carbonization [161], in  powder forms or dissolved, as shown in figure 5. 703 

Table 6 summarizes some works reported on nano-metal oxide- biochar composite 704 

synthesized to treat organic pollutants, where it can be seen that there are different 705 

preparation methods for these composites under diverse operating conditions. So, for 706 

example we find co-precipitation, pyrolysis, impregnation, sol-gel method and chemical 707 

reduction. Using a different classification method, in their review Zhao et al classified the 708 

nano-metal oxide-biochar composites preparation into four methods as presented in the 709 

figure 6; i) Impregnation which is characterized by its simplicity and a large capacity of 710 

obtained  composites, ii) Chemical coprecipitation characterized by low cost, high purity, 711 

homogeneous nanoparticles, both these methods have the disadvantage of causing 712 

chemical pollution, iii) direct pyrolysis characterized by the easy preparation and the prior 713 

biomass enriched with target heavy metals but it is difficult to control the nano-metal 714 

oxides/biochar ratio in the composites, iv) Ball milling with various advantages like Low 715 

cost, easy to operate, no chemical pollution, effective reduction of particle size of metal 716 

oxides. In the downside, during the ball milling preparation particles are easily dispersed 717 

in water and move to surface runoff, pollutants can migrate out of the contaminated site, 718 

posing potential risks to groundwater [133]. 719 

 720 
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 721 

 722 

Figure 6: Different pathways for Nano-metal oxide/hydroxide-biochar composites 723 

synthesis. 724 

 725 

Special attention is given to the ball milling technique, during which samples including 726 

biochars are crushed to nanometer size in the presence of metal oxide particles [206]. 727 

Ball milling has the capacity to increase the SSA, probably by revealing pores [207], and 728 

to increase the oxygen-containing functional groups (e.g., carboxyl, lactone, and hydroxyl) 729 

[208]. Zheng et al. developed a new ball-milling process to synthesize MgO/biochar 730 

nanocomposites with a dual- functional adsorbent to remove both cationic and anionic 731 

pollutants. The developed materials enhanced the adsorption of methylene blue (MB) for 732 

about 8.4 times, likely due to increased surface area and pore volume [179].  733 

 734 

Table 6: Reported work on Nano-metal oxide-biochar composites synthesis for organic 735 

pollutants removal. 736 
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Biochar Synthesis 

method 

Reagent Operating Conditions Reference 

MnOx-coated rice 

straw biochar 

Co-

precipitation 

KMnO4 The mixed solution was 

vibrating continuously at 

30 °C for 8 h and then 

oven-dried at 80 °C for 24 

h after washing. 

[129] 

Fe2O3– Paper and 

pulp sludge biochar 

One-step 

pyrolysis 

FeCl3 Pyrolysis of FeCl3-

impregnated Paper and 

pulp sludge (1:3, m/v) at 

750 C for 2 h in a one-step 

pyrolysis method. 

[132] 

Mg-biochar, Al-

biochar, Fe-biochar 

and Ca-biochar 

Pyrolysis 

(impregnation) 

MgCl2.6H2O, 

AlCl3.6H2O, 

CaCl2.2H2O 

and 

FeCl3.6H2O 

A dry mixture of biomass 

and MgCl2 (or AlCl3, CaCl2, 

FeCl3) was heated at 10 

C/min up to 600 C under N2 

flow for 1 h. 

[147] 

Nano-MgO 

modified fallen leaf 

biochar 

Sol-gel 

method 

MgCl2⋅6H2O MgCl2⋅6H2O mixed with 

biochar suspension, stirred 

at 25 ◦C for 6 h and then 

centrifuged and dried at 

80°C 

[169] 

AlCl3- agro-waste 

biochar, FeCl3- 

agro-waste biochar, 

Pre-pyrolysis 

treatment 

AlCl3.6H2O, 

FeCl3.6H2O, 

and CaCl2 

Biochar added to salt 

solution, stirred (ambient 

Temperature for 24h), 

[13] 
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CaCl2- agro-waste 

biochar 

followed by 

pyrolysis 

filtered, dried at 80°C and 

the pyrolyzed at 500 °C. 

