

Preoperative risk factors for complications after flexible and rigid ureteroscopy for stone disease: A French multicentric study

H. Dupuis, Z.-E. Khene, L. Surlemont, K. Saout, A. Bakayoko, H. Ducousso, H. Bugel, C. Pfister, J.-N. Cornu

▶ To cite this version:

H. Dupuis, Z.-E. Khene, L. Surlemont, K. Saout, A. Bakayoko, et al.. Preoperative risk factors for complications after flexible and rigid ureteroscopy for stone disease: A French multicentric study. Progrès en Urologie, 2022, 10.1016/j.purol.2022.02.009. hal-03651985

HAL Id: hal-03651985 https://normandie-univ.hal.science/hal-03651985v1

Submitted on 22 Jul2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Titre: Pre-Operative Risk Factors for Complications After Ureteroscopy for Stone Disease: A French Multicentric Study.

Auteurs: Hugo Dupuis¹; Zine-Edine Khene ²; Louis Surlemont¹; Kevin Saout³; Abdel Bakayoko⁴; Héloïse Ducousso⁵; Hubert Bugel⁶; Christian Pfister¹; Jean-Nicolas Cornu¹

1 Service d'urologie, Centre Hospitalo-Universitaire de Rouen, Rouen FRANCE

2 Service d'urologie, Centre Hospitalo-Universitaire de Rennes, Rennes FRANCE

3 Service d'urologie, Centre Hospitalo-Universitaire de Brest, Brest FRANCE

4 Service d'urologie, Centre Hospitalo-Universitaire de Caen, Caen FRANCE

5 Service d'urologie, Centre Hospitalo-Universitaire de Poitiers, Poitiers FRANCE

6 Service d'urologie, Hôpital intercommunal d'Elbeuf-Louviers-Val de Reuil, France

Auteur correspondant:

Hugo DUPUIS

Service d'urologie, Centre Hospitalo-Universitaire de Rouen

1 rue de Germont, 76031 Rouen Cedex France

e-mail: hugogeorgesarthur@hotmail.fr / hugo.dupuis@chu-rouen.fr

Tel: +33 232 886 667 Fax: +33 232 880 441

ORCID: 0000-0001-6056-4906

Déclaration: aucune

Compte des mots: 2099

Mots clés : Urétéroscopie ; urétéroscopie flexible ; urétéroscopie rigide ; calcul urinaire ; lithiase urinaire

Keywords: Ureteroscopy; flexible ureteroscopy; rigid ureteroscopy; urinary stone; urolithiasis

Pre-Operative Risk Factors for Complications After Ureteroscopy for Stone Disease: A
 French Multicentric Study

3

4 1. INTRODUCTION

5

6 Urolithiasis is one of the most common diseases, with an estimated lifetime 7 prevalence of 14% (1). This illness is increased under impact of health conditions, dietary 8 habits, and the increased rate of metabolic diseases such as obesity, diabetes or metabolic 9 syndrome (2–5). Furthermore, many studies shown climatic impact with an enhanced 10 incidence in warmer regions (6). Due to its high prevalence and recurrence rate, the direct or 11 indirect economic cost of this disease is significant and represent a real public health 12 problem (7–9).

13

14 Continuous progress in endoscopy has allowed the development of minimally 15 invasive techniques and several treatment options are now available for the treatment of kidney and ureteral stones such as shock wave lithotripsy (SWL), ureteroscopy or 16 17 percutaneous nephrolithotomy (PCNL). While the number of PCNL procedures has remained 18 stable over the past decades, the number of ureteroscopies performed has increased 19 significantly in contrast to the number of SWL (10,11). With its high efficacy and low 20 morbidity, ureteroscopy has become the reference treatment for management of ureteral 21 and kidney stones with increasingly wider indications (12,13). This procedure is not without 22 risk of complications, notably urinary sepsis. Despite numerous studies on this subject, data 23 on preoperative risk factors for complications after rigid or flexible ureteroscopy remain 24 scarce.

