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Abstract

This paper addresses the equivalence problem of conic submanifolds in the tangent bundle of
a smooth 2-dimensional manifold. Those are given by a quadratic relation between the velocities
and are treated as nonholonomic constraints whose admissible curves are trajectories of the cor-
responding control systems, called quadratic systems. We deal with the problem of characterising
and classifying conic submanifolds under the prism of feedback equivalence of control systems, both
control-affine and fully nonlinear. The first main result of this work is a complete description of
non-degenerate conic submanifolds via a characterisation under feedback transformations of the
novel class of quadratic control-affine systems. This characterisation can explicitly be tested on
structure functions defined for any control-affine system and gives a normal form of quadratisable
systems and of conic submanifolds. Then, we consider the classification problem of regular conic
submanifolds (ellipses, hyperbolas, and parabolas), which is treated via feedback classification of
quadratic control-nonlinear systems. Our classification includes several normal forms of quadratic
systems (in particular, normal forms not containing functional parameters as well as those contain-
ing neither functional nor real parameters) and, as a consequence, gives a classification of regular
conic submanifolds.

Keywords nonlinear control system · feedback equivalence · conic submanifolds · nonholonomic
constraint · normal forms · pseudo-Riemannian geometry
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1 Introduction

Let X be a smooth connected manifold of dimension n = 2 (a surface), equipped with local coordinates
x. In the tangent bundle TX of X , we consider a smooth 3-dimensional submanifold S, a hypersurface,
given by

S = {(x, ẋ) ∈ TX , S(x, ẋ) = 0} ,

where S : TX → R is a smooth scalar function satisfying rk ∂S
∂ẋ (x, ẋ) = 1 for all (x, ẋ) ∈ S. Two

submanifolds S ⊂ TX and S̃ ⊂ T X̃ are said to be equivalent if there exists a diffeomorphism ϕ : X →
X̃ such that ϕ∗(S) = S̃, where the tangent map ϕ∗ : TX → T X̃ is given by ϕ∗(x, ẋ) = (ϕ(x), Dϕ(x)ẋ)
and Dϕ is the derivative of ϕ. If S = {S(x, ẋ) = 0} and S̃ = {S̃(x̃, ˙̃x) = 0}, then the above definition
amounts to saying that there exists a smooth nonvanishing scalar function δ : TX → R such that

S̃ (ϕ(x), Dϕ(x)ẋ) = δ(x, ẋ)S (x, ẋ) .

The last equality implies that for all (x, ẋ) ∈ S we have (x̃, ˙̃x) = (ϕ(x), Dϕ(x)ẋ) ∈ S̃, hence the map
ϕ∗ sends the graph of S−1(0) into that of S̃−1(0). Equivalence of submanifolds S = {S(x, ẋ) = 0}
and S̃ = {S̃(x̃, ˙̃x) = 0} means simply that the implicit underdetermined ordinary differential equations
S(x, ẋ) = 0 and S̃(x̃, ˙̃x) = 0 are equivalent; see e.g. [4, Definition 2].

It is natural to ask how to characterise and classify submanifolds S ⊂ TX (with X and S of
arbitrary dimensions) of certain particular classes, for instance the class of linear submanifolds given
by Slin(x, ẋ) = ω(x)ẋ = 0 or the class of affine submanifolds given by Saff (x, ẋ) = ω(x)ẋ+ h(x) = 0,
where ω is a smooth vector-valued differential 1-form on X and h is a smooth vector-valued function on
X . Those questions have been widely studied under the prism of Pfaffian equations (linear and affine)
and go back to Pfaff, Darboux, Cartan [20, 8, 9]. Although the problem of classification of Pfaffian
equations is still open in its full generality, many important results have been obtained for various
classes of linear Pfaffian equations (contact and quasi-contact case, Martinet case, singularities, see
[32, 31, 18, 14, 11]) and of affine Pfaffian equations (dimension two [13], three [22, 21], and arbitrary
[33, 11]).

We will call Sq a quadratic, or a conic, submanifold of TX if it is given by Sq = {Sq(x, ẋ) = 0},
where Sq : TX → R is a quadratic map of the form

Sq(x, ẋ) = ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x),

with all involved objects being smooth, i.e. for each point x ∈ X , the set Sq(x) forms a conic curve
in TxX (recall that we consider the case of X being a surface). If Sq is a conic submanifold, then so
is any submanifold equivalent to it. Indeed, if Sq = {S(x, ẋ) = 0}, then S̃ = {S̃(x̃, ˙̃x) = 0}, where
S̃(x̃, ˙̃x) = Sq(ϕ

−1(x̃), Dϕ−1(x̃) ˙̃x) is quadratic because Dϕ acts linearly on fibres. Moreover, we actually
have S̃(x̃, ˙̃x) = ˙̃xtg̃ ˙̃x + 2ω̃ ˙̃x + h̃ with g = ϕ∗g̃, ω = ϕ∗ω̃, and h = ϕ∗h̃. On the other hand, a map S
defining a quadratic submanifold Sq = {S(x, ẋ) = 0} need not be quadratic because S(x, ẋ) is of the
form δ(x, ẋ)Sq(x, ẋ) and, in general, the latter will not be quadratic (unless δ depends on x only); see
Example 2.1 below. The first purpose of this work is to provide a local characterisation of submanifolds
S that are equivalent to quadratic submanifolds Sq. In particular, we will identify submanifolds that
define, in each TxX , elliptic, hyperbolic, and parabolic conics, given respectively by

SE =
{
a2(ż − c0)

2 + b2(ẏ − c1)
2 = 1

}
, SH =

{
a2(ż − c0)

2 − b2(ẏ − c1)
2 = 1

}
,

and SP =
{
aẏ2 − ż + bẏ + c = 0

}
,

where a, b, c0, c1, and c are smooth functions of x = (z, y), satisfying a(·) ̸= 0 and b(·) ̸= 0 in
the elliptic and hyperbolic cases and a(·) ̸= 0 in the parabolic case; we choose the order (z, y) to be
consistent with some normal forms existing in the literature (e.g. see [1], where quadratic submanifolds
are used as canonical models which admit a parabolic Lie group of symmetries). We will also discuss
the case of passing smoothly from one type to another. We call them elliptic, hyperbolic, and parabolic
submanifolds and, to state and discuss general facts about them, we set SQ = {SE ,SH ,SP }.
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The second goal of this work is to provide a classification of elliptic SE , hyperbolic SH , and parabolic
SP submanifolds. In the elliptic and hyperbolic cases, we will first describe the submanifolds with the
functions a(x) = b(x) and call them conformally-flat ; second, if, additionally, a = b = 1, then we call
them flat elliptic or hyperbolic submanifolds. Finally, we will describe the forms for which we also have
c0, c1 ∈ R (in the same coordinate system as the one for which we have a = b = 1), called a constant-
form elliptic and hyperbolic submanifolds; the particular case of c0 = c1 = 0 is called a null-form to
emphasis the absence of any (functional, continuous, or discrete) parameter. In the parabolic case, we
will describe the submanifolds with a = 1, called weakly-flat, and characterise those with, additionally,
b = 0 (called strongly-flat) and, moreover, with c ∈ R (called constant-form); in the particular case
where c = 0 we call the parabolic submanifold a null-form. Our classification is summarised by Table 1
below.

Our analysis of the equivalence problem of submanifolds will be based on attaching to a submanifold
S = {S(x, ẋ) = 0} ⊂ TX two control systems. First,

ΞS : ẋ = F (x,w), x ∈ X , w ∈ W ⊂ R,

where ẋ − F (x,w) = 0 is a regular parametric representation of the submanifold S, that is, for all
values of the parameter w ∈ W (interpreted as a scalar control) we have S(x, F (x,w)) = 0 and
rk ∂F

∂w (x,w) = 1, and second,

ΣS :

{
ẋ = F (x,w)
ẇ = u

, (x,w) ∈ X ×W, u ∈ R,

called, respectively, a first and second extension of S. Notice that for ΞS the control w enters in a
nonlinear way, whereas for ΣS the control u enters in an affine way, but for the price of augmenting the
dimension of the state space. Observe that, since S(x, ẋ) = 0, defining S, relates the positions x with
the velocities ẋ, it describes a nonholomic constraint. We say that a smooth curve x(t) ∈ X satisfies the
nonholonomic constraint given by S if we have (x(t), ẋ(t)) ∈ S. Clearly, x(t) satisfies the nonholonomic
constraint described by S (equivalently, satisfies the implicit differential equation S(x(t), ẋ(t)) = 0) if
and only if x(t) is a trajectory of ΞS for a certain smooth control w(t) or, equivalently, (x(t), w(t)) is
a trajectory of ΣS for a smooth control u(t). A crucial observation that links studying submanifolds
S ⊂ TX and their extensions ΞS and ΣS is that the equivalence of submanifolds corresponds to the
equivalence of control systems ΞS and ΣS via feedback transformations, general for ΞS and control-
affine for ΣS , as ensured by Proposition 2.4.

Organisation of the paper. In the next section, we will recall some definitions of control theory
and we will show that the problem of characterising and classifying submanifolds of TX can be re-
placed by that of characterising and classifying their first and second extensions ΞS and ΣS under
feedback transformations (see Proposition 2.4). Moreover, we will give a first rough classification of
non-degenerate conic submanifolds, introducing elliptic SE , hyperbolic SH , and parabolic SP sub-
classes (see Lemma 2.5). In Section 3, we will define a general second extension of a conic submanifold
Sq, called a quadratic system Σq. Just as we do for conic submanifolds, we will identify elliptic ΣE ,
hyperbolic ΣH , and parabolic ΣP systems as particular cases of Σq, see Definition 3.1 and Propo-
sition 3.2. In Theorem 3.3, we will fully characterise the class of quadratic systems by means of a
checkable relation between well-defined structure functions attached to any control-affine system. The
conditions obtained in that theorem allow to give a normal form for all quadratisable control-affine

Elliptic and hyperbolic submanifolds classification Parabolic submanifolds classification
a = b conformally-flat a = 1 weakly-flat

a = b = 1 flat a = 1, b = 0 strongly-flat
a = b = 1, (c0, c1) ∈ R2 constant-form a = 1, b = 0, c ∈ R constant-form
a = b = 1, c0 = c1 = 0 null-form a = 1, b = 0, and c = 0 null-form

Table 1: Classification of elliptic, hyperbolic, and parabolic submanifolds.
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systems (i.e. systems Σ that are feedback equivalent to Σq), see Theorem 3.5, which in turn leads to a
normal form for all non-degenerate conic submanifolds Sq. We will also show how our characterisation
and the normal form apply to the classes of elliptic, hyperbolic, and parabolic control-affine systems,
which gives us a deeper insight into our conditions and in our normal form (see Corollary 3.4 and
Corollary 3.6). Finally, in Section 4, we will be interested in the classification of elliptic, hyperbolic,
and parabolic submanifolds as presented in Table 1. This problem is dealt with using the classification
of their first extensions (treated as control-nonlinear systems) under feedback transformations. We first
show that the classification of elliptic, hyperbolic, and parabolic submanifolds presented in Table 1 is
reflected by properties of a triple of vector fields attached to their parametrisations; see Lemma 4.1
statements (i) to (iv) for the elliptic and hyperbolic cases and statements (v) to (viii) for the parabolic
case. To every quadratic control-nonlinear system ΞE , ΞH , or ΞP (first extensions of elliptic, hyper-
bolic, and parabolic submanifolds, respectively), we will attach a frame of the tangent bundle (see the
paragraph before Proposition 4.2) and we give conditions for that frame to be commutative: it turns
out that in the elliptic and hyperbolic cases this requires that a certain pseudo-Riemannian metric is
flat (see Proposition 4.5), whereas in the parabolic case this problem can be solved without any extra
assumptions (see Proposition 4.7). Then we show how we can additionally normalize the systems while
preserving the commutativity of that frame. Our classifications include several normal and canonical
forms, given by Proposition 4.6 for elliptic and hyperbolic systems and by Theorem 4.9 for parabolic
systems. We summarise the structure of the paper in Figure 1.

Pbm characterisation Sq and classification SQ

Section 3: Characterisation results Section 4: Classification results

Pbm characterisation Σq

Characterisation Σq

Characterisation ΣQ

Normal form of Σq and Sq

Pbm classification ΞQ

Classification ΞE and ΞH :
Proposition 4.4: conformally-flat
Proposition 4.5: flat
Proposition 4.6: constant-form &
null-form

Classification ΞP :
Corollary 4.8: weakly-flat
Theorem 4.9: strongly-
flat, constant-form & null-
form

Classification of SE and SH Classification of SP

Section 4.1 Section 4.2

Proposition 2.4 Proposition 2.4

Theorem 3.3

Corollary 3.4

Theorem 3.5

Lemma 4.1 Lemma 4.1

Figure 1: Walk-through the paper with a separation between characterisation and classification results

Related works. A classification of quadratic control systems was initiated by Bonnard in [5]. His
work differs from our as he considered homogeneous systems of degree 2 with respect to all state
variables. Hence, his class of quadratic control systems is a subclass of our parabolic systems (where
we require that only one variable enters quadratically) but he considers the general dimension n while
our results concern 3-dimensional systems only. In [16], Krener and Kang studied the problem of
equivalence, via feedback, to polynomial systems of degree 2 modulo higher order terms. This work
was continued in [15] and [28] for any degree but all those results are given for formal classification
only. In [12], particularly in Example 2.2, Jakubczyk deals with a general elliptic system and studies
its microlocal equivalence via symbols of its critical Hamiltonian. Examples of control systems subject
to conic nonholonomic constraints appear in various domains of physics and engineering applications.
In the next section, we will discuss Dubins’ car [10] which is a simple model of a vehicle, as well as
its hyperbolic counterpart [19]. In [23], the same elliptic model, as that of Dubins’ car, is studied to
minize the energy of its trajectories, which is the famous Euler’s elastica problem. We also mention
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[34], where the planar tilting manoeuvre problem is considered under small angle assumption, the
studied control system is elliptic with respect to the states.

2 Preliminaries

Main notations.

X , TX , x = (z, y) A smooth 2d manifold, its tangent bundle, and its local coordinates.
M, ξ = (x,w) = (z, y, w) A smooth 3d manifold and its local coordinates.
ϕ, ϕ∗ A diffeomorphism and its tangent map.
S Smooth submanifold of TX given by an equation of the form S(x, ẋ) = 0,

with rk ∂S
∂ẋ (x, ẋ) = 1.

Sq Quadratic (conic) submanifold described by Sq(x, ẋ) = ẋtg(x)ẋ +
2ω(x)ẋ+ h(x) = 0.

SQ = {SE ,SH ,SP } Set of elliptic, hyperbolic, and parabolic submanifolds.
ΞS Regular parametrisation of a submanifold S, called a first extension,

seen as a control-nonlinear system.
ΣS Extension of ΞS , called a second extension of a submanifold S, seen as

a control-affine system on a three dimensional manifold M.

In this section, we introduce all tools and concepts that we will need in this paper. First, we define
in full generality the notions of submanifolds of the tangent bundle and of control-nonlinear systems.
Second, we recall some notions on the equivalence of submanifolds (of the tangent bundle) and of
control systems. Third, most importantly, we show that the problem of equivalence of submanifolds
can be replaced by that of equivalence of their first and second extensions, see Proposition 2.4. Finally,
we present quadratic submanifolds and we discuss the subclasses of elliptic, hyperbolic, and parabolic
submanifolds. In the paper, the word smooth will always mean C∞-smooth and throughout all systems,
functions, manifolds and submanifolds are assumed to be smooth.