Nano-zerovalent 

manganese/biochar 

composite 

(nZVMn/PBC) 

Chemical 

reduction 

method 

MnCl2, 

NaBH4 

 

MnCl2 was dissolved in 

water and ethanol mixture, 

biochar was added 

simultaneously, NaBH4 

was added drip by drop to 

the mixture, and then 

sonicated, followed by 

water remove and drying. 

[68] 

 737 

Finally Sewu and his co-workers reported that using non-magnetic goethite mineral (α-738 

FeOOH) in co-pyrolysis with firwood biomass to produce biochar proved as a green 739 

process when compared to the ubiquitous and conventionally used FeCl3, which has a 740 

negative impact due to toxicity [209]. 741 

 742 

5.4.2. Magnetic biochar composites 743 

 744 

Significant research efforts have been carried out to improve the adsorption capacity of 745 

biochar. However, due to the small particle sizes and lower density, the separation and 746 

reuse of biochar after water pollutants elimination remain one of the main problems to be 747 

resolved [210]. Magnetic biochar has been successfully produced by various methods as 748 

reported in literature [211], presented in figure 7, showing the impregnation-pyrolysis, 749 

chemical co-precipitation, solvothermal and reductive co-precipitation methods. It is 750 

shown that these biochar composites provide effective absorptivity, ready separation by 751 
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using external magnets and easy recycling [212]. Nevertheless, the traditional loading-752 

process of magnetic medium increases the cost of the sorbent [213]. Thines et al reported 753 

three main common techniques employed to produce magnetic material such as pyrolysis, 754 

co-precipitation and calcination method [214]. An additional common production method 755 

was reported in literature such as, conventional heating in an electrical furnace [215], 756 

microwave heating in a modified furnace [216][154]. 757 

 758 

 759 
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Figure 7: Schematic diagram of common Magnetic biochar preparation methods. 760 

 761 

The co-precipitation method was found to be the simplest due to its easy step of mixing 762 

and heating. This process focuses on the molar ratio of transition metal’s ion being used 763 

during the mixing for improving the characteristics of the magnetic biochar produced, in 764 

terms of magnetism and porosity [214]. Co-precipitation methods result to coating the 765 

surface of biochar with different iron oxides such as, Fe3O4, c-Fe2O3, and CoFe2O4 766 

particles, which give magnetic proprieties for active sites of iron oxide  for pollutant 767 

elimination [212][217][218]. 768 

It has been reported that additives with a high decomposition capacity (e.g., AlCl3, FeCl2 769 

and MgCl2) exhibits catalytic activity, higher sorption capability, increasing porosity and 770 

creating positively charged adsorption sites [161][219][220]. Table 7 summarizes some 771 

results on the preparation of magnetic biochars following different synthesis pathways, 772 

different metal reagents and different operating conditions. 773 

 774 

Table 7: Literature on magnetic biochar composites synthesis for organic pollutants 775 

removal. 776 

Magnetic biochar Synthesis 

method 

Reagent Operating Condition reference 

Magnetic activated 

sawdust hydrochar 

Slow thermal 

pyrolysis 

Fe(NO3)3 Pyrolyis under N2 flow for 1h 

at 700˚C with with a heating 

rate 3 K min−1. 

[221] 
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Cottonwood 

biochar/γ- Fe2O3 

Thermal 

pyrolysis  

Ferric 

chloride 

hexahydrate, 

FeCl3, 6H2O 

Biomass were immersed into 

FeCl3 solution for 2 h and 

dried at 80 °C for 2 h 

followed by pyrolyzing the 

biomass mixture in a furnace 

at 600 °C with the flow of N2 

for 1 h. 