25	
26	The aim of this study was to investigate the preoperative risk factors of complication
27	in the 30 days following a rigid or flexible ureteroscopy in a large cohort of contemporary
28	patients
29	
30	2. MATERIAL AND METHODS
31	
32	2.1 Patients and study design
33	
34	After institutional review board approval (CNIL2218286), the charts of all patients
35	who had a rigid or flexible ureteroscopy for urinary stone between January 1^{st} 2017 and 31^{th}
36	December 2018 at five academic medical centers were reviewed retrospectively. We
37	specifically focused on preoperative clinical, laboratory and radiological variables that were
38	available before surgery.
39	
40	2.2 Covariates
41	
42	The following preoperative data were collected for each patient: age; gender; Body
43	Mass Index (BMI); American Society of Anesthesiology (ASA) score (14); World Health
44	Organization (WHO) Performance status (15); age-indexed Charlson's score (16); history of
45	diabetes; history of cardio-vascular disease; history of Chronic Renal Failure (CRF); history of
46	pulmonary pathology; history of neurologic disease (including paraplegic patients, spina
47	bifida and multiple sclerosis); history of Crohn's disease; history of cancer;
48	anticoagulant/antiplatelet intake; history of urinary stone; history of Cacchi-Ricci disease or

49 cystinuria; history of kidney horseshoe; preoperative ureteral stent; history of previous 50 treatment for urinary stone (alkalinization, SWL therapy, ureteroscopy). The data concerning 51 the social context was also noted has social isolation, foreign language, institutionalization, significant distance between the center and the home. Patients were hospitalized in 52 53 conventional surgery unit or in day case surgery unit according to the habits of each center. 54 The following stones' characteristics were collected for each patient: number; side (right or 55 left kidney or both); location (renal, ureteral or both); median number; median size and 56 median density of stones.

57

58 **2.3 Perioperative data**

59

60 Each patient had a preoperative urine culture and an antibiotic prophylaxis in accordance with EAU guidelines (17). Results of this urine culture were collected from the 61 62 patients' computer records or from their paper records. The following intraoperative data 63 were gathered: operated side (right, left or both); operating time; use of an access sheath; 64 use of a laser or a lithoclast. Because of the multicenter nature of this study, the operative 65 techniques and materials used (e.g., access sheath, use of an irrigation pump, stent size) 66 were different between centers. Absence of stones was defined as the total absence of 67 residual stones or the persistence of fragments smaller than four millimeters visually or on post ureteroscopy control imaging by ultrasound, CT scan or x-ray (18); postoperative 68 69 ureteral stent. In accordance with the multicenter nature of the study, the intraoperative 70 and postoperative follow-up protocols could vary depending on the center. all re-admission 71 and all complications that occurred within 30 days of the procedure were collected and 72 graded according to the Clavien-Dindo classification (19).

73

74 2.4 Statistical analysis

75 Descriptive statistics were reported as median and interguartile range (IQR) for continuous 76 variables, frequencies, and percentages for categorical variables. Logistic regression was 77 used to perform univariate and multivariable analyses to identify risk factors of 78 complications and major complications after ureteroscopy. Multivariable models included 79 covariates with a P < 0.2 in univariable analysis. Finally, we conducted a sensitivity analysis 80 to identify specific predictors Infectious Complications following Ureteroscopy. Statistical analyses were performed using JMP v.16.0 software (SAS Institute Inc, Cary, NC). All tests 81 82 were 2- sided with a significance level at P < 0.05.

83

84 **3. RESULTS**

85

86 **3.1 Patients' characteristics**

87

88 940 patients were included for analysis with a total of 1124 procedures performed. 89 Baseline characteristics are summarized in Table 1. Median age at diagnosis was 54 years old 90 (IQR [42-66]), median BMI was 26.1 (IQR [23.1-30.1]), median Charlson's score was 1 (IQR [1-91 3]) and median ASA score was 2 (IQR [1-2]). Median number of stones was 1 (IQR [1-2]), 92 median size was 9 mm (IQR [6.25-13.3]) and median density was 900UH (IQR [600-1100]). 93 Rigid ureteroscopy was performed in 494 of the cases. Median operative time was 60min 94 (IQR [40-80]). A preoperative ureteral stent was used in 828 cases (73.6%). 109 95 postoperative complications were observed. According to the Clavien system, postoperative