Basic notions. We introduce basic notions following the approach proposed in [27], see also [7]. Let
X be a smooth n-dimensional manifold. A field of admissible velocities or a velocities constraint on X
is a fibred manifold πS : S → X , where S is an (m+ n)-dimensional submanifold of TX , and thus the
following diagram is commutative

S TX

X

ι

πS
πTX

In the diagram, the map πS is a surjective submersion, πTX is the canonical projection, and ι : S ↪→ TX
is the inclusion map attaching to any s ∈ S the same point s considered as a point of TX . Denote by
Sx = π−1

S (x) ⊂ TxX the fibers of S. Any Sx is an m-dimensional submanifold of TxX that consists of
all velocities admissible at x ∈ X . If a field of admissible velocities πS : S → X is a fiber bundle, with
a typical fiber being a manifold W of dimension m (in particular, if S = X × W), then the sets Sx
of admissible velocities at any x ∈ X are diffeomorphic to each other and they all are diffeomorphic
to W. Notice, however, that we do not assume S to be a fiber bundle (just a fibred manifold only).
In this case, the fibers Sx need not be diffeomorphic meaning that the sets of admissible velocities Sx
may change completely when passing from one x ∈ X to another. We will see this phenomenon to
appear for quadratic constraints.

A control system Ξ = (F, πV) on X consists of a fibred manifold πV : V → X , called the control
bundle, where πV is a surjective submersion, and a map F : V → TX such that the following diagram
is commutative:

5



V TX

X

F

πV
πTX

where πTX denotes the canonical projection. If the control bundle πV : V → X is the Cartesian
product V = X ×W of the state space manifold X and the control space manifold W of dimension m,
then the control system Ξ takes the usual form

Ξ : ẋ = F (x,w), x ∈ X , w ∈ W.

If V is a nontrivial fibred manifold, then Ξ takes the form ẋ = F (x,w) in local coordinates (x,w)
adapted to the fibred manifold structure of V.

There is a perfect correspondence between fields of admissible velocities and regular control systems.
First, to any field of admissible velocities πS : S → X we can associate a control system. Namely,
we define the control bundle πV : V → X by choosing V = S, πV = πS and F = ι. If the inclusion
ι is an injective immersion (resp. an embedding), then F = ι is, obviously, an injective immersion
(resp. embedding). Conversely, to any control system (F, πV) we can define point-wise the set of
admissible velocities at x ∈ X by Sx = F (π−1

V (x)). If πV : V → X is a fiber bundle, with a typical
fiber being a manifold W (in particular, if V = X ×W), then Sx = F (x,W). If for the control system
Ξ the map F is an injective immersion (resp. an embedding), then S, defined point-wise by Sx, is an
immersed (resp. embedded) submanifold of TX and Sx are immersed (resp. embedded) submanifolds
of the corresponding TxX . The reason is that the fibres π−1

V (x) are embedded submanifolds because
πV : V → X is a fibred manifold.

Equivalence notions. From now on we will assume that X is a surface, that is n = 2, and that the
fibred submanifold S, defining a velocities constraint, is a hypersurface in TX . Observe, however, that
the notions introduced below, and in particular Proposition 2.4, are also valid in the general dimension
setting. In this paper, we will be mostly working locally and, in all local statements, we will add the
adjective "local" instead of using the notion of germs (which would be more proper but less frequently
used in control theory). In local coordinates (x, ẋ), a submanifold S of TX can be expressed as the
zero level set S = {S(x, ẋ) = 0} of a local map S : TX → R defined in a neighbourhood of (x0, ẋ0).
Since S is a fibred manifold, it follows that rk ∂S

∂ẋ (x, ẋ) = 1, which we thus assume throughout.
We say that two velocities constraints πS : S → X and πS̃ : S̃ → X̃ are (locally) equivalent if

there exists a (local) diffeomorphism ϕ : X → X̃ whose tangent map ϕ∗ : TX → T X̃ sends S onto S̃,
that is ϕ∗(S) = S̃. We say that two maps S : TX → R and S̃ : T X̃ → R are locally V -equivalent
at (x0, ẋ0) and (x̃0, ˙̃x0), respectively, if there exists a local diffeomorphism ϕ : X → X̃ , satisfying
ϕ∗(x0, ẋ0) = (x̃0, ˙̃x0), and a non-vanishing function δ : TX → R∗ such that

S̃(ϕ(x), Dϕ(x)ẋ) = δ(x, ẋ)S(x, ẋ)

holds locally around (x0, ẋ0). This notion is a natural adaptation (to the case of maps defined on
TX ) of the notion of V -equivalence (V referring to a variety) of germs of maps (Rq, 0) → (Rp, 0) as
defined in [2]. The following three examples illustrate the notion of V -equivalence of maps and its
correspondence with the equivalence of submanifolds (that correspondence will be proven with full
generality in Proposition 2.4 below).

Example 2.1. The submanifolds S and S̃ given by S(x, ẋ) = ż −
(
−1 +

√
1 + ẏ

)2
= 0, around

(x0, ẋ0) = (0, 0), and S̃(x̃, ˙̃x) = ˙̃z −
(

˙̃y
2

)2
= 0, around (x̃0, ˙̃x0) = (0, 0), respectively, are locally

equivalent by the diffeomorphism ϕ(x) = (z, y − z) because the maps S and S̃ are locally V -equivalent
via

(z̃, ỹ) = ϕ(x) = (z, y − z) and δ(x, ẋ) = −1

4

(
ż − ẏ − 2− 2

√
1 + ẏ

)
.
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Example 2.2. Since on a 2-dimensional manifold all metrics are locally conformally flat (see [26,
Addendum 1 of Chapter 9] for the Riemannian case and [25, Theorem 7.2] for the Lorentzian one), it
follows that the submanifold given by S(x, ẋ) = a(x)ż2 + 2b(x)żẏ + c(x)ẏ2 − 1 = 0 (where ac− b2 ̸= 0)
is locally equivalent to that given by S̃(x̃, ˙̃x) =

(
˙̃z2 ± ˙̃y2

)
− r(x̃)2 = 0.

Example 2.3. Since rk ∂S
∂ẋ (x, ẋ) = 1, assume that ∂S

∂ż (x0, ẋ0) ̸= 0; recall that x = (z, y). By the
implicit function theorem, we can locally write S(x, ẋ) = δ(x, ẋ) (ż − s(x, ẏ)), where δ(x0, ẋ0) ̸= 0. So,
a submanifold S is always locally equivalent to the one given by ż − s(x, ẏ) = 0.

Two control systems Ξ = (F, πV) and Ξ̃ = (F̃ , πṼ) are feedback equivalent if there exists a dif-
feomorphism ϕ : X → X̃ and a fiber preserving lift Φ : V → Ṽ of ϕ, i.e. ϕ(πV) = πṼ(Φ), such
that

Dϕ(x)F (v) = F̃ (Φ(v)), (1)

for any v ∈ V. Namely, the following diagram is commutative

X V TX

X̃ Ṽ T X̃

ϕ

FπV

Φ ϕ∗

πṼ F̃

Locally, in adapted coordinates (x,w) of V, the fiber preserving lift Φ takes the form Φ(x,w) =
(ϕ(x), ψ(x,w)) and (1) becomes the usual feedback equivalence

Dϕ(x)F (x,w) = F̃ (ϕ(x), ψ(x,w)).

The map ϕ plays the role of a coordinates change in the state space X , and the map ψ is called a
feedback transformation as it changes the parametrisation by control w in a way that depends on
the state x. If the diffeomorphism Φ is defined in a neighbourhood of (x0, w0) only, and Φ(x0, w0) =
(x̃0, w̃0), then we say that the two systems Ξ and Ξ̃ are locally feedback equivalent at (x0, w0) and
(x̃0, w̃0), respectively. If πV : V → X is a fiber bundle, with a typical fiber W, and the diffeomorphism
Φ is defined on the product X0×W, that is, it is global with respect to w, where X0 is a neighbourhood
of a state x0, and ϕ(x0) = x̃0, then we say that Ξ and Ξ̃ are locally feedback equivalent at x0 and x̃0,
respectively. The latter local feedback equivalence will be especially useful for the class of control-affine
systems

Σ : ξ̇ = f(ξ) + g(ξ)u, u ∈ R,

where ξ ∈ M, f and g are smooth vector fields on M; below the state space M will be of dimension
3 so M should not be confused with X , which is of dimension 2. For control-affine systems we will
restrict the feedback transformations to the control-affine transformations

ψ(ξ, u) = α(ξ) + β(ξ)u,

where α(ξ) and β(ξ) are smooth functions satisfying β(·) ̸= 0. In that case, we denote the feedback
transformation by the triple (ϕ, α, β) and if ϕ = id, then this action is called a pure feedback trans-
formation and is denoted (α, β). Observe that a general control system of the form Ξ : ẋ = F (x,w),
where (x,w) ∈ X ×W, can be extended to a control-affine system Ξe by augmenting the state space
with the control w and introducing the new control u = ẇ, which gives

Ξe :

{
ẋ = F (x,w)
ẇ = u

, u ∈ R.

Notice that Ξe lives on the manifold M = X ×W of dimension n = 3.

Recall that S = {S(x, ẋ) = 0} is a fibred hypersurface of TX , and that S : TX → R satisfies
rk ∂S

∂ẋ (x, ẋ) = 1 for all (x, ẋ) ∈ S. Therefore, as already discussed in Introduction, we can locally
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attach to S its regular parametrisation ẋ− F (x,w) = 0, satisfying S(x, F (x,w)) = 0, thus defining a
control-nonlinear system ΞS : ẋ = F (x,w), for which rk ∂F

∂w (x,w) = 1. Since constructing ΞS requires
to introduce an extra variable w (a control), we will also call it a first extension of S. Then, we can
attach to ΞS its extension ΞeS , called also a prolongation, denoted ΣS and given by

ΣS :

{
ẋ = F (x,w)
ẇ = u

, u ∈ R,

and called a second extension of S. To distinguish different control systems attached to the sub-
manifolds S and S̃, we will denote ΞS̃ (resp. ΣS̃) by Ξ̃S̃ (resp. by Σ̃S̃). The following proposition
shows that the problem of equivalence of submanifolds corresponds to the equivalence under feedback
transformations of their corresponding first and second extensions.

Proposition 2.4 (Equivalence of equivalence notions). Consider submanifolds S = {S(x, ẋ) = 0} of
TX and S̃ =

{
S̃(x̃, ˙̃x) = 0

}
of T X̃ . The following statements are locally equivalent:

(i) The submanifolds S and S̃ are equivalent via a diffeomorphism ϕ(x).

(ii) The scalar valued maps S and S̃ are V -equivalent via ϕ(x) and δ(x, ẋ).

(iii) Their regular parametrisations (first extensions) ΞS and Ξ̃S̃ are feedback equivalent via ϕ(x) and
ψ(x,w).

(iv) Their second extensions ΣS and Σ̃S̃ are feedback equivalent via φ(x,w) = (ϕ(x), ψ(x,w)) and
(α, β).

That is, the following diagram is commutative:

S S ΞS ΣS

S̃ S̃ Ξ̃S̃ Σ̃S̃

ϕ

representation

(ϕ,δ)

parametrisation

(ϕ,ψ)

prolongation

(φ,α,β)

representation parametrisation prolongation

Proof. The proof of (i)⇔(ii) follows immediately from [2, Section 6.5].
(ii)⇒(iii). To show that the V -equivalence of maps (defining submanifolds) implies the equivalence
under feedback of their first extensions, we will first use a diffeomorphism (of the state space) to
analyse both first extensions in the same coordinate system. Then, we will show that the parameters
(controls) of those two first extensions are related by a pure feedback transformation. To obtain
invertibility of the feedback transformation, our argument will strongly rely on the regularity of the
submanifold, rk ∂S

∂ẋ = 1, and of its first extension, rk ∂F
∂w = 1. Assume that the maps S : TX → R and

S̃ : T X̃ → R are V -equivalent via a diffeomorphism x̃ = ϕ(x) and a nonvanishing function δ(x, ẋ), that
is, S̃(ϕ(x), Dϕ(x)ẋ) = δ(x, ẋ)S(x, ẋ). Consider ΞS : ẋ = F (x,w) and Ξ̃S̃ : ˙̃x = F̃ (x̃, w̃), two regular
parametrisations of the corresponding submanifolds S and S̃. Then, using 0 = S̃(x̃, ˙̃x) = S̃(x̃, F̃ (x̃, w̃)),
we have

S̃(ϕ(x), F̃ (ϕ(x), w̃)) = δ(x, (Dϕ(x))−1 F̃ (ϕ(x), w̃))S(x, (Dϕ(x))−1 F̃ (ϕ(x), w̃)), ∀ w̃ ∈ W̃,

implying S(x, F̂ (x, w̃)) = 0, where F̂ (x, w̃) = (Dϕ(x))−1 F̃ (ϕ(x), w̃). Therefore, ẋ = F (x,w) and
ẋ = F̂ (x, w̃) are two regular parametrisations of the same submanifold S. We will prove that F (x,w)
and F̂ (x, w̃) are related by an invertible (pure) feedback transformation of the form w̃ = ψ(x,w).

Since rk ∂S
∂ẋ (x0, ẋ0) = 1, we may assume that ∂S

∂ż (x0, ẋ0) ̸= 0, where x = (z, y) and, by the implicit
function theorem , we have S(x, ẋ) = δ(x, ẋ)(ż − s(x, ẏ)) = 0. Let ż = F1(x,w), ẏ = F2(x,w)
be a regular parametrisation of S, it follows that ∂F2

∂w (x0, w0) ̸= 0. Indeed, if ∂F2
∂w (x0, w0) = 0, then

ż − s(x, ẏ) = 0 (recall that δ ̸= 0), hence F1 − s(x, F2) = 0 and thus ∂F1
∂w − ∂s

∂ẏ
∂F2
∂w = 0 implying that

∂F1
∂w (x0, w0) = 0; contradiction.
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Hence, the two regular parametrisations of S = {S(x, ẋ) = 0} given by

ΞS :

{
ż = F1(x,w)
ẏ = F2(x,w)

and Ξ̂S :

{
ż = F̂1(x, w̃)

ẏ = F̂2(x, w̃)

satisfy ∂F2
∂w (x0, w0) ̸= 0 and ∂F̂2

∂w̃ (x0, w̃0) ̸= 0. Therefore, w̃ = F̂−1
2 (x, ẏ) = F̂−1

2 (x, F2(x,w)), where
F̂−1
2 is the inverse with respect to the second argument. And using ż = s(x, ẏ) we obtain ż =
F1(x,w) = s(x, ẏ) = F̂1(x, w̃). Thus, ΞS and Ξ̂S are feedback equivalent via w̃ = ψ(x,w) with
ψ(x,w) = F̂−1

2 (x, F2(x,w)) and the systems ΞS and Ξ̃S̃ are feedback equivalent since Ξ̃S̃ is the system
Ξ̂S mapped via the diffeomorphism x̃ = ϕ(x).