[222] 

Fe3O4-loaded 

hydrochar 

magnetic biochar 

Thermal 

pyrolysis 

FeCl3, 6H2O 

and ZnCl2 

Pyrolysed under N2 flow of 1 

L/min for 30 min at a 

temperature range of 500˚C 

to 800˚C 

[223] 

Humic acid coated 

magnetic biochar 

Thermal 

pyrolysis 

FeCl3·6H2O 

and humic 

acid 

Pyrolysis with a heating rate 

of 20 °C min−1 at 500 °C for 

6 h. 

humic acid and magnetic 

biochar obtained was stirred 

at 25 °C with 170 r min−1 for 

24 h and kept quiescent for 

48 h. 

[224] 

Magnetic 

greigite/biochar 

composites 

Co-

precipitation 

/solvothermal 

method 

FeSO4.7H2O Suspension was heated at 

180 C for 12 h. 

 

[225] 
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CuFe2O4-loaded 

magnetic 

biochar 

Co-

precipitation 

process 

CuCl2 and 

FeCl3 

Process were carried out at 

pH10 and the suspension 

were heated to 98–100 °C for 

2 h. 

Molar ratio of 1:2 of Cu2+: 

Fe3+. 

[226] 

Fe and Mn ions 

onto pinewood 

biochar 

Co-

precipitation 

process 

MnCl2·4H2O 

and 

FeCl3·6H2O 

Under N2 flow, reaction of 

suspension for 4 h at 80 °C. 

Then resulting biochar dried 

at 80 °C for 12 hours. 

[227] 

Ca-Mg/biochar Co-

precipitation 

process 

MgCl2 and 

CaCl2 

Corncob was suspended in 

MgCl2 (ratio of 1:3) and CaCl2 

(ratio of 1:3) and were further 

heated under N2 flow. 

[228] 

Magnetic modified 

sugarcane 

bagasse (MSCB) 

Co-

precipitation 

process 

FeCl3 and 

FeSO4 

Mixture dissolved in an 

ammonia solution and 

proceed with ultrasound 

irradiation at 60˚C. 

Molar ratio of Fe3+: Fe2+ is 1:2 

[229] 

Fe3O4-loaded 

bentonite magnetic 

biochar 

Calcination 

process 

FeCl3.6H2O Calcined at 190˚C for 8 h. [230] 

Fe3O4-loaded 

microalgae 

magnetic biochar 

Calcination 

process 

FeSO4.6H2O Calcined at different 

temperatures for 6 h. 

[231] 

 777 
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5.4.3. Clay mineral modification 778 

 779 

Clay-biochar composite is the result of pre-mixing the raw biomass before pyrolysis or the 780 

post mixing of produced biochar with clay minerals [232]. The synthesis methods, 781 

characteristics of clay minerals-biochar and the surface interactions with contaminants 782 

during treatment has been reviewed by Arif et al [205]. This composite is characterized by 783 

high porosity and a great compatibility with water pollutants [233]. Premarathna, et al. 784 

reported the synthesis of a novel clay-biochar composite from montmorillonite (MMT) and 785 

red earth (RE) clay materials with municipal solid waste (MSW) biochar in pyrolysis. The 786 

obtained composites exhibit a high adsorption capacity towards removing tetracycline 787 

antibiotic in aqueous media [234]. Similar results were reported by Borthakur et al. for 788 

tetracycline removal from wastewater [177]. It is noticed that the surface properties of the 789 

biochar samples are considerably affected by the incorporation of different clay material. 790 

Zhao and Zhou revealed that clay-mineral modification enhanced the micro-pore area of 791 

biochar by more than 200% while only a slight growth in the mesopore area was observed 792 

[235]. It is also reported that organo-mineral layer of clay increases the biochar stability 793 

and its ability to resist the process of decomposition when biochar is applied to soil [236]. 794 

From a mechanistic point of view, interactions of BC-clay/mineral composites with 795 

inorganic and organic contaminants can be established according to different 796 

mechanisms including ion exchange, physical adsorption, precipitation, complexation, 797 

electrostatic interaction, H-bonding, partitioning, electron-donor-acceptor (EDA) 798 

interaction, hydrophobic interaction and pore-filling [237].  799 
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6. Biochar applications for organic pollutants removal from water 800 