96	complications were classified as grade 1 in 41 cases (37.6%), grade 2 in 53 cases (48.6%),
97	grade 3 in 13 cases (12%), and grade 4 in 2 cases (1.8%). Table 2 shows the postoperative
98	complications observed in the present series.
99	
100	3.3 Univariate and multivariable analysis for overall complications
101	
102	In univariate analysis, ASA score (odd ratio, OR=1.68, 95%CI [1.03-2.73], p=0.04),
103	WHO performance status (OR=1.50, 95%CI [1.0-2.25], p=0.04) and neurological disease
104	(OR=2.78, 95%CI [1.56-4.95], p=0.005) were predictors of post-operative complications
105	(Table 3).
106	
107	In multivariable analysis, Charlson's score (OR=0.79, 95%CI [0.65-0.95], p=0.013) and ASA
108	score >2 (OR=1.48, 95%CI [1.02-2.15], p=0.036) were independents risk factors of
109	postoperative complication (Table 3).
110	
111	3.4 Univariate and multivariable analysis for major complications
112	
113	In univariate analysis, cardio-vascular disease (OR=3.71, 95%CI [1.22-11.2], p=0.032)
114	and BMI (OR=0.87, 95%CI [0.76-0.98], p=0.027) were the only predictors of major
115	complications after ureteroscopy (Clavien-Dindo >2). Only BMI was found in multivariable
116	analysis (OR=0.86, 95%Cl [0.77-0.97], p=0.01) (Table 4).
117	
118	3.5 Sensibility analysis

120	A sensitivity analysis was performed to identify specific predictor of infectious
121	Complications following Ureteroscopy. In univariate analysis, WHO performance status
122	(OR=1.02, 95%CI [0.38-2.70], p=0.010), Charlson's score (OR=2.25, 95%CI [1.03-4.91],
123	p=0.016), neurological disease (OR=2.87, 95%CI [1.16-7.08], p=0.001) and pre-operative
124	positive urine culture (OR=3.30, 95%CI [1.69-6.44], p=0.004) were predictors infectious
125	complication (Table 5).
126	In multivariable analysis, Charlsons's score (OR=1.57, 95%CI [0.59-4.15], p=0.018) and
127	positive urine culture (OR=3.49, 95%CI [1.65-7.37], p=0.001) were independent risk factors
128	of infectious complications following ureteroscopy (Table 5).
129	
130	
131	4. DISCUSSION
132	
133	Urinary lithiasis is an endemic pathology whose incidence is constantly increasing in
134	industrialized countries. Ureteroscopy currently represents the reference treatment with
135	satisfactory results in terms of efficiency and safety. Its use can be envisaged in first
136	intention for all ureteral stones and for any renal stone with size inferior to 20mm according
137	to the current recommendations (13). Nevertheless, the complication rate is not negligible,
138	and the risk factors are not yet clearly defined, especially the preoperative risk factors.
139	

Our results suggest that the occurrence of complication after ureteroscopy is closely related to patients' baseline health status and comorbidities. Indeed, the risk factors identified in our univariate analysis were an ASA score >2, an WHO performance status score >=1, and neuro urological disease context. These results were confirmed in the multivariate analysis in which ASA score >2 and Charlson's score appear to be independent risk factorsfor complications.

146 These results appear to us to be rational and consistent with what is observed in 147 practice, clinical common sense being that an elderly patient with multiple comorbidities 148 carries a higher risk of postoperative complication. Age was not found to be a risk factor for 149 complications in our analysis, but this hypothesis has been confirmed in several publications 150 in the field of ureteroscopy. In a large prospective multicenter study including 11.719 151 patients and evaluating the impact of patients' comorbidities on the results of ureteroscopy, 152 Daels et al. concluded that this operative technique remained effective and safe. However, 153 the risk of complication was significantly higher in elderly patients with multiple 154 comorbidities (20). In 2019, Hanau et al. conducted a single-center retrospective study 155 evaluating risk factors for post-ureteroscopy complications. They concluded that the causes 156 of complication and prolonged hospitalization were mainly related to comorbidities (21). 157 Among the preoperative risk factors, they highlighted were high age, anticoagulant and 158 antiplatelet therapy, history of cardiovascular disease, neuro urological history, high blood 159 pressure, single kidney, chronic renal failure, and immunocompromised patients. Patients 160 with multiple comorbidities have a higher risk of mortality from kidney stone disease than 161 the general population and require robust pre- and postoperative management (22).