(iii)⇒(ii). Assume that the two regular parametrisations ΞS : ẋ = F (x,w) and Ξ̃S̃ : ˙̃x = F̃ (x̃, w̃)

of S and S̃, respectively, are feedback equivalent via x̃ = ϕ(x) and w̃ = ψ(x,w). Denote ϕ̃ = ϕ−1

and apply the diffeomorphism x = ϕ̃(x̃) to Ξ̃S̃ to obtain a new vector field, parametrized by w̃,
F̂ (x, w̃) = Dϕ̃(ϕ(x))F̃ (ϕ(x), w̃) related to F (x,w) by the pure feedback transformation w̃ = ψ(x,w).
Denote F = (F1, F2)

t and F̂ = (F̂1, F̂2)
t in the x = (z, y) coordinates. Without loss of generality we

can assume that ∂F2
∂w (x0, w0) ̸= 0 and ∂F̂2

∂w̃ (x0, w̃0) ̸= 0.
Now, apply to S̃ = {S̃(x̃, ˙̃x) = 0} the same diffeomorphism x = ϕ̃(x̃), whose inverse is denoted by

x̃ = ϕ(x), and set Ŝ(x, ẋ) = S̃(ϕ(x), Dϕ(x)ẋ). Since by definition of Ξ̃S̃ we have S̃(x̃, F̃ (x̃, w̃)) = 0,
we conclude that Ŝ(x, F̂ (x, w̃)) = 0. Then we claim that ∂S

∂ż (x0, ẋ0) ̸= 0; indeed, if ∂S
∂ż (x0, ẋ0) = 0,

then ∂S
∂w (x, F (x,w)) = 0 yields ∂S

∂ż
∂F1
∂w + ∂S

∂ẏ
∂F2
∂w = 0 and thus ∂S

∂ẏ (x0, ẋ0) = 0 giving a contradiction.

The same observation holds for ∂Ŝ
∂ż (x0, ẋ0). Thus, by the implicit function theorem we have S(x, ẋ) =

δ(x, ẋ)(ż − s(x, ẏ)) and Ŝ(x, ẋ) = δ̂(x, ẋ)(ż − ŝ(x, ẏ)), with δ ̸= 0 and δ̂ ̸= 0.
Using ż = s(x, ẏ) and ż = ŝ(x, ẏ), we obtain s(x, ẏ) = F1(x,w) = F̂1(x, w̃) = ŝ(x, ẏ), hence we

have

S(x, ẋ) = δ(x, ẋ)(ż − s(x, ẏ)) = δ(x, ẋ)(ż − ŝ(x, ẏ)) =
δ

δ̂
S̃(ϕ(x), Dϕ(x)ẋ)

establishing the V -equivalence between S and S̃.
(iii)⇒(iv). If ΞS and Ξ̃S̃ are feedback equivalent , then

Dϕ(x)F (x,w) = F̃ (ϕ(x), ψ(x,w)).

Thus the diffeomorphism (ϕ(x), ψ(x,w)), of the augmented state space (x,w), together with the
control-affine feedback

ũ =
∂ψ

∂x
F (x,w) +

∂ψ

∂w
u,

transform ΣS into Σ̃S̃ .
(iv)⇒(iii). Assume that ΣS and Σ̃S̃ are feedback equivalent via (x̃, w̃) = φ(x,w) and ũ = α(x,w)+

β(x,w)u. Since the distribution span
{
∂
∂w

}
is sent by φ∗ into span

{
∂
∂w̃

}
, it follows that φ has the

triangular form φ(x,w) = (ϕ(x), ψ(x,w)). Therefore, feedback equivalence of the systems ΞS and Ξ̃S̃
is established via the diffeomorphism x̃ = ϕ(x) and the reparametrisation w̃ = ψ(x,w).

Remark. The use of extensions of control-nonlinear systems was introduced in [30] and used to study
controlability and observability of nonlinear systems, and then to analyse linearisability and decoupling
[29]. Moreover, notice that the same proof as that of (iii)⇔(iv) shows that any two control-nonlinear
systems Ξ and Ξ̃ (which need not be regular parametrisations of submanifolds) are feedback equivalent
if and only if their extensions Ξe and Ξ̃e are equivalent via control-affine feedback; see [13].

Remark. The equivalence (ii)⇔(iii) does not hold, in general, if the parametrisation ΞS : ẋ = F (x,w)
does not satisfy the regularity condition ∂F

∂w (x,w) ̸= 0 that we assume. To see that, consider the
submanifold S given by ż − ẏ2 = 0. The parametrisations of S

ΞS :

{
ż = w2

ẏ = w
and Ξ̃S :

{
ż = w̃6

ẏ = w̃3
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are not feedback equivalent around w0 = 0, and the reason is that Ξ̃S fails to satisfy ∂F̃
∂w̃ (w̃0) ̸= 0 at

w̃0 = 0.

According to the previous proposition, in order to deal with the problem of equivalence of subman-
ifolds of the tangent bundle TX it is interesting, first, to study the problem of equivalence of general
control-nonlinear systems Ξ and, second, the problem of equivalence of general control-affine systems
Σ.

Conic submanifolds. A map S : TX → R will be called quadratic if it is of the form

Sq(x, ẋ) = ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x),

that is, Sq is a smooth polynomial of degree two in ẋ. A velocities constraint S is called quadratic (or
conic) if there exists a quadratic map Sq such that S = {Sq(x, ẋ) = 0}. As we already observed in the
Introduction, if S is quadratic, then any S̃, equivalent to S, is also quadratic. On the other hand, if a
map Sq is quadratic, then a map S̃ that is V -equivalent to Sq need not be quadratic (although they
define equivalent quadratic velocities constraints).

The map Sq can be represented by the triple Sq = (g, ω, h), where g is a symmetric (0, 2)-tensor
(possibly degenerated), ω is a one-form and h is a function. Clearly, two conics Sq of TX and S̃q of T X̃ ,
given by (g, ω, h) and (g̃, ω̃, h̃), respectively, are equivalent if and only if there exists a diffeomorphism
x̃ = ϕ(x) and a non-vanishing function δ = δ(x) on X such that δg = ϕ∗g̃, δω = ϕ∗ω̃, and δh = ϕ∗h̃.
In particular, observe that the tensors g and g̃, which are (pseudo-)Riemannian metrics (possibly
degenerated), are conformally equivalent.

It is well-known in affine geometry that such conic equations can be classified by the signature of

the matrix Mq(x) =

(
g(x) ω(x)t

ω(x) h(x)

)
and that of g(x). We will use the following two determinants

∆1(x) = det(Mq(x)) and ∆2(x) = det(g(x)). (2)

Of course, ∆1 and ∆2 depend on the choice of coordinates, however, since a diffeomorphism x̃ =
ϕ(x) transforms them as ∆i = θ2ϕ∗(∆̃i), for i = 1, 2, where θ(x) = detDϕ(x), their zero-level sets
{∆i(x) = 0} are invariantly related to the submanifold Sq. In this work we will characterise non-
degenerate conics, that is, non-empty and satisfying ∆1 ̸= 0; notice that non-empty conics at points of
degeneration ∆1(x) = 0 form in fact (pairs of) linear subspaces of TxX . Excluding empty Sq is needed
when considering elliptic submanifolds (see lemma below) and it implies that Mq is indefinite. The
non-degeneracy assumption ∆1(x) ̸= 0 implies that ∂Sq

∂ẋ (x, ẋ) ̸= 0 (but the converse does not hold in
general) and rk g(x) ≥ 1.

If ∆2(x0) ̸= 0 or if ∆2 ≡ 0 in a neighbourhood of x0, then we can describe three particular types
of conics given by the classification lemma below. Notice, however, that this lemma does not describe
conics for which we pass smoothly from one type to another (see remark below the proof of Theorem 3.5
for that case).

Lemma 2.5 (Classification of non-degenerate conics). Consider a nonempty conic Sq, given by (g, ω, h),
and assume ∆1(x0) ̸= 0. Then, locally around x0, we have

(i) If ∆2(x0) > 0, then Sq is equivalent to SE =
{
a2(ż − c0)

2 + b2(ẏ − c1)
2 = 1

}
,

(ii) If ∆2(x0) < 0, then Sq is equivalent to SH =
{
a2(ż − c0)

2 − b2(ẏ − c1)
2 = 1

}
,

(iii) If ∆2 ≡ 0, then Sq is equivalent to SP =
{
aẏ2 − ż + bẏ + c = 0

}
,

where a, b, c0, c1, and c are smooth functions satisfying a ̸= 0 and b ̸= 0 in the elliptic and hyperbolic
cases, and a ̸= 0 in the parabolic case.

We call SE , resp. SH , resp. SP , an elliptic, resp. a hyperbolic, resp. a parabolic, submanifold and
we will use the notation SQ to denote the set {SE ,SH ,SP } of those three particular forms. Observe
that for the parabolic form SP , the non-degeneracy assumption ∆1 ̸= 0 implies rk g ≡ 1 and the
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existence of a nonvanishing one-form ω = −dz + b dy satisfying ω /∈ ann (ker g), whereas in the elliptic
and hyperbolic cases this one-form, given by ω = −(c0dz ± c1dy), can vanish at some points. Those
three classes of submanifolds are related to the signature of the metric g; indeed if sgn (g) is constant
in a neighbourhood of x0, then SE , resp. SH , resp. SP , corresponds to sgn (g) = (+,+), resp.
sgn (g) = (+,−), resp. sgn (g) = (+, 0); notice that we can always assume that there is at least one
positive eigenvalue, otherwise take the equivalent submanifold defined by S̃ = −S.

Proof. Consider a submanifold Sq given in local coordinates by Sq(x, ẋ) = 0, with

Sq(x, ẋ) = ẋt
(

g11 g12
g12 g22

)
ẋ+ 2 (ω1, ω2) ẋ+ h,

where all functions gij , ω1, ω2, and h depend smoothly on x ∈ X .

(i)-(ii) We deal with ∆2(x0) ̸= 0, that is, the elliptic and hyperbolic cases together. In those cases, g is a
non-degenerate symmetric (0, 2)-tensor, therefore it can be interpreted as a pseudo-Riemannian
metric. Since on 2-dimensional manifolds all metrics are smoothly diagonalisable (actually, all
metrics are conformally flat; see [26, Addendum 1 of Chapter 9] for the Riemannian case and
[25, Theorem 7.2] for the Lorentzian one), introduce coordinates x̃ = ϕ(x) = (z, y) such that in
those coordinates, Sq can be written (we drop the tildes for more readability) as

Sq = λ21(x)ż
2 ± λ22(x)ẏ

2 + 2ω(x)ẋ+ h(x)

or, equivalently (since λ1(·) ̸= 0 and λ2(·) ̸= 0), as

Sq = λ21

(
ż +

ω1

λ21

)2

± λ22

(
ẏ ± ω2

λ22

)2

+ h− λ21

(
ω1

λ21

)2

∓ λ22

(
ω2

λ22

)2

.

Notice that for this form we have ∆1 = ±λ21λ22
(
h− (ω1)2

λ21
∓ (ω2)2

λ22

)
which, by our assumption,

does not vanish. Denote c0 = −ω1

λ21
, c1 = ∓ω2

λ22
, and divide by h̃ = −h + λ21

(
ω1

λ21

)2
± λ22

(
ω2

λ22

)2
,

observe that h̃ ̸= 0 as h̃ = ∓ 1
λ21λ

2
2
∆1, to obtain

Sq =
λ41λ

2
2

∓∆1
(ż − c0)

2 ± λ21λ
4
2

∓∆1
(ẏ − c1)

2 − 1,

where the upper, resp. lower, sign corresponds to the elliptic, resp. hyperbolic, case. In the
elliptic case, if ∆1 > 0 the conic is empty which is excluded by assumption, therefore ∆1 < 0

and set a2 =
λ41λ

2
2

−∆1
and b2 =

λ21λ
4
2

−∆1
to obtain SE . In the hyperbolic case, if ∆1 < 0, then permute

the variables (z, y) and we can thus always obtain a conic defined by Sq in the above form with
∆1 > 0. Then, set a2 = λ41λ

2
2

∆1
and b2 = λ21λ

4
2

∆1
to obtain SH .

(iii) Assume ∆2 ≡ 0. Since ∆1 ̸= 0, we have rk g(x) = 1 in a neighbourhood of x0, which implies that
g11(x0)g22(x0) ̸= 0 and thus, without loss of generality, we can assume that g22(x0) ̸= 0. Then,
by rk g(x) = 1, the distribution ker g = span

{
g22(x)

∂
∂z − g12(x)

∂
∂y

}
is locally of constant rank

and thus we introduce coordinates x̃ = (z̃, ỹ) such that ker g = span
{
∂
∂z̃

}
in which we have

S̃q = ã(x̃) ˙̃y2 + 2ω̃(x̃) ˙̃x+ h̃(x̃),

whose determinant ∆1 = −ã(ω̃1)
2 ̸= 0 implies that ω̃1 ̸= 0. Dividing S̃q by −2ω̃1 we obtain the

desired form SP with a = ã
−2ω̃1

, b = ω̃2
−ω̃1

, and c = h̃
−2ω̃1

.
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Example 2.6. There is a well known example of a control-nonlinear system subject to an elliptic
constraint SE, namely Dubins’ car [10]. The state of the system is the centre of mass of the vehicle
(z, y) ∈ R2, and we control the orientation of the vehicle (with respect to the z-axis) via w ∈ S1. Then,
the dynamics of Dubins’ car reads {

ż = r cos(w)
ẏ = r sin(w)

, r ∈ R∗,

which clearly is a first extension, i.e. a regular parametrisation, of the elliptic submanifold ż2+ ẏ2 = r2.

We have established all notions necessary for our characterisation and classification of conic sub-
manifolds Sq by studying the feedback equivalence of their first and second extensions ΞSq and ΣSq .

3 Quadratisable control-affine systems

Notations.

Σ = (f, g) A control-affine system on a 3-dimensional manifold and with scalar control.
(ϕ, α, β) Feedback transformations acting on control-affine systems.
[g, f ], adkgf , Lg () Lie bracket, iterated Lie bracket, Lie derivative.
G Distribution spanned by the vector field g.
Σq = (fq, gq) Quadratic control-affine system given, in coordinates (x,w), by the vector

fields fq = fq ∂∂x and gq = ∂
∂w , which satisfy Definition 3.1.

(ρ, τ) Structure functions attached to a control-affine system Σ = (f, g), see condi-
tion (C2) of Theorem 3.3.

ΣQ = {ΣE ,ΣH ,ΣP } Set of elliptic, hyperbolic, and parabolic subclasses of quadratic systems Σq.
Σh Second extension of a submanifold S = {ż = h(x, ẏ)}.

In this section, we introduce the novel class of quadratic control-affine systems Σq that describes
second extensions of quadratic submanifolds Sq given by

Sq(x, ẋ) = ẋtg(x)ẋ+ 2ω(x)ẋ+ h(x) = 0

and satisfying ∆1 ̸= 0. Next, we address the equivalence problem of a control-affine system Σ to a
quadratic control-affine system Σq, and in that way, due to Proposition 2.4, we provide a character-
isation of quadratic submanifolds Sq. As a corollary, we will give a characterisation of the elliptic,
hyperbolic, and parabolic submanifolds via a characterisation of corresponding subclasses of quadratic
control-affine systems. Moreover, by studying our conditions, we will give a normal form of control-
affine systems that are feedback equivalent to a quadratic one and as a consequence, this will give us a
normal form of quadratic submanifolds that smoothly passes from the elliptic to the hyperbolic classes.

On a 3-dimensional manifold M, equipped with local coordinates ξ, we consider the control-affine
system

Σ : ξ̇ = f(ξ) + g(ξ)u,

with a scalar control u ∈ R and smooth vector fields f and g. A control-affine system Σ is denoted by
the pair Σ = (f, g), and we set G = span {g} the distribution spanned by the vector field g. Moreover,
we will use the following notations: given two vector fields g and f on M, by [g, f ] we denote the Lie
bracket of g and f , in coordinates we have [g, f ] = ∂f

∂ξ g −
∂g
∂ξ f , and adkgf =

[
g, adk−1

g f
]

stands for the
iterated Lie bracket, with the convention ad0gf = f .