6.1. Adsorption 801 

 802 

There is a high research interest in the adsorption as a technique for mineral and/or 803 

organic contaminated water treatment, reflected by the high number of publications in the 804 

area [238][239][240]. Lu et al. reported the simultaneous elimination of metal ions and 805 

organic compounds from aqueous solutions by rice bran, bamboo and their derived 806 

biochars. These biochars presented a high sorption capacity for acenaphthene removal 807 

compared to the original biomass whereas the coexisting Cu2+ and Cr+6  both inhibited the 808 

sorption of acenaphthene by the biochar [136]. Similar results were reported by Cheng et 809 

al. for the adsorption of methyl orange in the presence of Cr6+ from dye wastewater [71]. 810 

The simultaneous removal of toxic Pb(II) ions, poly(acrylic acid) and Triton X-100 from 811 

their mixed solution was achieved by using engineered acid activated biochars obtained 812 

from horsetail herb precursor [241]. Shin et al. investigated the competitive adsorption of 813 

three pharmaceuticals; naproxen (NPX), diclofenac (DCF), and ibuprofen (IBU) from lake 814 

water and wastewater effluent. The results revealed that the competitive adsorption of 815 

NPX, DCF, and IBU for the NaOH-activated SCW biochar was more spontaneously endo- 816 

thermic than that for the pristine SCW biochar [193]. 817 

 818 

6.2. Filtration 819 

 820 

The filtration technique was also studied and tested for the removal of different pollutants 821 

from wastewater. Wang et al., reported the removal of microplastic spheres by different 822 

biochar filters in a column system. In their study, biochar was packed in a 7 cm height bed 823 
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between two sand layers of 3 cm height each. The results show that the biochar filters 824 

provide significant capacity for the removal and immobilization of 10 μm diameter 825 

microplastic spheres (more than 95% removal efficiency) which is much higher than that 826 

of similar grain-sized sand filter studied [242]. Biochar can also be used for the pathogens 827 

removal (such as Escherichia coli and Enterococci) of as a common sand filter [243]. 828 

Kaetzl et al, studied the elimination of organic pollutant from raw sewage by using 829 

Miscanthus-biochar based filter media. Some works reported that the filtration removal is 830 

more dominant than adsorption where the result showed 74 ± 18% of chemical oxygen 831 

demand (COD) removal by biochar filters when only 61 ± 12% of COD reduction was 832 

recorded for sand filters [244]. Reddy et al., have used a filtration column with an inner 833 

diameter of 7 cm and a length of 61 cm for the elimination of different contaminants from 834 

urban storm water runoff. The results proved that biochar-filter reduced the total 835 

suspended solids (TSS), nitrate, phosphate and polycyclic aromatic hydrocarbons (PAHs) 836 

by an average of 86%, 86%, 47% and 68%, respectively [245]. 837 

 838 

6.3. Coupled Adsorption and advanced oxidation processes (AOPs) 839 

 840 

Recently, the application of biochar (BC)-based composite materials in catalytic oxidation 841 

treatment has been proposed for organic contaminants elimination and degradation 842 

[245][246]. The introduction of these composites in the AOPs is due to the dual benefits 843 

of adsorption and catalytic degradation [247]. Huang et al. revealed that morphological 844 

and chemical features of biochar played an important role in hydroxyl radical (°OH) 845 

generation [248]. Various methods have been tested and validated by researchers to 846 

develop biochar supported catalyst for the activation of hydrogen peroxide and persulfate 847 
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such as; co-precipitation, impregnation, liquid phase reduction, hydrothermal and 848 

pyrolysis [249][250]. Meanwhile, the role of biochar in hydroxyl radical based AOPs can 849 

be classified in three categories; biochar as a catalyst, biochar as supporting material and 850 

biochar as cathode in electro-Fenton process [251]. 851 

Some works reported the synthesis of biochar composite with a double function of 852 

adsorption and photocatalytic degradation. Leichtweis et al., reported the preparation of 853 

biochar derived from pecan nutshell with ZnO (biochar-ZnO) for the treatment of acid red 854 