162

163 The context of neuro urological disease was also evident in our multivariate analysis. 164 This risk factor for complications has already been described in the literature, although data 165 on this subject remain scarce and insufficient. It is well known that neuro urological patients 166 have an increased risk of developing kidney stone disease, especially in connection with 167 immobilization hypercalcemia or vesico-sphincter dyssynergy (23). The negative impact of 168 neuro urological bladder on the risk of complications after ureteroscopy has been found in 169 several studies and these patients have a higher risk of mortality from kidney stone disease 170 than the general population (21–24). We are of course aware that these patients often 171 require complex management with multiple intersecting risk factors. Moreover, the term 172 neurological bladder encompasses many pathologies with sometimes different physiopathologies that are rarely differentiated in the literature, so the results are not 173 174 always generalizable. Studies specifically on this population are rare and the subject 175 deserves to be developed in the future.

176 Another risk factor often quoted in literature is the presence of a positive preoperative urine 177 test. The univariate and multivariable analysis of this factor were not significant but there 178 was a trend (p=0.06) for both of them. Urinary tract sepsis was the most frequent 179 complication type with 42.2% of reported complications in our population. This is consistent 180 with what is found in the literature. It can be assumed that the presence of a germ in the 181 urine preoperatively increases the risk of urinary sepsis despite the implementation of 182 preoperative antibiotic therapy. In a large systematic review from EULIS (EAU Section of 183 Urolithiasis), Chug et al. analyzed risk factors for septic complications after ureteroscopy 184 which are the most frequent along with postoperative pain and hematuria (24). Among the 185 preoperative risk factors, they highlighted were positive pre-operative Urinary Tract 186 Infections (UTIs) or prior history of UTIs, patients with higher Charlson comorbidity index or 187 elderly patients, patients with a neurogenic bladder and with high BMI.

188 These results are in good agreement with those previously discussed although we 189 have not been able to demonstrate the impact of high BMI as a risk factor for complications 190 Clavien <or=2. However, we took a closer look at the risk factors for major complications 191 (Clavien >2). In univariate analysis, the only two factors identified were BMI and 192 cardiovascular history. BMI was the only independent factor found in the multivariable 193 analysis. Data in the literature regarding the impact of BMI on the post-ureteroscopy 194 complication rate are currently conflicting. Indeed, analyses of several studies did not find a 195 significant difference in the short-term complication rate between obese patients and 196 patients with a normal BMI (10,25,26). However, some studies have obtained results 197 confirming the implication of a high BMI in the risk of postoperative complications. Ishii et al. 198 analyzed the results of ureteroscopy in 835 obese or morbidly obese patients in a systematic 199 review (27). The rates of postoperative complications were comparable to patients with a 200 normal BMI. However, they observed a significantly higher Clavien 1-2 complication rate in 201 morbidly obese patients. In a French retrospective study evaluating risk factors for 202 outpatient management failure, in other words complication, BMI was significantly higher in 203 patients in the failure group (28). Obesity was also found to be a risk factor for mortality in 204 the context of kidney stone disease (22).