Definition 3.1 (Quadratic and quadratisable systems). We say that a control-affine system Σ = (f, g)
is quadratisable if it is feedback equivalent to

Σq :

{
ẋ = fq(x,w)
ẇ = u

,
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where x ∈ X , a 2-dimensional manifold, w ∈ W ⊂ R, and fq(x,w) satisfies
(
∂2fq
∂w2 ∧ ∂fq

∂w

)
(x,w) ̸= 0,

and

∂3fq
∂w3

= τq(x)
∂fq
∂w

, (3)

with τq a smooth function of the indicated variable x ∈ X . A system Σq of the above form is called
quadratic.

For a quadratic system Σq = (fq, gq), where fq = fq ∂∂x and gq = ∂
∂w , we show by applying Ap-

pendix A with ζ = f1q and ζ = f2q , that any smooth fq, satisfying relation (3) locally around (x0, w0),
can be written as

fq(x,w) = A(x)

+∞∑
k=0

(w − w0)
2k+2

(2k + 2)!
τkq (x) +B(x)

+∞∑
k=0

(w − w0)
2k+1

(2k + 1)!
τkq (x) + C(x), (4)

where A,B,C are smooth. Since G = span {gq} = span
{
∂
∂w

}
is involutive and of constant rank one, it

is integrable and its integral curves can be identified with the points x of X and A, B, and C can be
seen as smooth vector fields on X , for which we have A∧B ̸= 0. The following proposition shows that
Σq is a second extension of a quadratic submanifold Sq, thus justifies to call Σq a quadratic system,
and identifies the elliptic, hyperbolic, and parabolic subclasses by describing three normal forms of
fq = fq ∂∂x given for τq ̸= 0 and τq ≡ 0.

Proposition 3.2. Locally around ξ0 belonging to M, the following statements hold

(i) Σq is a second extension of a conic submanifold Sq and, conversely, any second extension ΣSq of
a conic submanifold Sq is feedback equivalent to a system of the form Σq.

(ii) If τq(ξ0) < 0, resp. τq(ξ0) > 0, resp. τq ≡ 0, then Σq is locally feedback equivalent to ΣE, resp.
ΣH , resp. ΣP , given by fq of, respectively, the form

fE = A(x) cos(w̃) +B(x) sin(w̃) + C(x), fH = A(x) cosh(w̃) +B(x) sinh(w̃) + C(x),

fP = A(x)w2 +B(x)w + C(x),

where in all three cases A ∧B ̸= 0.

(iii) ΣE, resp. ΣH , resp. ΣP , is a second extension of a conic submanifold Sq satisfying ∆2 > 0, resp.
∆2 < 0, resp. ∆2 ≡ 0.

The conic submanifold Sq of item (iii) is, by Lemma 2.5, equivalent to SE (if ∆2 > 0), resp. SH
(if ∆2 < 0), resp. SP (if ∆2 ≡ 0). So it is natural to call ΣE an elliptic system, ΣH a hyperbolic
system, and ΣP a parabolic system. We will denote by Q the set {E,H,P} and, consequently, fQ =
{fE , fH , fP }, gQ = {gE , gH , gP }, fQ = {fE , fH , fP }, and ΣQ = {ΣE ,ΣH ,ΣP }.

Proof.

(i) Consider fq given by (4), for simplicity of the notations we assume w0 = 0. Notice that the two
rank 1 distributions A = span {A} and B = span {B} satisfy A(x0)⊕ B(x0) = Tx0R2. Thus, we
can locally choose two independent smooth functions ϕ and ψ satisfying dϕ(x0) ̸= 0, dψ(x0) ̸= 0,
dϕ ∈ ann (B), and dψ ∈ ann (A). In the (z, y) = (ϕ, ψ)-coordinates, we have A = span

{
∂
∂z

}
and

B = span
{
∂
∂y

}
and,consequently, A = a ∂

∂z and B = b ∂∂y , where a and b are smooth functions

satisfying a(x0)b(x0) ̸= 0. We set C = c0
∂
∂z + c1

∂
∂y , where c0 and c1 are smooth functions of x.
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Using Cauchy products we compute(
ż − c0
a

)2

=

(
+∞∑
k=0

w2k+2

(2k + 2)!
τkq

)2

=
+∞∑
k=0

(8 · 4k − 2)w2k+4 τkq
(2k + 4)!

,

(
ẏ − c1
b

)2

=

(
+∞∑
k=0

w2k+1

(2k + 1)!
τkq

)2

=

+∞∑
k=0

2 · 4kw2k+2 τkq
(2k + 2)!

= w2 +
+∞∑
k=1

2 · 4kw2k+2 τkq
(2k + 2)!

= w2 +
+∞∑
k=0

2 · 4k+1w2k+4 τk+1
q

(2k + 4)!

= w2 + τq

+∞∑
k=0

8 · 4kw2k+4 τkq
(2k + 4)!

= w2 + τq

(
ż − c0
a

)2

+ τq

+∞∑
k=0

2w2k+4 τkq
(2k + 4)!

,

(
ẏ − c1
b

)2

− τq

(
ż − c0
a

)2

= w2 +
+∞∑
k=0

2w2k+4 τk+1
q

(2k + 4)!
=

+∞∑
k=−1

2w2k+4 τk+1
q

(2k + 4)!

=
+∞∑
k=0

2w2k+2 τkq
(2k + 2)!

= 2

(
ż − c0
a

)
.

Hence, Σq is a second extension of the submanifold Sq given by(
ẏ − c1
b

)2

− τq

(
ż − c0
a

)2

− 2

(
ż − c0
a

)
= 0, (5)

and for which we have ∆1 = − 1
a2b2

and ∆2 = − τq
a2b2

.

To prove that any second extension of a conic submanifold Sq is feedback equivalent to a system
of the form Σq, we show that any conic submanifold is equivalent via a diffeomorphism to a
conic submanifold of the form given by (5). To this end, consider Sq = ẋtgẋ + 2ωẋ + h =
aż2 + 2bżẏ + cẏ2 + 2dż + 2eẏ + h = 0, where all functions a, b, c, d, e, h depend smoothly on
x = (z, y). By ∆1(x0) ̸= 0, we have rk g(x0) ≥ 1, where g =

(
a b
b c

)
. If rk g(x0) = 2, then we can

apply the results of Lemma 2.5 to get Sq in the form of (5). If rk g(x0) = 1, then we may assume
that c(x0) ̸= 0. Indeed, if a(x0) = c(x0) = 0, then b(x0) ̸= 0 implying that rk g(x0) = 2 so either
a(x0) ̸= 0 or c(x0) ̸= 0 and we can always suppose c(x0) ̸= 0 by permuting y and z, if necessary.
Dividing Sq = 0 by c we obtain (we keep the same names for all remaining functions):

Sq = aż2 + 2bżẏ + ẏ2 + 2dż + 2eẏ + h = (a− b2)ż2 + (bż + ẏ)2 + 2dż + 2eẏ + h = 0.

Choose local coordinates (z̃, ỹ) = (z, ψ(z, y)), with ∂ψ
∂y ̸= 0, that rectify the line-distribution

span
{
∂
∂z − b ∂∂y

}
, i.e. ∂ψ

∂z − b∂ψ∂y = 0. Therefore, ˙̃z = ż and ˙̃y = ∂ψ
∂z ż +

∂ψ
∂y ẏ = ∂ψ

∂y (bż + ẏ). Thus

S̃q, which is Sq in (z̃, ỹ)-coordinates, reads

S̃q =
1

b̃2
˙̃y2 + ã ˙̃z2 + 2d̃ ˙̃z + 2ẽ ˙̃y + h̃ = 0,
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where b̃ = ∂ψ
∂y and ã(x̃0) = 0 because rk g̃(x̃0) = 1. By ∆̃1(x̃0) ̸= 0 and ã(x̃0) = 0, we conclude

that d̃(x̃0) ̸= 0 and thus dividing by d̃ (and removing the "tildes" from the coordinates) we get

S̄q =
S̃q

d̃
=

1

b̄2
ẏ2 + Āż2 + 2ż + 2ēẏ + h̄ =

(
ẏ − c̄1
b̄

)2

+ Āż2 + 2ż + H̄ = 0,

with b̄ = b̃
√
d̃ (if d̃ < 0, then we take z = −z̃ to get d̃ > 0), Ā = ā

d̃
(satisfying Ā(x0) = 0),

c̄1 = −ēb̄2, and H̄ = h̄− ē2b̄2 (see also [6] for another proof for the smooth diagonalisation of a
symmetric (0, 2)-tensor in the case of rank deficiency). To get the form (5), we will now prove
that there exists, locally around x0, functions τ̄q, ā ̸= 0, and c̄0 such that Āż2 + 2ż + H̄ =

−τ̄q
(
ż−c̄0
ā

)2 − 2
(
ż−c̄0
ā

)
. We obtain

−τ̄q
ā2

= Ā,
τ̄q c̄0
ā2

− 1

ā
= 1, and − τ̄q(c̄0)

2

ā2
+ 2

c̄0
ā

= H̄.

Hence, from the second equation, c̄0
ā = −Ā(c̄0)2 − c̄0 implying that Ā(c̄0)2 + 2c̄0 + H̄ = 0. The

last equation possesses a smooth local solution c0(z, y) = −H̄
1+
√

1−ĀH̄
; recall that Ā(x0) = 0. So

S̄q =

(
ẏ − c̄1
b̄

)2

− τ̄q

(
ż − c̄0
ā

)2

− 2

(
ż − c̄0
ā

)
= 0,

where ā = −1
1+Āc̄0

, which is well defined since Ā(x0) = 0, and τ̄q = −Āā2, proving that S̄q is of
the desired form (5). From (5) we go to Σq following the passage already presented in the first
part of the proof.

(ii) If τq < 0, then ∂3fq
∂w3 = τq

∂fq
∂w implies that fq = A cos(

√−τqw) + B sin(
√−τqw) + C, where A,

B, and C depend on x and, clearly, ∂2fq
∂w2 ∧ ∂fq

∂w ̸= 0 implies A ∧ B ̸= 0 (for this case, as well
as for the next two cases). Via the change of coordinate w̃ =

√−τqw, we get fq = fE . If
τq > 0, then ∂3fq

∂w3 = τq
∂fq
∂w implies that fq = A cosh(

√
τqw) + B sinh(

√
τqw) + C which, via the

change of coordinate w̃ =
√
τqw, gives fq = fH . Finally, if τq ≡ 0, then ∂3fq

∂w3 ≡ 0 implies that
fq = fP = Aw2 +Bw + C.

(iii) By item (i), Σq is a second extension of a conic submanifold Sq for which we have ∆2 = − τq
a2b2

.
Thus, ∆2 > 0, resp. ∆2 < 0, resp. ∆2 ≡ 0 if and only if τq < 0, resp. τq > 0, resp. τq ≡ 0,
which, by item (ii), correspond to ΣE , resp. ΣH , resp. ΣP .

Notice that τq plays for Σq an analogous role to that played by ∆2 for Sq; indeed, we have
sgn (∆2(x)) = −sgn (τq(x)). In particular, the sign of τq identifies the subclasses of elliptic, hyper-
bolic, and parabolic control-affine systems. Moreover, statement (i) shows that every second extension
of a quadratic submanifold Sq is feedback equivalent to a quadratic system Σq and the other way
around, therefore to obtain a characterisation of quadratic submanifolds, it is crucial to characterise
the class of quadratisable systems.

The remaining part of this section is organised as follows. First, we will state our main theorem
giving necessary and sufficient conditions characterising the class of quadratic control-affine systems
Σq. Second, by carefully studying the conditions of that theorem, we will give a normal form of all
quadratisable systems.

3.1 Characterisation of quadratisable control-affine systems

We now focus on the feedback equivalence of a general control-affine system Σ : ξ̇ = f(ξ)+ g(ξ)u with
a quadratic control-affine system of the form Σq. The theorem below gives checkable necessary and
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sufficient conditions in terms of the vector fields f and g of Σ for the existence of a smooth feedback
transformation (ϕ, α, β) that locally brings Σ into a quadratic system Σq. Equivalence to particular
subcases of Σq, namely elliptic ΣE , hyperbolic ΣH , and parabolic ΣP , is provided by Corollary 3.4
below.

Theorem 3.3 (Feedback quadratisation). Let Σ = (f, g) be a control-affine system on a 3-dimensional
smooth manifold with a scalar control. The system Σ is, locally around ξ0 ∈ M, feedback equivalent to
a quadratic system Σq if and only if

(C1) g ∧ adgf ∧ ad2gf (ξ0) ̸= 0,

(C2) The structure functions ρ and τ in the decomposition ad3gf = ρ ad2gf + τ adgf mod G satisfy,
locally around ξ0,

Lg (χ)−
2

3
ρχ = 0, (6)

where χ = 3Lg (ρ)− 2ρ2 − 9τ .

Condition (C1) is a regularity condition, it ensures that the vector fields g, adgf, and ad2gf are locally
linearly independent and thus that they form a local frame, hence the structure functions (ρ, τ) of
(C2) are well defined. The main idea behind this theorem is to observe that if for Σ we have ad3gf =
τ(x) adgf , modulo G = span {g}, i.e. the third Lie derivative of f along g is proportional to the first Lie
derivative of f along g, modulo G, then with the help of a diffeomorphism we can obtain the form Σq,
see the sufficiency part of the proof for details. Thus condition (C2) shows how that relation changes
when we allow for feedback transformations (α, β).

Proof. Necessity. Consider the affine control system Σ given by two smooth vector fields f and g
and recall that G is the distribution G = span {g}. Let (α, β) form a control-affine feedback and let
ϕ be a diffeomorphism such that Σ is, locally, transformed into Σq via ϕ and (α, β). In coordinates
ξ̃ = ϕ(ξ) = (x̃, w̃) = (z̃, ỹ, w̃), we denote f̃q= f̃q ∂∂x̃ and g̃q= ∂

∂w̃ the vector fields of Σq, G̃ the distribution
spanned by g̃q, and (ρ̃, τ̃) the structure functions of Σq, defined as in (C2). By definition of feedback
equivalence the following relations between (f, g) and (f̃q, g̃q) hold: f̃q = ϕ∗ (f + αg) and g̃q = ϕ∗ (gβ).

The system Σq is quadratic, so by Definition 3.1, we have ∂2 f̃q
∂w̃2 ∧ ∂ f̃q

∂w̃ (x̃0, w̃0) ̸= 0, which implies that

(C1) holds for Σq, and we also have ∂3 f̃q
∂w̃3 = τ̃q

∂ f̃q
∂w̃ , thus we get ρ̃ = 0 and τ̃ = τ̃q(z̃, ỹ). Therefore

for Σq we have χ̃(z̃, ỹ) = −9τ̃(z̃, ỹ) implying Lg̃q (χ̃) − 2
3 ρ̃χ̃ = ∂χ̃

∂w̃ = 0. Hence Σq satisfies (C1) and
(C2) and we will now prove that those conditions are invariant under diffeomorphisms ϕ and feedback
transformations (α, β).
Clearly, (C1) is invariant under diffeomorphisms (as [ϕ∗f, ϕ∗g] = ϕ∗ [f, g]) and under feedback (α, β)
since β ̸= 0. We have checked that (C2) holds for Σq = (f̃q, g̃q) an, clearly, (C2) is invariant un-
der diffeomorphisms since they conjugate structure functions. Moreover (C2) is invariant under the
transformation f̃q 7→ f̃q + αg̃q, since the expression of ad3g̃q f̃q is considered modulo the distribution G̃.
Finally, under the action of β the brackets, with g̃q = gβ, are transformed by

adg̃qfq = βadgf mod G̃,
ad2g̃qfq = β2ad2gf + βLg (β) adgf mod G̃,

ad3g̃qfq = (β3ρ+ 3β2Lg (β))ad
2
gf + (β3τ + βLg (βLg (β)))adgf mod G̃,

= (ρβ + 3Lg (β))ad
2
g̃qf +

(
τβ2 + Lg (βLg (β))− ρβLg (β)− 3 (Lg (β))

2
)
adg̃qf mod G̃.