97 in aqueous solution. The obtained material degraded 100% of acid red 97 in only 67 855 

min of treatment (30 min with biosorption + 37 min with photocatalysis) [252]. Similar 856 

results reported by Xiao et al., on the treatment of enrofloxacin with 50% g-C3N4/biochar, 857 

report a removal of 45.2% and 81.1% of enrofloxacin (C0=10 mg/L) under darkness and 858 

light with a material dosage of 1 mg/mL, respectively [175]. It is worth mentioning that 859 

about 98 % of tetracycline removal was achieved by MnFe-LDO–biochar catalyst within 860 

240 min upon exposure to a UV light [174]. On the other hand, Luo et al., reviewed the 861 

formation mechanisms of persistent free radicals in biochar and their interactions with 862 

organic and inorganic contaminants. They reported the combination of biochar with 863 

different oxidation processes such as; H2O2, photocatalysis, peroxydisulfate, persulfates, 864 

peroxymonosulfate [9]. It is also reported that the effect of some typical anions such as; 865 

SO4
2−, H2PO4

−, HCO3
− and Cl− can act as inhibitors by trapping the radicals and therefore 866 

compete with the adsorption [253]. 867 

The electrical discharge plasma was also coupled with biochar as reported by Lou et al., 868 

for the degradation of tetracycline hydrochloride in aqueous medium [254]. The result 869 

showed that during discharge plasma process, the specific surface area and the amount 870 
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of oxygen-containing functional groups of biochar increased due to the interaction of 871 

biochar and reactive species generated by the plasma. The amount of generated •OH 872 

radicals was higher in the combined system due to the decomposition of O3 and H2O2. 873 

Furthermore, this process leads to the elimination of tetracycline hydrochloride (C0=50 874 

mg/L) at 89.36% in only 5 min [254]. 875 

 876 

7. Water treatment by biochar at pilot scale 877 

 878 

Nowadays, the development of biochar based pilot or industrial plant reactors for 879 

contaminated water treatment is of great importance, because of the large amount of 880 

wastewater daily generated in the world [255]. There are only very few works reported on 881 

the organic/inorganic pollutants removal at pilot scale biochar reactors. Ashoori et al. 882 

reported the removal of nitrate, metals, and trace organic contaminants from urban 883 

stormwater runoff by pilot-scale biochar-amended woodchip bioreactor, composed of 9 884 

parallel columns of 10 cm in diameter and 50 cm length, where every three columns are 885 

filled with the same adsorbent (Woodchips, Woodchips + biochar and Woodchips + straw). 886 

The results showed a high capacity of removing nitrate and four of the five metals tested 887 

(i.e., Cd, Cu, Ni and Pb but not Zn), however a weak adsorption capacity for organic 888 

pollutant was recorded [256]. Finally, scientific advances on the extrapolation of results 889 

present a significant challenge requiring more investigations to be conducted within the 890 

framework of a reusability over several cycles. 891 

8. Conclusion and future research directions 892 

 893 
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Biochar has been recommended as a promising adsorbent material for organic 894 

contaminants removal from wastewater. Some works estimated the costs incurred in the 895 

production of biochar based adsorbents; a cheaper process and a reusability ability with 896 

multiple cycles of biochar is possible [85]. Nevertheless, supplementary research in 897 

several perspectives is necessary to ensure the efficacy and cost-effectiveness of biochar 898 

to scale-up it into a large-scale application, mostly in the following areas: 899 

1) Some of the reported biochar sorbents (such as Coir pith, Coconut coir dust, 900 