205 The main strength of our study is its multicentric nature. The inclusion of patients 206 from different regions with different stone characteristics ensured that our results had good 207 applicability to the general population and allowed us to limit center-effect bias. This is 208 tempered by several limitations that must be recognized. The main one is the retrospective 209 nature of our study, with the set of biases inherent to this design, which limits the scope of 210 our results. The collection of stone characteristics such as size, density or location was 211 largely dependent on the subjectivity of the various operators. Some of these data were not 212 always described in the reports. Despite a large population, our study did not find a 213 relationship between positive urine culture, history of urinary tract infections and risk of 214 post ureteroscopic sepsis. However, this relationship has been described several times in the 215 literature. This is probably explained by a lack of power in our study. In addition, it is highly 216 likely that the number of postoperative complications is underestimated. Indeed, the 217 declaration of complications is not always found in the hospitalization reports. In addition, 218 many patients turn to outpatient medicine for the management of these complications and 219 many of them therefore go unnoticed by the surgeons. Some centers have set up a 220 systematic call of the patient within 24 hours after the operation in the framework of day 221 case surgery. These data could be interesting but are difficult to collect. Moreover, they only 222 cover complications that occurred immediately after the operation.

223

224 **5. CONCLUSION**

225

In our study we found that the baseline characteristics and comorbidities of the patients were the main risk factors for short-term complications after ureteroscopy. Ureteroscopy remains a relatively safe and effective procedure. However, we advise surgeons to take precautions with fragile patients with multiple comorbidities.

230

231 6. ACKNOWLEDGEMENT

232

233 The authors have no conflicts of interest to declare.

This study was not funded.

235

236 7. AUTHORS CONTRIBUTIONS

2	2	_
2	3	1

Study conception: Hugo Georges Arthur Dupuis; Zine-Eddine Khene ; Jean-Nicolas Cornu

Data collection: Hugo Georges Arthur Dupuis ; Louis Surlemont ; Kevin Saout ; Abdel
Bakayoko ; Héloïse Ducousso ; Hubert Bugel ; Christian Pfister

242

243 8. REFERENCES

244

245 1. Rukin NJ, Siddiqui ZA, Chedgy ECP, Somani BK. Trends in Upper Tract Stone

246 Disease in England: Evidence from the Hospital Episodes Statistics Database. Urol Int.

247 2017;98(4):391-6.

Daudon M, Traxer O, Lechevallier E, Saussine C. Épidémiologie des lithiases
 urinaires. Progrès en Urologie. déc 2008;18(12):802-14.

250 3. Scales CD, Smith AC, Hanley JM, Saigal CS. Prevalence of Kidney Stones in the

251 United States. European Urology. juill 2012;62(1):160-5.

4. Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney

stones. Nature Reviews Disease Primers [Internet]. déc 2016 [cité 8 sept 2020];2(1).

254 Disponible sur: http://www.nature.com/articles/nrdp20168

255 5. Liu Y, Chen Y, Liao B, Luo D, Wang K, Li H, et al. Epidemiology of urolithiasis in

- Asia. Asian Journal of Urology. oct 2018;5(4):205-14.
- 257 6. Geraghty RM, Proietti S, Traxer O, Archer M, Somani BK. Worldwide Impact of
- 258 Warmer Seasons on the Incidence of Renal Colic and Kidney Stone Disease: Evidence from a
- 259 Systematic Review of Literature. Journal of Endourology. août 2017;31(8):729-35.

260 7. Lotan Y. Economics and Cost of Care of Stone Disease. Advances in Chronic Kidney

261 Disease. janv 2009;16(1):5-10.

- 262 8. Canvasser NE, Alken P, Lipkin M, Nakada SY, Sodha HS, Tepeler A, et al. The
- economics of stone disease. World J Urol. sept 2017;35(9):1321-9.

264 9. Roberson D, Sperling C, Shah A, Ziemba J. Economic Considerations in the
265 Management of Nephrolithiasis. Curr Urol Rep. mai 2020;21(5):18.