This implies that the structure functions ρ̃ and τ̃ of Σq defined by ad3g̃qfq = ρ̃ ad2g̃qfq+ τ̃adg̃qfq mod G̃
are given in terms of the feedback transformation β and the structure functions ρ and τ of Σ by

ρ̃ = ρβ + 3Lg (β) , τ̃ = τβ2 + Lg (βLg (β))− ρβLg (β)− 3 (Lg (β))
2 . (7)
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Since for Σq the structure function ρ̃ = 0, we have the relation Lg (β) = −βρ
3 and thus χ̃ = −9τ̃ , which

is equal to

χ̃ = −9
(
τβ2 + Lg (βLg (β))

)
= −9

(
τβ2 + Lg

(
−β2ρ
3

))
,

= −9

(
τβ2 − 1

3

(
ρLg

(
β2
)
+ β2Lg (ρ)

))
= −9β2

(
τ − 1

3
Lg (ρ) +

2

9
ρ2
)

= β2χ.

And finally,

Lg̃q (χ̃) = βLg
(
β2χ

)
= β3Lg (χ) + 2β2χLg (β) = β3Lg (χ)−

2

3
β3χρ = 0,

showing the necessity of relation (6) and concludes the necessity part of the proof.

Sufficiency. There are two steps in the sufficiency part. The first one consists in building a vector
field g̃ such that ad3g̃f = τ adg̃f mod G with Lg̃ (τ) = 0. Then we will construct a diffeomorphism ϕ
that brings Σ into the form Σq.
Consider the system Σ : ξ̇ = f + gu, for which we assume g ∧ adgf ∧ ad2gf (ξ0) ̸= 0 and suppose
that relation (6) holds for the structure functions ρ and τ of Σ. Choose a function β ̸= 0 satisfying
Lg (β) =

−βρ
3 , which exists locally since g ̸= 0 by condition (C1); to guarantee that β ̸= 0, we actually

may solve the equation Lg (ln(β)) = −ρ
3 . Define the system Σ̃ : ξ̇ = f̃ + g̃ũ, where g̃ = gβ and f̃ = f ,

then by (7) the structure function ρ̃ of Σ̃ vanishes. Therefore, we have χ̃ = −9τ̃ and thus relation (6)
implies that Lg̃ (τ̃) = 0.

Since g̃ ̸= 0, we apply a diffeomorphism (z, y, w) = ϕ(ξ) such that ϕ∗g̃ = gq = ∂
∂w and denote

fq = ϕ∗f̃ , and τq◦ϕ = τ̃ . Therefore, the decomposition ad3gqfq = τqadgqfq mod G implies that
fq = f1q

∂
∂z + f2q

∂
∂y + f3q

∂
∂w satisfies

∂3f iq
∂w3

= τ(z, y)
∂f iq
∂w

, (8)

for i = 1, 2. Applying the feedback u = f3q (z, y, w) + ũ we obtain the form Σq with fq = f1q
∂
∂z + f2q

∂
∂y

and gq = ∂
∂w . The condition ∂2fq

∂w2 ∧ ∂fq
∂w ̸= 0 follows from (C1) and feedback invariance of the latter.

The following corollary shows that we can test on the structure functions of Σ if the equivalent
quadratic system Σq will be of elliptic, hyperbolic, or parabolic type.

Corollary 3.4. Under conditions (C1) and (C2) of the previous theorem we have, locally around ξ0,

(i) Σ is feedback equivalent to ΣE if and only if χ(ξ0) > 0,

(ii) Σ is feedback equivalent to ΣH if and only if χ(ξ0) < 0,

(iii) Σ is feedback equivalent to ΣP if and only if χ ≡ 0 in a neighbourhood of ξ0,

where χ = 3Lg (ρ)− 2ρ2 − 9τ .

Notice that Σ is locally feedback equivalent to ΣP if and only if it satisfies (C1) and χ ≡ 0, condition
(C2) being satisfied automatically.

Proof. From the necessity part of the proof of Theorem 3.3 we know that for Σq, with structure func-
tions ρ = 0 and τ = τq, we have χ = −9τq and we observed that under pure feedback transformations
(α, β) we have χ̃ = β2χ, thus the sign of χ is invariant as well as the locus where it vanishes. Moreover,
by statement (ii) of Proposition 3.2, Σq is elliptic if τq > 0, equivalently χ < 0, Σq is hyperbolic if
τq > 0, equivalently χ < 0, and Σq is parabolic if τq ≡ 0, equivalently χ ≡ 0. Hence the necessity of
the stated conditions is established.

Conversely, in the sufficiency part of the proof of Theorem 3.3 we obtained Σ with structure
functions (ρ̃, τ̃) = (0, τ̃(z, y)) via a suitable feedback transformations. Since χ̃ = β2χ, we have −9τ̃ =
β2χ and thus we get sgn (τ̃) = −sgn (χ) and the conclusion follows by statement (ii) of Proposition 3.2.
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3.2 Normal form of quadratisable control-affine systems

Any control-affine system Σ, under the regularity assumption g ∧ adgf(ξ0) ̸= 0, can be written (after
applying a suitable feedback transformation) locally around 0 ∈ R3 as

Σh :


ż = h(z, y, w)
ẏ = w + ε
ẇ = u

,

with h a smooth function and ε = 0 or 1. The parameter ε, which is invariant under local feedback
transformations, is ε = 0 if either (f ∧ g ∧ adgf) (ξ0) ̸= 0 or (f ∧ g) (ξ0) = 0 and ε = 1 otherwise, i.e.
(f ∧ g) (ξ0) ̸= 0 but (f ∧ g ∧ adgf) (ξ0) = 0. By applying Theorem 3.3, we will give in this subsection
a normal form of all smooth functions h(z, y, w) that describe quadratisable systems, that is, control-
affine systems feedback equivalent to Σq. In what follows, we assume to work locally around 0 ∈ R3

and all derivatives are taken with respect to w and denoted by prime, double prime, etc. Whenever
we apply ln(a), we assume that a > 0 (if not, we take the absolute value).

Theorem 3.5 (Normal form of quadratisable control-affine systems). The following statements are
equivalent, locally around 0 ∈ R3:

(i) Σh is feedback equivalent to a quadratic system Σq;

(ii) The function h satisfies h′′(0) ̸= 0 and, in a neighbourhood, it holds

9h(5)
(
h′′
)2 − 45h(4)h(3)h′′ + 40

(
h(3)

)3
= 0, (9)

recall that the derivatives are taken with respect to w;

(iii) The second derivative of h is of the following form

h′′(x,w) = a(dw2 + ew + 1)−3/2, (10)

where a = a(x), d = d(x), and e = e(x) are smooth functions satisfying a(0) ̸= 0;

(iv) The function h is given by

h(x,w) = 2a

(
w2

(
√
dw2 + ew + 1 + 1)2 − dw2

)
+ bw + c, (11)

where a, b, c, d, e are any smooth functions of x such that a(0) ̸= 0.

Proof. (i)⇒(ii). It is a straightforward application of the conditions of Theorem 3.3 with the structure
functions of Σh given by ρ = h(3)

h′′ and τ = 0 yielding χ = 3ρ′ − 2ρ2. By (C1), we have h′′(0) ̸= 0 and
then condition (C2) reads

χ′ − 2

3
ρχ = 3ρ′′ − 6ρρ′ +

4

3
ρ3 = 0, (12)

which, by plugging ρ = h(3)

h′′ into the last equation, gives (9).
(ii)⇒(iii). Assume that h satisfies h′′(0) ̸= 0 and (9). Set ρ = h(3)

h′′ , then ρ = ρ(x,w) fulfils 3ρ′′ −
6ρρ′ + 4

3ρ
3 = 0, namely, the second equation of (12). By a change of variable, it is easy to obtain that

the solutions of (12) are of the following form (see Appendix B.1 for the proof)

ρ(x,w) = −3

2

2d(x)w + e(x)

d(x)w2 + e(x)w + 1
. (13)

This form can be integrated, using ρ = h(3)

h′′ = (lnh′′)′, into h′′(x,w) = a(x)
(
d(x)w2 + e(x)w + 1

)−3/2

with a, d, and e any smooth functions such that a(0) ̸= 0.
(iii)⇒(iv). To show (11), we integrate twice the second derivative of h given by (10). Denote p =
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p(x,w) = d(x)w2 + e(x)w + 1 and ∆ = ∆(x) = e(x)2 − 4d(x). First, we obtain (see Appendix B.2 for
details)

h′(x,w) =
2aw

(√
p+ 1

)
√
p(ew + 2 + 2

√
p)

+ b,

with b an arbitrary smooth function of x. Integrate once more to get

h(x,w) =
2a

∆
√
p
(ew

√
p− 2p) +

4a

∆
+ bw + c

=
2a

∆
(ew + 2− 2

√
p) + bw + c

=
2aw2

ew + 2 + 2
√
p
+ bw + c

=
2aw2

(
√
p+ 1)2 − dw2

+ bw + c.

(iv)⇒(i). Given Σh with h defined by (11) we will construct a feedback transformation that brings
the system into Σq. First, we introduce coordinates, centred at 0 ∈ R2, (z̃, ỹ) = ϕ(z, y), where ỹ = y,
such that ϕ∗

(
b ∂∂z +

∂
∂y

)
= ∂

∂ỹ . Those coordinates transform the system Σh into
˙̃z = 2ã w2

(
√
p̃+1)2−d̃w2

+ c̃

˙̃y = w + ε
ẇ = u

,

where ã, c̃, d̃, and p̃ are new functions satisfying ã(0) ̸= 0 and d = d̃ ◦ ϕ and p = p̃ ◦ ϕ. Second, we
set w̃2 = w2

(
√
p̃+1)2−d̃w2

or, equivalently, w = w̃
(
ẽw̃ ± 2

√
d̃w̃2 + 1

)
, which brings the above system into

(after applying a suitable feedback along the last component)

Σ̃h :


˙̃z = 2ãw̃2 + c̃
˙̃y = ẽw̃2 ± 2w̃

√
d̃w̃2 + 1 + ε

˙̃w = ũ

. (14)

The structure functions of Σ̃h are given by ρ̃ = −3w̃d̃
d̃w̃2+1

and τ̃ = 3d̃
d̃w̃2+1

, then apply the feedback ũ = βū,

where β(x̃, w̃) =
√
d̃w̃2 + 1 (it is a solution of the equation ∂β

∂w̃ = − ρ̃β
3 ), to obtain a new vector

field ḡ = β ∂
∂w̃ and structure functions of (f̄ , ḡ), where f̄ is the drift of Σ̃h, are given by ρ̄ = 0 and

τ̄ = 4d̃(x). To complete the form, it remains to find a new w̄ = ψ(x̃, w̃) such that the diffeomorphism
(x̄, w̄) = Ψ(x̃, w̃) = (x̃, ψ(x̃, w̃)) satisfies Ψ∗ḡ = Ψ∗β

∂
∂w̃ = ∂

∂w̄ . In general, ψ is given in terms of the
following integral

w̄ = ψ(x̃, w̃) =

∫ w̃

0

1√
d̃w̃2 + 1

dw̃

and, together with a suitable feedback along ˙̄w, thus provides a quadratic system Σq.

Remark. This theorem provides a normal form of submanifolds S = {ż = s(x, ẏ)} that are equivalent
to a conic submanifold Sq, namely, they are represented by s(x, ẏ) = h(x, ẏ) with h as in (11). Moreover,
system (14) leads to a normal form for all conic submanifolds Sq (even for those that smoothly pass
through ∆2(x) = 0, i.e. from the elliptic to the hyperbolic submanifolds) and thus completes the
characterisation of Lemma 2.5. Indeed, for (14) we have (tildes have been removed for more readability)

Sq(x, ẋ) = [e(ż − c)− 2a(ẏ − ε)]2 − 4d(ż − c)2 − 8a(ż − c),

for which a ̸= 0 and we can compute ∆1 = −64a4 ̸= 0 and ∆2 = −16a2d. Notice that the above
expression of Sq = 0 can be normalised to the form (5) thus giving another proof of the latter. Indeed,
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observe that the differential 1-form ω = edz − 2ady satisfies dω ∧ ω ≡ 0, since e = e(z, y) and
a = a(z, y), and thus there exists a nonvanishing function b̃(z, y) such that ω̃ = 1

b̃
ω is exact. Thus,

ω̃ = dỹ for a smooth function ỹ = ψ(z, y), where ∂ψ
∂y ̸= 0 (since a(x0) ̸= 0). Therefore the first term of

Sq reads [e(ż − c)− 2a(ẏ − ε)]2 =
(
b̃ ˙̃y − c̃

)2
, where c̃ = ec− 2aε, and we can normalise Sq = 0 to the

form (5) (recall that a ̸= 0 and b̃ ̸= 0).

In the last item of the proof we saw that the function d plays an import role for the shape of the
transformation, in the following corollary we show that this function is the key of the normal form of
quadratisable control systems.

Corollary 3.6. Assume that Σh is given by h of the form (11). Then Σ is feedback equivalent to ΣP ,
resp. ΣE, resp. ΣH if and only if d ≡ 0, resp. d < 0, resp. d > 0. Moreover, the normalizing feedback
transformation is given by

w̄ =
w

1 +
√
ew + 1

for ΣP ,

resp. sin2(
√
−dw̄) = −dw2

ew + 2 + 2
√
p

forΣE ,

resp. sinh2(
√
dw̄) =

dw2

ew + 2 + 2
√
p

for ΣH ,

where p = p(x,w) = d(x)w2 + e(x)w + 1.

Proof. First we show that Σh is feedback equivalent to ΣP , resp. ΣE , resp. ΣH , if and only if d ≡ 0,
resp. d < 0, and resp. d > 0. From Corollary 3.4 we know that we have to compute the sign of χ,
which is given by χ = −9dp for Σh (this can easily be deduced from the expression of ρ given by (13)).
Since p(0) = 1 > 0 we have sgn (χ) = −sgn (d) and thus the conclusion follows.
We now show how to explicitly transform Σh into ΣP , resp. ΣE , resp. ΣH . From the last part of the
proof of the previous theorem we know that a suitable parametrisation w̄ is given by the following two
steps

w̃2 =
w2

ew + 2 + 2
√
p
, and w̄ =

∫ w̃

0

1√
dw̃2 + 1

dw̃.

Assume d ≡ 0, then the procedure reduces to the first step only and thus w̄2 = w̃2 = w2

ew+2+2
√
ew+1

=(
w

1+
√
ew+1

)2
and we choose w̃ = w

1+
√
ew+1

. Assume d < 0, then the second step of the procedure

leads to w̄ = 1√
−d arcsin(

√
−dw̃). Hence a reparametrisation is given by sin2(

√
−dw̄) = −dw2

ew+2+2
√
p .