Pandanus leaves and paper waste) showed low efficiency and elimination capacity 901 

to organic pollutants. It is expected that surface modifications will help increase their 902 

capacity. 903 

2) To achieve optimal environmental remediation activity for biochars it is essential to 904 

further explore the relationships between certain factors; production process, 905 

activation, functionalization, and treatment all in an environmental ecofriendly 906 

manner. 907 

3) It is important to keep in mind that a promising bio based sorbent successfully 908 

applicable at industrial scale should be economically attractive and raw materials 909 

should be extensively available in large quantities in nature or as a by-product (bio-910 

residues) [257]. Regenerating and reusing using these sorbents for several cycles 911 

at an industrial scale can reduce the cost and energy consumption for production 912 

and offer a sustainable product. 913 

 914 
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Combined modified-clay/biochar composites revealed noteworthy advantages over 915 

single-modified-clays, due to their high adsorption capacity, low cost and more suitable 916 

for removing anionic dyes and phenolic compounds. 917 

There are a very few studies on pilot/large-scale application of biochar for organic 918 

pollutants removal in literature. 919 

The progress of research on magnetic biochar with catalytic degradation activity for 920 

organic contaminants elimination from aqueous medium is an important and a new 921 

research direction and will become a research focus soon. Studies on the toxic 922 

components produced during magnetic biochar synthesis should be carefully considered. 923 

The implementation of a sustainable management plan for pollutant-loaded Sewage 924 

derived biochars (SDBs) is critical. This strategy should follow the circular economy 925 

concept and would permit: i) an eco-friendly and low-cost regeneration and reuse of these 926 

SDBs in upcoming adsorption cycles, ii) the recovery of the adsorbed chemicals and it 927 

reprocess in an industry as resources, and iii) the preservation of the environment counter 928 

to further pollution. 929 

Two strategies concepts should be explored to achieve functional and cost-effective 930 

modified biochars for the efficient elimination of organic compounds from wastewater: i) 931 

The first one is optimizing the biochar physicochemical activation process using a variety 932 

of eco-friendly reagents, ii) The second option concerns the exploitation of the high 933 

specific surface areas of prepared biochar to impregnate nano-composites. The 934 

application of an experience plan software to optimize the influencing parameter is a 935 

powerful and innovative tool in the experiment design and analysis phase. Machine 936 
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learning (ML) is a subdivision of artificial intelligence (AI) that aims to reduce explicit 937 

computers programming by learning from experience and prediction [258]. Predictive 938 

models that use machine learning can reduce the workload, cost, space requirement and 939 

time consumption for remediation of effluents [259]. For example ML can be applied to 940 

develop prediction models for optimizing the pyrolysis process and predict biochar yield 941 

and C-char according to biomass characteristics and pyrolysis conditions [260]. As stated 942 

in [261], science-informed design of biochar substrates with high removal capacity for 943 

organic contaminants can prove a valuable tool for designing sustainable wastewater 944 

treatment systems. The developed models based on data from advanced microscopic and 945 

spectroscopic techniques (biochar surface functionality and porous structure) gave 946 

accurate predictions on the adsorption capacity of the considered materials.  947 

The conception of more compact reactors that can accommodate biochar supported 948 

catalysts are necessary for real scale applications. Future research must be devoted to 949 

implement biochar-based catalysts in pilot scale reactors that can be used also at 950 

industrial level. 951 

Optimizing biochar properties and activation techniques and parameters is important for 952 

obtaining maximum efficiency for organic pollutant elimination, less post-treatment by-953 

products and less energy consumption. 954 

Well-coordinated actions currently going on, guided by the European biochar certificate 955 

(EBC) in Europe, and the IBI at international level, to regulate and standardize quality 956 

requirements and develop guidelines or good practices concerning the biomass supply, 957 

biochar production and biochar applications which mainly are limited to agriculture and 958 

organic farming. One needs to keep in mind that the first concern of the EBC has been to 959 
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safeguard health and safety while producing and using biochar in a sustainable way. 960 

Biochar based substrates for environmental applications are a promising alternative to 961 

currently applied substrates for wastewater treatment and organic pollutant elimination, 962 

but there is yet no set of criteria on the physicochemical properties of the substates that 963 

guarantee satisfactory adsorption efficiencies. Such well-coordinated actions are currently 964 

still in the form of literature reviews that try to draw conclusions and offer a suggestions 965 

and guidelines for researchers that need to build upon the existing but very dispersed 966 

knowledge on the potential applications of biochar and biochar composites in 967 

environmental applications.  968 
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