- 266 10. Doizi S, Raynal G, Traxer O. Évolution du traitement chirurgical de la lithiase urinaire
- sur 30ans dans un centre hospitalo-universitaire. Progrès en Urologie. juill 2015;25(9):543-8.
- 268 11. Geraghty RM, Jones P, Somani BK. Worldwide Trends of Urinary Stone Disease
- 269 Treatment Over the Last Two Decades: A Systematic Review. Journal of Endourology. juin
- **270** 2017;31(6):547-56.
- 271 12. Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP, et al.
- 272 Surgical Management of Stones: American Urological Association/Endourological Society

273 Guideline, PART I. Journal of Urology. oct 2016;196(4):1153-60.

- 13. Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, et al. EAU Guidelines on
- 275 Interventional Treatment for Urolithiasis. European Urology. mars 2016;69(3):475-82.
- 14. Haynes SR, Lawler PGP. An assessment of the consistency of ASA physical status
- 277 classification allocation. Anaesthesia. mars 1995;50(3):195-9.
- 278 15. Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al.
- Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol.
 déc 1982;5(6):649-55.
- 281 16. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
- 282 prognostic comorbidity in longitudinal studies: Development and validation. Journal of
- 283 Chronic Diseases. janv 1987;40(5):373-83.
- 284 17. Türk C, Neisius A, Petřík A, Skolarikos A, Seitz C, Somani B, et al. EAU
- 285 GUIDELINES ON UROLITHIASIS. :33.
- 286 18. Somani BK, Desai M, Traxer O, Lahme S. Stone-free rate (SFR): a new proposal for

defining levels of SFR. Urolithiasis. avr 2014;42(2):95-95.

288 19. Dindo D, Demartines N, Clavien P-A. Classification of surgical complications: a new
289 proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. août
2004;240(2):205-13.

20. Daels FPJ, Gaizauskas A, Rioja J, Varshney AK, Erkan E, Ozgok Y, et al. Age-related

292 prevalence of diabetes mellitus, cardiovascular disease and anticoagulation therapy use in a

urolithiasis population and their effect on outcomes: the Clinical Research Office of the

294 Endourological Society Ureteroscopy Global Study. World Journal of Urology. juin

295 2015;33(6):859-64.

296 21. Hanau S, Traxer O, Cussenot O, Doizi S. Causes et facteurs prédictifs d'une

297 hospitalisation postopératoire prolongée après urétéroscopie souple : expérience d'un centre
298 hospitalo-universitaire. Progrès en Urologie. mars 2020;30(3):137-46.

299 22. Whitehurst L, Jones P, Somani BK. Mortality from kidney stone disease (KSD) as
300 reported in the literature over the last two decades: a systematic review. World J Urol. mai
301 2019;37(5):759-76.

302 23. Prattley S, Oliver R, New F, Davies M, Brewin J. Ureteroscopy in patients with spinal
303 cord injury: outcomes from a spinal injury unit and a review of literature. Transl Androl Urol.
304 sept 2019;8(S4):S352-8.

305 24. Chugh S, Pietropaolo A, Montanari E, Sarica K, Somani BK. Predictors of Urinary

306 Infections and Urosepsis After Ureteroscopy for Stone Disease: a Systematic Review from

307 EAU Section of Urolithiasis (EULIS). Current Urology Reports [Internet]. avr 2020 [cité 9

308 sept 2020];21(4). Disponible sur: http://link.springer.com/10.1007/s11934-020-0969-2

309 25. Kelly C, Geraghty RM, Somani BK. Nephrolithiasis in the Obese Patient. Current

310 Urology Reports [Internet]. juill 2019 [cité 8 sept 2020];20(7). Disponible sur:

311 http://link.springer.com/10.1007/s11934-019-0898-0

312	26.	Sari E, Tepeler A, Yuruk E, Resorlu B, Akman T, Binbay M, et al. Effect of the body
313	mass i	ndex on outcomes of flexible ureterorenoscopy. Urolithiasis. nov 2013;41(6):499-504.
314	27.	Ishii H, Couzins M, Aboumarzouk O, Biyani CS, Somani BK. Outcomes of
315	Systen	natic Review of Ureteroscopy for Stone Disease in the Obese and Morbidly Obese
316	Popula	ation. Journal of Endourology. févr 2016;30(2):135-45.
317	28.	Bosquet E, Peyronnet B, Mathieu R, Khene Z-E, Pradere B, Manunta A, et al.
318	Faisab	ilité de l'urétéroscopie souple en ambulatoire pour la prise en charge des calculs
319	urinair	es : une étude rétrospective monocentrique. Progrès en Urologie. déc
320	2017;2	27(16):1043-9.
321		
322		
323	7. LEG	ENDS
324	Table :	1 : Patient, stone and operative characteristics
325		
326	Table	2: Short time complications (occurring within the first 30 days)
327		
328	Table 3	3: Univariate and multivariable analysis to predict overall complications after
329	ureter	oscopy
330		
331	Table 4	4: Univariate and multivariable analysis to predict major complications after
332	ureter	oscopy