Assume d > 0, then from the second step of the procedure we have w̄ = 1√
d
arcsinh(

√
dw̃). Hence a

reparametrisation is given by sinh2(
√
dw̄) = dw2

ew+2+2
√
p .

Remark (Interpretation of parametrising functions). In the normal form (11), there are 5 parametris-
ing functions1. However, only d = d(x) and e = e(x) play a significant role in the shape of the subman-
ifold Sq. Indeed, a is a scaling of the submanifold, c is the value of h at w = 0, and by an appropriate
choice of coordinates (as in (14)) we can always assume that b ≡ 0. From the above corollary, the role
of d is clear: its sign around x0 = 0 ∈ R2 determines the nature of the submanifold, that is, whether
the submanifold is elliptic, hyperbolic, or parabolic.

The role of the function e is, however, more subtle. Clearly, h is well defined whenever p > 0 and,
for a given d, the function e determines the region in which p > 0 (in particular, whether h is defined
globally with respect to w or not). If d ≡ 0, then p > 0 holds everywhere (h is defined globally) if and
only if e ≡ 0 that is, h is explicitly given by h = 2aw2 + bw + c. If d < 0, then we have p > 0 only
between its roots and the parametrisation is never global. Finally, if d > 0 then the parametrisation is
global if and only if ∆ < 0 (where ∆ is the discriminant of p = 0), that is |e| < 2

√
d.

1On https://www.geogebra.org/m/tyb4ygpb the reader can play with those parameters (the functions a, b, c, d, and
e become real numbers when fixing x ∈ X ).
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4 Classification of quadratic systems

Notations.

ΞQ = {ΞEH ,ΞP }, ΞEH = {ΞE ,ΞH} First extension of elliptic, hyperbolic, parabolic submanifolds,
seen as a control-nonlinear system on X .

ΞQ = (A,B,C) Triple of vector fields attached to a first extension of a
quadratic submanifold.

(α, β) Reparametrisation (feedback) acting on quadratic nonlinear
systems, given by Proposition 4.2.

(µ0, µ1), γ = (γ0, γ1) Structure functions attached to (A,B,C) by [A,B] = µ0A +
µ1B and C = γ0A+ γ1B; see (18).

γ Notation for γ= (γ1,∓γ0), used in the elliptic and hyperbolic
cases.

ΓE , ΓH , ΓP Functions given by ΓE = (γ0)
2 + (γ1)

2, ΓH = (γ0)
2 − (γ1)

2,
and ΓP = γ0 + (γ1)

2.
g±, κ± A (pseudo-)Riemannian metric defined by g±(A,A) = 1,

g±(B,B) = ±1, and g±(A,B) = 0, and κ± its Gaussian cur-
vature; see (21).

From Theorem 3.3 we know how to characterise control-affine system equivalent to the quadratic
form Σq and, in particular, we know how to characterise the subclasses of elliptic, hyperbolic, and
parabolic systems (see Corollary 3.4). We are now interested in classifying, under feedback transfor-
mations, the systems inside those three subclasses. Indeed, due to Proposition 2.4, the proposed clas-
sification of those classes provides an equivalent classification of the elliptic, hyperbolic, and parabolic
submanifolds (see Lemma 4.1 below). To this end, we consider the quadratic nonlinear system

ΞQ : ẋ = fQ(x,w),

where x ∈ X is the 2-dimensional state, w ∈ R plays the role of a control that enters in a nonlinear
way and fQ is a w-parameterised vector field on X given by either

fE = A(x) cos(w) +B(x) sin(w) + C(x), defining ΞE , or
fH = A(x) cosh(w) +B(x) sinh(w) + C(x), defining ΞH , or
fP = A(x)w2 +B(x)w + C(x), defining ΞP .

In each of the three cases, A, B, and C are smooth vector fields on X satisfying (A ∧B)(x0) ̸= 0. We
call ΞE an elliptic system, ΞH a hyperbolic system, and ΞP a parabolic system, because in each fiber
TxX , the system ΞE , resp. ΞH , resp. ΞH parametrises an ellipse, resp. a hyperbola, resp. a parabola.
A quadratic nonlinear system ΞQ is then represented by the triple (A,B,C) of three smooth vector
fields satisfying A ∧B ̸= 0. We call the pair (A,B) a Q-frame, and if additionally [A,B] = 0, then we
call (A,B) a commutative Q-frame. We will denote by the index EH objects attached to either the
elliptic or the hyperbolic case, as those two are treated in a similar manner.

For quadratic submanifolds, elliptic and hyperbolic, of the form SEH =
{
a2(ż − c0)

2 ± b2(ẏ − c1)
2 = 1

}
and parabolic of the form SP =

{
aẏ2 − ż + bẏ + c = 0

}
, we distinguished specific classes (conformally-

flat, flat, constant and null forms for elliptic and hyperbolic submanifolds; weakly and strongly flat,
constant and null forms for parabolic submanifolds) that are presented in Table 1 of the Introduction.
Our goal is to characterise those types of quadratic submanifolds and we show in the next lemma that
the classification of elliptic, hyperbolic, and parabolic submanifolds SQ presented in Table 1 is reflected
in properties of the control system ΞQ = (A,B,C).

Lemma 4.1. Consider a quadratic submanifold SQ together with its regular parametrisation ΞQ =
(A,B,C).

(i) SEH is locally equivalent to a conformally-flat elliptic/hyperbolic submanifold if and only if ΞEH is
locally feedback equivalent to ΞEH, whose EH-frame (A,B) is given by A = r(x) ∂∂z and B = r(x) ∂∂y
for some nonvanishing function r(x).
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(ii) SEH is locally equivalent to a flat elliptic/hyperbolic submanifold if and only if ΞEH is locally
feedback equivalent to ΞEH, whose frame (A,B) is commutative.

(iii) SEH is locally equivalent to a constant-form elliptic/hyperbolic submanifold if and only if ΞEH

is locally feedback equivalent to ΞEH, whose EH-frame (A,B) is commutative and, additionally,
[A,C] = [B,C] = 0.

(iv) SEH is locally equivalent to a null-form elliptic/hyperbolic submanifold if and only if ΞEH is locally
feedback equivalent to ΞEH, whose EH-frame (A,B) is commutative and, additionally, C = 0.

(v) SP is locally equivalent to a weakly-flat parabolic submanifold if and only if ΞP is locally feedback
equivalent to ΞP , whose P-frame (A,B) is commutative.

(vi) SP is locally equivalent to a strongly-flat parabolic submanifold if and only if ΞP is locally feedback
equivalent to ΞP , whose P-frame (A,B) is commutative and, additionally, A ∧ C = 0.

(vii) SP is locally equivalent to a constant-form parabolic submanifold if and only if ΞP is locally
feedback equivalent to ΞP , whose P-frame (A,B) is commutative and, additionally, [A,C] =
[B,C] = 0.

(viii) SP is locally equivalent to a null-form parabolic submanifold if and only if ΞP is locally feedback
equivalent to ΞP , whose P-frame (A,B) is commutative and, additionally, C = 0.

Recall that a general conic submanifold Sq is equivalent to an elliptic SE , resp. a hyperbolic SH ,
resp. a parabolic SP , submanifold if and only the determinant ∆2 satisfies ∆2 > 0, resp. ∆2 < 0, resp.
∆2 ≡ 0; see Lemma 2.5. Therefore the above lemma allows to check equivalence of Sq to a submanifold
of any of the subclasses listed in Table 1.

Proof. It is a straightforward computation to check that for the submanifolds SQ of the indicated
forms, their first extensions ΞQ = (A,B,C) have the triple (A,B,C) or the Q-frame (A,B) satisfying
the stated conditions. Conversely, in local coordinates x = (z, y) in which either A = r(x) ∂∂z and
B = r(x) ∂∂y , for (i), or A = ∂

∂z and B = ∂
∂y , for (ii) to (viii), the system ΞQ is a regular parametrisation

of SQ with the desired properties. Now, all items (i) to (viii) follow from Proposition 2.4.

The above lemma asserts that to achieve the classification of elliptic, hyperbolic, and parabolic
submanifolds presented in Table 1, it is crucial to classify, under feedback transformations, quadratic
control systems ΞQ = (A,B,C) with the properties presented in Table 2, which will be the goal of the
remaining part of this section. In particular, we will show that the characterisation of item (i), resp.
item (v), is always satisfied by any ΞEH and thus by the corresponding SEH , resp. by any ΞP and thus
by the corresponding SP , while the characterisations of the remaining classes of systems, and thus of
the corresponding submanifolds, require non-trivial conditions.

Although the systems of the form ΞQ are nonlinear with respect to the control w, the feedback
transformations that preserve this class are not as general as possible. Indeed, feedback transformations
which preserve the class of quadratic system ΞQ are affine (and even of Brockett type, in the case of
elliptic and hyperbolic systems) with respect to the control w, as ensured by the next proposition,
which also shows how feedback acts on the triple (A,B,C).

Elliptic and hyperbolic classification Parabolic classification
conformally-flat A = r(x) ∂∂z and B = r(x) ∂∂y weakly-flat [A,B] = 0

flat [A,B] = 0 strongly-flat [A,B] = 0 and A ∧ C = 0
constant-form [A,B] = [A,C] = [B,C] = 0, constant-form [A,B] = [A,C] = [B,C] = 0

null-form [A,B] = 0 and C = 0 null-form [A,B] = 0 and C = 0

Table 2: Reflection of the classification of elliptic, hyperbolic, and parabolic submanifolds in properties
of the triple ΞQ = (A,B,C).
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Proposition 4.2 (Reparametrisation of quadratic nonlinear systems). Consider two quadratic systems
ΞQ and Ξ̃Q around (x0, w0) and (x̃0, w̃0), respectively.

(i) Two elliptic systems ΞE and Ξ̃E are locally feedback equivalent if and only if there exists a
local diffeomorphism x̃ = ϕ(x) and a reparametrisation (feedback) w = ψ(x, w̃), given by ψ =
±w̃ + α(x), satisfying

Ã = ϕ∗ (A cosα+B sinα) , B̃ = ±ϕ∗ (−A sinα+B cosα) , C̃ = ϕ∗ (C) . (15)

(ii) Two hyperbolic systems ΞH and Ξ̃H are locally feedback equivalent if and only if there exists
a local diffeomorphism x̃ = ϕ(x) and a reparametrisation (feedback) w = ψ(x, w̃), given by
ψ = ±w̃ + α(x), satisfying

Ã = ϕ∗ (A coshα+B sinhα) , B̃ = ±ϕ∗ (A sinhα+B coshα) , C̃ = ϕ∗ (C) . (16)

(iii) Two parabolic systems ΞP and Ξ̃P are locally feedback equivalent if and only if there exists a local
diffeomorphism x̃ = ϕ(x) and an invertible reparametrisation (feedback) w = ψ(x, w̃), given by
ψ = α(x) + β(x)w̃ and β(·) ̸= 0, satisfying

Ã = ϕ∗
(
Aβ2

)
, B̃ = ϕ∗ (2Aαβ +Bβ) , C̃ = ϕ∗

(
C +Aα2 +Bα

)
. (17)

Proof. We show the necessity of each statement as the converse implications are immediate.

(i) Assume that ΞE and Ξ̃E are locally equivalent via a diffeomorphism x̃ = ϕ(x) and a reparametri-
sation w = ψ(x, w̃). Then we have the following relation ϕ∗fE(x, ψ(x, w̃)) = f̃E(x̃, w̃), which
we differentiate 3 times with respect to w̃ and using ∂3 f̃E

∂w̃3 = −∂ f̃E
∂w̃ , we conclude the relation

ϕ∗
∂3

∂w̃3 fE = −ϕ∗ ∂
∂w̃ fE , which translates into

A
(
−ψ′′′ sin(ψ) + (ψ′)3 sin(ψ)− 3ψ′ψ′′ cos(ψ)

)
+B

(
ψ′′′ cos(ψ)− (ψ′)3 cos(ψ)− 3ψ′ψ′′ sin(ψ)

)
= Aψ′ sin(ψ)−Bψ′ cos(ψ),

where the derivatives are taken with respect to w̃. Since the functions cos and sin are linearly
independent, we obtain ψ′′ = 0 and (ψ′)2 = 1. Thus ψ(x, w̃) = ±w̃ + α(x). Applying this
reparametrisation to ΞE = (A,B,C) we obtain the relations of (15).

(ii) Exactly the same reasoning, using fH and the fact ϕ∗ ∂3

∂w̃3 fH = ϕ∗
∂
∂w̃ fH , implies that ψ(x, w̃) =

±w̃+α(x). Applying ϕ(x) and w = ψ(x, w̃) = ±w̃+α to ΞH = (A,B,C) we obtain the relations
of (16).

(iii) We repeat again the same reasoning to fP with the property ϕ∗ ∂3

∂w̃3 fP = 0. However, this time
we obtain the conditions ψ′′′ = 0 and ψψ′′′ + 3ψ′ψ′′ = 0 on the reparametrisation ψ, which
implies ψ′′ = 0, that is, ψ(x, w̃) = β(x)w̃ + α(x), with β satisfying β(·) ̸= 0. Applying this
reparametrisation together with a diffeomorphism ϕ yields the relations of (17).

Remark (Local character of the results). Initially, ΞQ was considered locally around a point x0 and a
control w0, however, since ΞQ is defined globally with respect to w and, moreover, by the last proposition,
the transformations w = ψ(x, w̃) are global with respect to w, so we will consider the systems ΞQ and
their equivalence locally in x and globally with respect to w. All results below are stated assuming this
structure.

We will develop relations involving structure functions attached to any fixed triple (A,B,C) in a
unique way and thus change accordingly with diffeomorphisms x̃ = ϕ(x). So we will act on (A,B,C)
by (α, β) only (β is ±1 in the elliptic and hyperbolic cases) and we will denote by (Ã, B̃, C̃) the result
of that action (given by (15), or (16), or (17), with ϕ = id), called a reparametrisation.
Observe that the reparametrisations of ΞP depend on two smooth functions α and β while those
of ΞE and ΞH depend on one smooth function α only. Therefore, we expect the classification of
parabolic systems to be less rich (less parametrising functions) than the classification of elliptic and
hyperbolic systems. In the following subsections we will first classify elliptic and hyperbolic systems as
the procedures are similar, and then we will classify parabolic systems under reparametrisation actions.
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4.1 Classification of elliptic and hyperbolic systems

In this subsection, we classify elliptic and hyperbolic systems under the action of reparametrisations.
Recall, that our aim is to classify elliptic and hyperbolic nonholonomic constraints SE and SH (sub-
manifolds of TX ), which are parameterised by systems of the form ΞE and ΞH , respectively. The
classification of submanifolds given in Table 1 of the Introduction is reflected in special properties of
the vector fields (A,B,C), attached to the control system ΞE and ΞH , that we list in Table 2 above
and summarise in Lemma 4.1. Firstly, we will give a normal form for both types of systems ΞE and
ΞH showing that they actually depend on three smooth functions, that normal form corresponds to
conformally-flat elliptic and hyperbolic submanifolds. Secondly, we will further develop their classifi-
cation, in particular we will give conditions for the existence of commutative frames (corresponding to
flat elliptic and hyperbolic submanifolds) and a complete characterisation of forms without functional
parameters, corresponding to constant-form (and, in particular, null-form) elliptic and hyperbolic sub-
manifolds.