	Total (n=1124)	No postoperative complication (n=1015)	Postoperative Complication (n=109)	p
Median age (IQR)	54 (42-66)	54 (42-66)	50 (36-65)	0.12
Gender (%):	, <i>, , , , , , , , , , , , , , , , , , </i>			
Female	462 (41.1)	411 (40.5)	51 (46.7)	0.2
Male	662 (58.9)	604 (59.5)	58 (53.2)	
Median BMI (IQR)	26.4 (23.2- 30.1)	26.5 (23.2-33.3)	25.8 (23-29.2)	0.29
ASA score (%):				
1-2	929 (82.6)	846 (83.3)	83 (76.1)	0.04
3-4	170 (15.1)	146 (14.4)	24 (22)	
WHO performance status (%)				
0	746 (66.3)	680 (67)	63 (57.7)	0.05
≥1	369 (32.8)	324 (31.9)	45 (41.2)	
Charlson's comorbidity index (IQR)	1 (0-3)	1 (0-3)	1 (0-2)	0.04
Comorbidities (%):				
Cardio-vascular disease	148 (13.1)	132 (13)	16 (14.6)	0.6
Diabetes	180 (16)	158 (15.5)	21 (19.2)	0.3
Chronic renal failure	60 (5.3)	53 (5.2)	7 (6.4)	0.6
Pulmonary disease	82 (7.3)	74 (7.3)	8 (7.3)	0.9
Hepatic disease	13 (1.15)	13 (1.2)	0	0.1
Neuro urological disease	80 (7.1)	63 (6.2)	17 (15.5)	<0.01
Crohn's disease	16 (1.42)	14 (1.3)	2 (1.8)	0.7
Cancer	63 (5.6)	58 (5.7)	5 (4.5)	0.6
History of urolithiasis (%)	412 (36.6)	381 (37.5)	40 (36.6)	0.8
Anticoagulant/antiplatelet treatment (%)	83 (7.38)	72 (7)	11 (10)	0.3
Social context (%):				
Foreign language	23 (2)	20 (1.9)	3 (2.7)	0.6
Institutionalization	40 (3.5)	33 (3.25)	7 (6.4)	0.1
Stone location (%)				
Renal	625 (55.6)	558 (55)	67 (61.4)	0.1
Ureteral	686 (61)	627 (61.7)	59 (54.1)	0.1
Both	196 (17.4)	178 (17.5)	18 (16.5)	0.7
Median number of stone (IQR)	1 (1-2)	1 (1-2)	1 (1-2.75)	0.38
Median mm size of stone (IQR)	9 (6.28-13.28)	9 (6-13)	9.15 (6.35-15)	0.31
<5mm	94 (8.36)	86 (8.47)	8 (7.33)	0.63
5-10mm	515 (45.8)	468 (46)	47 (43.1)	0.43
>10mm	498 (44.3)	441 (43.4)	54 (49.5)	0.29
Median UH density (IQR)	900 (600-	900 (600-1100)	917 (644-	0.11
Propagative unstand stant (%)	1100)	756 (74 4)	1200)	0.05
Preoperative ureteral stent (%)	828 (73.6)	756 (74.4)	72 (66)	0.05
positive urine culture (%)	263 (23.4)	230 (22.6)	33 (30.2)	0.06

	Complications (n=109)
Clavien-Dindo (%)	
1-2	91 (83.4)
>2	15 (13.7)
Type of complications (%)	
Urinary sepsis	46 (42.2)
Pain	42 (38.5)
Vomiting	1 (0.9)
Hematuria	21 (19.2)
Urine retention	5 (4.5)
Acute renal failure	1 (0.9)
Readmission (%)	48 (44)