Notations. In order to simplify and unify notations, in the following formulae the upper sign always
corresponds to the elliptic case and the lower sign to the hyperbolic case, e.g. we will use the symbol
± to design similar objects attached to the elliptic (+ case) and to the hyperbolic (− case) systems
and in the case of a ∓ symbol we have − for elliptic systems and + for hyperbolic ones. We denote
ΞEH elliptic and hyperbolic systems, and an EH-frame stands for an E-frame or an H-frame. To avoid
unnecessary computations, we assume that EH-frames (A,B) and (Ã, B̃) of two equivalent systems
have the same orientation (we will come back to this simplification in Proposition 4.6), therefore we
restrict reparametrisations of the control to w = w̃ + α(x) thus resulting in the "+" sign in (15)
and (16). Denoting by R̄EH(α) the (trigonometric or hyperbolic) rotation matrix given by

R̄E(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
, and R̄H(α) =

(
cosh(α) − sinh(α)
− sinh(α) cosh(α)

)
,

respectively, we see from (15) and (16) that EH-frames are transformed by (Ã, B̃) = (A,B)R̄EH(±α)
under reparametrisations of the form w = w̃ + α. Introduce structure functions (µ0, µ1) and (γ0, γ1)
uniquely defined by

[A,B] = µ0A+ µ1B and C = γ0A+ γ1B, (18)

respectively. We denote γ = (γ0, γ1), and γ= (γ1,∓γ0), and set ΓEH = (γ0)
2 ± (γ1)

2.
We begin by a technical lemma showing how structure functions behave under reparametrisations of
the control w.

Lemma 4.3 (Transformation of structure functions). Consider an elliptic/hyperbolic system ΞEH with
structure functions (µ0, µ1, γ0, γ1). Then under the reparametrisation w = w̃ + α(x) we have

(µ̃0, µ̃1) = (µ0 ∓ LA (α) , µ1 − LB (α)) R̄EH(α), and γ̃ = γ R̄EH(α). (19)

Proof. Details of the computations can be found in Appendix C.

Clearly, from (19), ΓEH = (γ0)
2 ± (γ1)

2 is invariant under reparametrisations, i.e. Γ̃EH = ΓEH .

Proposition 4.4 (Conformal form of elliptic and hyperbolic systems).

(i) Any elliptic system ΞE, resp. hyperbolic system ΞH , always admits under a reparametrisation of
the following conformal form, locally around x0,

ΞcE : ẋ = r(x)

(
cos(w)
sin(w)

)
+

(
c0(x)
c1(x)

)
, resp. ΞcH : ẋ = r(x)

(
cosh(w)
sinh(w)

)
+

(
c0(x)
c1(x)

)
,

with r a smooth function satisfying r > 0.
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(ii) Two conformal forms ΞcE and Ξ̃cE, resp. ΞcH and Ξ̃cH , are locally feedback equivalent if and only
if there exists a local diffeomorphism x̃ = ϕ(x) = (ϕ1(x), ϕ2(x)), where x = (z, y), satisfying

∂ϕ1
∂z

=
∂ϕ2
∂y

,
∂ϕ1
∂y

= ∓∂ϕ2
∂z

,

(
∂ϕ1
∂z

)2

±
(
∂ϕ1
∂y

)2

=

(
r̃

r

)2

, and ϕ∗C = C̃, (20)

where r̃ is expressed in x-coordinates, i.e. we set r̃(ϕ(x)).

We call ΞcEH a conformal-form because the systems of that class parametrise elliptic and hyperbolic
submanifolds for which the quadratic term, interpreted as a (pseudo-)Riemannian metric, is conformally
flat.

Proof.

(i) For the system ΞEH = (A,B,C), define a (pseudo-)Riemannian metric g± on X by g±(A,A) = 1,
g±(B,B) = ±1, and g±(A,B) = 0. It is known that any non-degenerate metric on a manifold
of dimension two is conformally flat (see [3, pp 15-35] or [26, Addendum 1 of chapter 9] for
the elliptic case and [25, theorem 7.2] for the hyperbolic case). Therefore, there exists a local
diffeomorphism (z̃, ỹ) = x̃ = ϕ(x) such that g± = ϕ∗g̃±, where g̃± = ϱ(x̃)

(
dz̃2 ± dỹ2

)
, ϱ > 0.

The vector fields Ã = ϕ∗A and B̃ = ϕ∗B satisfy g̃±(Ã, Ã) = 1, g̃±(B̃, B̃) = ±1, and g̃±(Ã, B̃) = 0
which implies that (Ã, B̃) is a (pseudo-)orthonormal frame. Finally, using the feedback w 7→ w̃−α
we can smoothly rotate (Ã, B̃) into

(
r ∂∂z̃ , r

∂
∂ỹ

)
with r = 1√

ϱ , which gives the desired form

ΞcEH = (Ã, B̃, C̃), with C̃ = ϕ∗C.

(ii) By relations (15) and (16), the reparametrisations do not act on C and thus the relation C̃ = ϕ∗C
is necessary for the equivalence of conformal forms. Consider two elliptic conformal systems ΞcE
and Ξ̃cE , resp. two hyperbolic conformal systems ΞcH and Ξ̃cH , with frames (A,B) and (Ã, B̃)
and related by a feedback w = w̃ + α and a diffeomorphism ϕ. In all computations below, r̃
is expressed in x-coordinates, that is, we set r̃(ϕ(x)). Thus, using relation (15), resp. (16), we
obtain

∂ϕ1
∂z

=
r̃

r
cos(α) =

∂ϕ2
∂y

,
∂ϕ1
∂y

=
r̃

r
sin(α) = −∂ϕ2

∂z
,

resp.
∂ϕ1
∂z

=
r̃

r
cosh(α) =

∂ϕ2
∂y

,
∂ϕ1
∂y

= − r̃
r
sinh(α) =

∂ϕ2
∂z

,

from which we deduce condition (20). Conversely, applying the diffeomorphism ϕ given by (20),
together with the feedback w = w̃ + α, with α being a solution of

cos(α) =
r

r̃

∂ϕ1
∂z

, sin(α) = −r
r̃

∂ϕ1
∂y

,

resp. cosh(α) =
r

r̃

∂ϕ1
∂z

, sinh(α) = −r
r̃

∂ϕ1
∂y

,

we transform ΞcE into Ξ̃cE , resp. ΞcH into Ξ̃cH .

Remark. In the above proof we used the metric g± on X defined by

g±(A,A) = 1, g±(B,B) = ±1, g±(A,B) = 0. (21)

This object will play a special role in the interpretation of the conditions describing the existence of a
commutative EH-frame.

The above proposition shows that elliptic and hyperbolic systems ΞEH are parametrized by three
smooth functions of two variables (and not by 6 functions defining the triple (A,B,C)). Now we will
pass to the problem of commutative frames and the following proposition gives equivalent algebraic
and geometric conditions for the existence of a commutative EH-frame.
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Proposition 4.5 (Existence of a commutative EH-frame). Consider an elliptic/hyperbolic system
ΞEH = (A,B,C) with structure functions (µ0, µ1) of the EH-frame (A,B). The following statements
are equivalent locally around x0:

(i) There exists a commutative EH-frame.

(ii) The structure functions (µ0, µ1) attached to the EH-frame (A,B) satisfy

−(µ0)
2 ∓ (µ1)

2 ± LA (µ1)− LB (µ0) = 0. (22)

(iii) The Gaussian curvature κ± of the metric g± vanishes.

Notice that item (i) describes the following normal forms,

Ξ′
E :

{
ż = cos(w) + c0(x)
ẏ = sin(w) + c1(x)

, and Ξ′
H :

{
ż = cosh(w) + c0(x)
ẏ = sinh(w) + c1(x)

,

whose structure functions are µ0 = µ1 = 0, γ0 = c0, and γ1 = c1. We call Ξ′
E a flat elliptic system and

Ξ′
H a flat hyperbolic system.

Proof. The equivalence between (ii) and (iii) is immediate since the left hand side of (22) is the
Gaussian curvature κ± of g± (details of the computations are in Appendix D). We show that (i) is
equivalent to (ii). If the EH-frame (A,B) is equivalent via w = w̃ + α(x) to a commutative EH-
frame (Ã, B̃), then by (19) we immediately have LA (α) = ±µ0 and LB (α) = µ1; the integrability
condition of this system of first order partial differential equations gives (22). Conversely, consider the
system ΞEH = (A,B,C) and construct α as a solution of the system LA (α) = ±µ0 and LB (α) = µ1,
whose solvability is guaranteed by the integrability condition given by (22). Then by (19) we see that
the resulting EH-frame (Ã, B̃), of the system Ξ̃EH obtained by the reparametrisation w = w̃ + α, is
commutative.

Notice that when proving Proposition 4.5 we have shown that the Gaussian curvature κ± of the
metric g± is given by the left hand side of (22). Moreover relation (19) implies that κ± is invariant
under reparametrisations w = w̃ + α and is therefore an equivariant of the feedback transformations
of the system ΞEH .

In the following proposition, we give first a classification of flat elliptic/hyperbolic systems, second
we characterise those without functional parameters, i.e. constant-forms, and third we provide a
canonical form for the latter. Recall that γ= (γ1,∓γ0) and that for flat elliptic/hyperbolic systems
Ξ′

EH we have (γ0, γ1) = (c0, c1) so all statements of the proposition below are actually expressed in
terms of structure functions. From now on, we will consider the group of feedback transformations
consisting of x̃ = ϕ(x) and w = ±w̃+α(x). The additional transformation w = −w̃+α implies (Ã, B̃) =

(A,B) ¯̄REH(±α), where ¯̄RE(α) =

(
cos(α) sin(α)
sin(α) − cos(α)

)
and ¯̄RH(α) =

(
cosh(α) sinh(α)
− sinh(α) − cosh(α)

)
, and the

corresponding structure functions change by, compare (19),

(µ̃0, µ̃1) = −(µ0 ∓ LA (α) , µ1 − LB (α)) ¯̄REH(α) and γ̃ = γ ¯̄REH(α). (23)

Proposition 4.6 (Characterisation and classification of flat elliptic/hyperbolic systems).

(i) Two flat elliptic systems Ξ′
E and Ξ̃′

E, resp. two flat hyperbolic systems Ξ′
H and Ξ̃′

H , are locally
feedback equivalent around x0 = 0 ∈ R2 if and only if there exists a constant α ∈ R satisfying

R−1
EH(±α)C(x) = C̃

(
R−1

EH(±α)x
)
, (24)

where REH stands for either R̄EH or ¯̄REH.

(ii) An elliptic/hyperbolic system ΞEH is locally feedback equivalent to a constant-form, i.e. Ξ′
EH

with (c0, c1) ∈ R2, if and only if one of the equivalent conditions of Proposition 4.5 holds and,
additionally,

LA (γ) + γµ0 = 0 and LB (γ)± γµ1 = 0. (25)
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(iii) A constant-form elliptic system is always feedback equivalent, locally around x0 = 0 ∈ R2, to the
canonical form

ΞΓE
E :

{
ż = cos(w) +

√
ΓE

ẏ = sin(w)
,

where ΓE = (c0)
2 + (c1)

2 ∈ R is a complete invariant of constant-form elliptic systems.

(iv) A constant-form hyperbolic system is always feedback equivalent, locally around x0 = 0 ∈ R2, to
one of the following canonical forms

ΞΓH ,ε
H :

{
ż = cosh(w) + ε

√
ΓH

ẏ = sinh(w)
, or Ξ−ΓH

H :

{
ż = cosh(w)
ẏ = sinh(w) +

√
−ΓH

,

or Ξ0,ε
H :

{
ż = cosh(w) + ε
ẏ = sinh(w) + 1

, or Ξ0,0
H :

{
ż = cosh(w)
ẏ = sinh(w)

,

where ΓH = (c0)
2 − (c1)

2 ∈ R and satisfies ΓH > 0 for the first form, ΓH < 0 for the second
form, and ΓH = 0 for the third and fourth ones, where ε = sgn (c0) = ±1. Moreover (ΓH , ε) is a
complete invariant of constant-form hyperbolic systems.

Observe that if in items (i), (iii), and (iv) the considered systems are defined globally, then their
feedback equivalence is also global and, in particular, the proposed canonical forms are also global.

Remark. In item (iv), notice that there are two orbits of the local action of feedback transformations
group for any ΓH > 0, corresponding to sgn (c0) = ε = ±1, one orbit for any ΓH < 0, and three orbits
for ΓH = 0 corresponding, respectively, to sgn (c0) = ε = ±1 and to (c0, c1) = (0, 0). The invariant
ε = ±1 corresponds to the parametrisation of one of two branches of the hyperbola (ż−

√
ΓH)

2− ẏ2 = 1.

Proof.

(i) Consider, locally around 0 ∈ R2, two equivalent flat elliptic/hyperbolic systems Ξ′
EH and Ξ̃′

EH

given by structure functions (µ0, µ1, γ0, γ1) = (0, 0, c0, c1) and (µ̃0, µ̃1, γ̃0, γ̃1) = (0, 0, c̃0, c̃1),
respectively. Since they both have a commutative EH-frame, by (19) (and (23)) they differ by
a reparametrisation w = ±w̃ + α satisfying LA (α) = LB (α) = 0 and thus α ∈ R. Applying
this reparametrisation together with a diffeomorphism ϕ satisfying ϕ∗ = R−1

EH(±α), that is x̃ =
ϕ(x) = R−1

EH(±α)x, transforms Ξ′
EH into Ξ̃′

EH if and only if(
c̃0(x̃)
c̃1(x̃)

)
= R−1

EH(±α)
(
c0(x)
c1(x)

)
,

which is (24).

(ii) Assume that ΞEH , given by structure functions (µ0, µ1, γ0, γ1), is equivalent via x̃ = ϕ(x) and
w = ±w̃ + α to Ξ′

EH with structure functions (µ̃0, µ̃1, γ̃0, γ̃1) = (0, 0, c0, c1), where (c0, c1) ∈ R2.
Necessity of one (and thus any) of the conditions of Proposition 4.5 is clear, and by (19) and (23)
we have first, LA (α) = ±µ0 and LB (α) = µ1 and second, γREH(α) = γ̃ = (c0, c1); recall that
REH stands for either R̄EH or ¯̄REH . By differentiating this last relation along A and B we obtain

0 = LA (γ) REH(α) + γLA (REH(α))

= LA (γ)REH(α) + γ

(
±LA (α)

(
0 ∓1
1 0

)
REH(α)

)
= LA (γ) + γµ0, and

0 = LB (γ) REH(α) + γLB (REH(α))

= LB (γ)REH(α) + γ

(
±LB (α)

(
0 ∓1
1 0

)
REH(α)

)
= LB (γ)± γµ1,

thus proving that (25) holds. Conversely, assume that (22) and (25) hold for ΞEH . By Proposi-
tion 4.5, ΞEH is equivalent to Ξ′

EH with a commutative EH-frame (A,B), and applying (25) to
the latter we get LA (γ) = LB (γ) = 0 and therefore, we have (c0, c1) ∈ R2.
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(iii) Consider a flat elliptic system Ξ′
E with (c0, c1) ∈ R2, then relation (24) reads(
c̃0
c̃1

)
=

(
cos(α) sin(α)
∓ sin(α) ± cos(α)

)(
c0
c1

)
. (24’)

Take α as a solution of − sin(α)c0 + cos(α)c1 = 0, then we have c̃1 = 0 and c̃0 = ±
√
ΓE , with

ΓE = (c0)
2 + (c1)

2. If necessary, apply α = π to send (c̃0, c̃1) = (−
√
ΓE , 0) into (

√
ΓE , 0). The

proof that ΞΓE
E is equivalent to Ξ̃ΓE

E if and only if ΓE = Γ̃E is immediate from (24’).