Table 2 : Short time complications (occurring within the first 30 days)

	Univariable analysis			Multivariable analysis			
	Odds ratio	(95% CI)	р	Odds ratio	(95% CI)	p	
Age	0.99	(0.97-1.00)	0.13	0.99	(0.97-1.01)	0.65	
BMI	0.98	(0.94-1.02)	0.37				
ASA score	1.68	(1.03-2.73)	0.04	1.48	(1.02-2.15)	0.03	
PS	1.5	(1.00-2.25)	0.04	1.24	(0.88-1.74)	0.21	
CCI	0.91	(0.83-1.01)	0.1	0.79	(0.65-0.95)	0.01	
Antiaggregant/antiplatelet treatment	1.41	(0.71-2.78)	0.3				
Cardio-vascular disease	1.15	(0.65-2.01)	0.61				
Diabetes	1.28	(0.77-2.12)	0.32				
Neuro urological disease	2.78	(1.56-4.95)	0.005	1.17	(0.44-3.06)	0.74	
Stone size	1.01	(0.98-1.03)	0.32				
Positive urine culture	1.55	(0.98-2.46)	0.06	1.57	(0.98-2.53)	0.06	
Preoperative ureteral stent	0.65	(0.43-1.00)	0.05	0.7	(0.43-1.11)	0.13	
PS= WHO performance status; CCI= Charlson's comorbidity index							

Table 3 : Univariate and multivariable analysis to predict overall complications after ureteroscopy

	Univariable analysis			Multivariable analysis				
	Odds ratio	(95% CI)	p	Odds ratio	(95% CI)	p		
Age	1	(0.97-1.04)	0.63					
BMI	0.87	(0.76-0.98)	0.02	0.86	(0.77-0.97)	0.01		
ASA score	2.18	(0.77-6.12)	0.13	2.49	(0.70-8.82)	0.15		
PS	2.73	(0.94-7.93)	0.06	1.62	(0.46-5.63)	0.44		
CCI	1.04	(0.82-1.31)	0.72					
Antiaggregant/antiplatelet treatment	1.01	(0.12-8.12)	0.98					
Cardio-vascular disease	3.71	(1.22-11.2)	0.03	2.42	(0.65-8.98)	0.18		
Diabetes	1.42	(0.39-5.14)	0.61					
Neuro urological disease	2.03	(0.45-9.17)	0.40					
Stone size	1	(0.93-1.07)	0.96					
Positive urine culture	0.71	(0.19-2.61)	0.60					
Preoperative ureteral stent	0.52	(0.18-1.48)	0.23					
PS= WHO performance status; CCI= Charlson's comorbidity index								

Table 4 : Univariate and multivariable analysis to predict major complicationsafter ureteroscopy

	Univariable analysis			Multiva	ariable analy	sis		
	Odds ratio	(95% CI)	р	Odds ratio	(95% CI)	p		
Age	1.32	(0.30-5.80)	0.71					
ВМІ	1.35	(0.68-2.66)	0.39					
ASA score	0.77	(0.37-1.57)	0.15					
PS	1.6	(1.25-2.15)	0.010	1.73	(1.16-2.54)	0.007		
CCI	2.25	(1.03-4.91)	0.016	0.79	(0.64-0.96)	0.022		
Antiaggregant/antiplatelet treatment	1.07	(0.37-3.11)	0.89					
Cardio-vascular disease	1.21	(0.53-2.77)	0.65					
Diabetes	1.51	(0.73-3.11)	0.27					
Neuro urological disease	2.87	(1.16-7.08)	0.001	1.27	(0.35-4.54)	0.70		
Stone size	2.87	(0.55-14.8)	0.20					
Positive urine culture	3.30	(1.69-6.44)	0.004	3.15	(1.51-6.55)	0.002		
Preoperative ureteral stent	0.65	(0.34-1.21)	0.18					
PS= WHO performance status; CCI= Charlson's comorbidity index								

Table 5 : Univariate and multivariable analysis to predict sepsis after ureteroscopy