(iv) Consider a flat hyperbolic system Ξ′
H with (c0, c1) ∈ R2 and denote ΓH = (c0)

2 − (c1)
2, then

relation (24) reads (
c̃0
c̃1

)
=

(
cosh(α) − sinh(α)
∓ sinh(α) ± cosh(α)

)(
c0
c1

)
. (24”)

We consider four cases. First, assume that ΓH > 0, that is c0 ̸= 0 and −1 < c1
c0
< 1, and take α

as the solution of tanh(α) = c1
c0

yielding c̃1 = 0 and c̃0 = sgn (c0)
√
ΓH , which gives the canonical

form ΞΓH ,ε
H . Second, assume that ΓH < 0, that is c1 ̸= 0 and −1 < c0

c1
< 1, and take α as

the solution of tanh(α) = c0
c1

yielding c̃0 = 0 and c̃1 = sgn (c1)
√
−ΓH . If sgn (c1) = −1, then

by applying (24”) with α = 0 and the bottom sign in the second row, we can always normalize
sgn (c1) to +1 yielding the canonical form Ξ−ΓH

H . Third, assume that ΓH = 0 and c0 = 0 thus
c1 = 0 and therefore we immediately have the canonical form Ξ0,0

H . Fourth, and finally, assume
that ΓH = 0 and c0 ̸= 0, thus c1 = εc0 with ε = ±1. If necessary, apply (24”) with α = 0 and
the bottom sign to obtain c1 > 0. Take α = ε ln c1 and apply (24”) with the upper sign to obtain
c̃1 = 1 and c̃0 = ε. To show that (ΓH , ε) is a complete invariant is trivial by applying (24”) to
the canonical forms ΞΓH ,ε

H , Ξ−ΓH
H , Ξ0,ε

H , and Ξ0,0
H .

We summarise the results of this subsection: we started from a general elliptic, resp. hyperbolic,
system ΞE , resp. ΞH , which parametrises an elliptic, resp. a hyperbolic, submanifold SE , resp.
SH . We showed that reparametrisations (pure feedback transformations) acting on the class of el-
liptic/hyperbolic systems ΞEH are affine (actually they are of the Brockett type w = ±w̃ + α) with
respect to the control and thus depend on one function α only. By transforming into the conformal
form, we showed that elliptic/hyperbolic systems ΞEH are given by three arbitrary smooth functions.
Next, we showed that the vanishing of the Gaussian curvature of a (pseudo-)Riemannian metric, asso-
ciated with the EH-frame of ΞEH , characterises the flat elliptic/hyperbolic systems Ξ′

EH , which depend
on two arbitrary smooth functions only. Finally, we gave conditions characterising the constant-form
systems, i.e. ellitpic/hyperbolic systems without functional parameters. In the elliptic case, equivalent
constant-form systems correspond to the circles ΓE = (c0)

2+(c1)
2 = const., and their canonical forms

are parametrized by a closed half-line of real constants. On the other hand, in the hyperbolic case
the structure is richer because equivalent systems correspond to connected branches of the hyperbolas
ΓH = (c0)

2 − (c1)
2 = const.; two connected components for ΓH > 0, one for ΓH < 0, and three for

ΓH = 0. Thus canonical forms of hyperbolic systems are parametrized by a real line of constants (the
value of ΓH) and by a discrete invariant ε = ±1 (if either ΓH > 0 or ΓH = 0 and c0 ̸= 0). Our
characterisation of elliptic/hyperbolic systems gives an equivalent classification for elliptic/hyperbolic
submanifolds that is summarised in Lemma 4.1 and explicitly given in [24].

4.2 Classification of parabolic systems

We now turn to the classification of parabolic systems ΞP = (A,B,C), of the form

ΞP : ẋ = A(x)w2 +B(x)w + C(x),

which is expected to be different from that of elliptic and hyperbolic systems because the allowed
reparametrisations of the control w depend on 2 smooth functions (α, β), see Proposition 4.2. Our
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aim is to get a classification of parabolic submanifolds SP , as the one presented in Table 1 of the
Introduction, via the properties of the triple (A,B,C) presented in Table 2 at the beginning of Section 4.
In particular, the existence of a commutative P-frame (A,B) corresponds to weakly-flat parabolic
submanifolds; existence of a commutative P-frame, which additionally satisfies A∧C = 0, corresponds
to strongly-flat submanifolds; finally, existence of a commutative P-frame, which additionally satisfies
C constant (in the coordinates, where (A,B) is rectified), corresponds to constant-form parabolic
submanifolds; in particular, the case of C = 0 is called null-form. As in the elliptic/hyperbolic cases,
we introduce the structure functions (µ0, µ1, γ0, γ1) uniquely defined for any triple (A,B,C) by

[A,B] = µ0A+ µ1B and C = γ0A+ γ1B.

By a direct computation, we obtain that under reparametrisations of the form w = βw̃+α the structure
functions (µ0, µ1, γ0, γ1) of (A,B,C) are transformed into the structure functions (µ̃0, µ̃1, γ̃0, γ̃1) of
(Ã, B̃, C̃) via the following relations:

γ̃0 =
1

β2
(
γ0 − 2αγ1 − α2

)
, γ̃1 =

1

β
(γ1 + α) , (26)

µ̃0 = βµ0 − 2αLA (β) + 2βLA (α)− 2LB (β)− 2α (LA (β) + βµ1) ,
µ̃1 = β2µ1 + βLA (β) .

(27)

There are two main questions that we will answer. First, when does a commutative P-frame (Ã, B̃)
exist, i.e. µ̃0 = µ̃1 = 0? Second, provided that a commutative P-frame (A,B) has been normalised,
how can we additionally simplify C? Contrary to the elliptic and hyperbolic cases the answer to the
first question is always positive without any additional assumption, as ensured by the next result.

Proposition 4.7 (Existence of a commutative P-frame). (i) For any P-frame (A,B) there exists,
locally around x0, a reparametrisation (α, β) such that (Ã, B̃) is a commutative P-frame.

(ii) If (A,B) is a commutative P-frame, then (Ã, B̃) is also a commutative P-frame if and only if the
reparametrisation (α, β) satisfies

LA (β) = 0 and
1

β
LB (β) = LA (α) . (28)

Proof.

(i) Consider a P-frame (A,B) whose structure functions are (µ0, µ1). Apply a reparametrisation
(α, β), β ̸= 0, given by a solution of the following system of equations, in which we solve the first
equation for β, and plug in β into the second equation to solve it for α{

LA (β) = −βµ1
LA (α) + αµ1 = 1

2β (2LB (β)− βµ0)
.

Then formula (27) implies µ̃0 = µ̃1 = 0, i.e.
[
Ã, B̃

]
= 0. Notice that to ensure β ̸= 0, we may

actually solve LA (lnβ) = −µ1.

(ii) Using relation (27) with µi = µ̃i = 0, for i = 0, 1, we see that all reparametrisations (α, β) have
to satisfy the relations of (28). Conversely, if (A,B) is a commutative P-frame (µ0 = µ1 = 0)
and (α, β) is any solution of (28), with β ̸= 0, then by (27) we obtain that µ̃0 = µ̃1 = 0, i.e.
(Ã, B̃) is also a commutative P-frame.

Immediately, item (i) of Proposition 4.7 gives the following prenormal forms of parabolic systems ΞP .
Recall that systems and equivalence are considered locally with respect to the state x and globally
with respect to the control w ∈ R.
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Corollary 4.8 (Prenormal forms of ΞP ). The parabolic system ΞP is always feedback equivalent to the
following prenormal forms, locally around x0:

Ξ′
P :

{
ż = w2 + c0(x)
ẏ = w + c1(x)

, Ξ′′
P :

{
ż = w2 + b(x)w + ΓP (x)
ẏ = w

,

whose structure functions are (µ′0, µ
′
1, γ

′
0, γ

′
1) = (0, 0, c0, c1), and (µ′′0, µ

′′
1, γ

′′
0 , γ

′′
1 ) =

(
∂b
∂z , 0,ΓP , 0

)
, re-

spectively.

A parabolic system of the form Ξ′
P is called weakly-flat, this terminology is justified by generalisa-

tions of the previous result to higher dimensions that we will present in a future paper.

Remark. Since any parabolic system can be brought into Ξ′
P (and into Ξ′′

P ), it follows that all parabolic
systems are locally parametrized by two functions of two variables (c0 and c1, or, equivalently, b and
ΓP ). This is in contrast with elliptic/hyperbolic systems ΞEH parametrized by three functions of two
variables (compare Proposition 4.4).

Proof. Apply to ΞP a reparametrisation (α, β) transforming its P-frame into a commutative P-frame
(Ã, B̃) and let ϕ be a local diffeomorphism introducing coordinates x = (z, y) such that ϕ∗Ã =
∂
∂z and ϕ∗B̃ = ∂

∂y . In this system of coordinates, ΞP takes the form Ξ′
P . Then apply to Ξ′

P the
reparametrisation w̃ = w + c1(x) to obtain the form Ξ′′

P with b = −2c1 and ΓP = c0 + (c1)
2. The

computation of the structure functions is straightforward.

Notice that the normal forms Ξ′
P and Ξ′′

P are related by the reparametrisation w̃ = w+ c1(x). The
function ΓP (appearing in Ξ′′

P ) will be of special importance in the remaining part of this section, and
in any P-frame (A,B), commutative or not, we define it by setting

ΓP = γ0 + (γ1)
2.

Recall that (γ0, γ1) are defined by C = γ0A+ γ1B. Clearly, diffeomorphisms act on ΓP by conjugation
and reparametrisations (α, β) act by β2Γ̃P = ΓP (as it can be computed from formula (26)).

The remaining part of this section shows how to additionally normalize Ξ′
P and Ξ′′

P while preserving
the commutativity of the P-frame (A,B). Although for a parabolic system ΞP , there always exists a
commutative P-frame (A,B), its explicit construction can be difficult or even impossible, as it requires
to solve a system of first order PDEs. For this reason, we will state our results for a general, not
necessarily commutative, P-frame (A,B).

Theorem 4.9 (Normalisation of parabolic systems). Let ΞP = (A,B,C) be a parabolic system with
structure functions (µ0, µ1, γ0, γ1). Then the following statements hold, locally around x0:

(i) ΞP is strongly-flat, i.e. feedback equivalent to Ξ′
P with c1 ≡ 0, we will denote that form Ξ′′′

P , if
and only if

L2
A (γ1) + γ1

(
LA (µ1)− (µ1)

2
)
=
µ0µ1
2

+
1

2
LA (µ0) + LB (µ1) . (29)

(ii) ΞP is a constant-form, i.e. feedback equivalent to Ξ′
P with (c0, c1) ∈ R2, satisfying c0+(c1)

2 ∈ R∗,
if and only if ΓP ̸= 0 and

LA (ΓP ) + 2µ1ΓP = 0,
LB (ΓP ) + 2ΓPLA (γ1) = ΓPµ0 − 2ΓPγ1µ1.

(30)

Moreover, in this case we can always normalize c0 = ±1 and c1 = 0 and we will denote that form
Ξ±
P .

(iii) ΞP is a null-form, i.e. feedback equivalent to Ξ′
P with c0 ≡ c1 ≡ 0, which we will denote Ξ0

P , if
and only if (29) holds and, additionally, ΓP ≡ 0.
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Notice that items (i), (ii), and (iii) of the above theorem characterise, respectively, the following
normal forms around x0 (recall that we work globally with respect to w)

Ξ′′′
P :

{
ż = w2 + c0(x)
ẏ = w

, Ξ±
P :

{
ż = w2 ± 1
ẏ = w

, and Ξ0
P :

{
ż = w2

ẏ = w
.

A parabolic system of the form Ξ′′′
P is called strongly-flat (the terminology is justified by generalisations

of the previous result to higher dimensions). Equivalent statements can be formulated to obtain special
structures of the second prenormal form Ξ′′

P , e.g. the normal form Ξ′′′
P corresponds to Ξ′′

P with b ≡ 0
and thus describes the intersection of the prenormal forms Ξ′

P and Ξ′′
P . The constant-forms Ξ±

P and Ξ0
P

are clearly special cases of Ξ′′′
P , where c0 is constant. Observe that contrary to the elliptic/hyperbolic

case, where canonical forms of constant-form systems are parametrised by real-continuous parameters,
in the parabolic case, there are only three distinct canonical forms of constant-form systems. The
difference between the normal form Ξ±

P and Ξ0
P lies in the existence or not of an equilibrium point: the

control w = 0 defines an equilibrium of Ξ0
P while there are no equilibria for Ξ±

P .

Proof.

(i) Sufficiency : Consider a parabolic system ΞP = (A,B,C), with structure functions (µ0, µ1, γ0, γ1),
and assume that relation (29) holds. Introduce the reparametrisation α = −γ1 and β given as a
solution of the following system of equations{

1
βLA (β) = −µ1
1
βLB (β) = 1

2 (µ0 − 2γ1µ1 − 2LA (γ1))
. (31)

This system, rewritten for ln(β), admits solutions since the integrability condition

LA (LB (lnβ))− LB (LA (lnβ)) = L[A,B] (lnβ) = µ0LA (lnβ) + µ1LB (lnβ) (31’)

takes the form

1

2
LA (µ0)− γ1LA (µ1)− L2

A (γ1) − µ1LA (γ1) + LB (µ1)

= −1

2
µ0µ1 − γ1(µ1)

2 − µ1LA (γ1) (31”)

and is guaranteed by condition (29). Consider the system Ξ̃P = (Ã, B̃, C̃) obtained by the above
defined reparametrisation (α, β), and using relations (26) and (27) we deduce that the structure
functions (µ̃0, µ̃1, γ̃0, γ̃1) of Ξ̃P satisfy µ̃0 = µ̃1 = 0 and γ̃1 = 0. By choosing local coordinates
(z, y) such that (Ã, B̃) =

(
∂
∂z ,

∂
∂y

)
, we obtain the system Ξ′

P with c1 = γ̃1 = 0, i.e. a strongly-flat
parabolic system Ξ′′′

P .

(i) Necessity : Assume that ΞP = (A,B,C) is feedback equivalent to Ξ̃P of the form Ξ′
P with c1 ≡ 0,

via ϕ and (α, β). Then for Ξ̃P we have µ̃0 = µ̃1 = γ̃1 = 0. First, by (26) we obtain α = −γ1
and by (27) we obtain that β satisfies the relations given by system (31) above. Therefore, by
computing the integrability condition (31’), equivalently given by (31”), we conclude relation
(29).

(ii) Sufficiency : Consider a parabolic system ΞP = (A,B,C), with structure functions (µ0, µ1, γ0, γ1),
and assume that ΓP = γ0 + (γ1)

2 ̸= 0 and (30) holds. We follow the same reasoning as in the
proof of sufficiency of item (i). Introduce a reparametrisation (α, β), where α = −γ1 and β is
a solution of the system (31). To assure the existence of β, we have to fulfil the integrability
condition of (31), which is (31’), equivalently (31”). To this end, we differentiate the second
condition of (30) along A and use LA (LB (·)) = LB (LA (·)) + µ0LA (·) + µ1LB (·) to conclude
(31”). Consider the system Ξ̃P = (Ã, B̃, C̃) obtained by the above defined reparametrisation
(α, β) and using relations (26) and (27), we deduce that the structure functions (µ̃0, µ̃1, γ̃0, γ̃1)
of Ξ̃P = (Ã, B̃, C̃) satisfy µ̃0 = µ̃1 = γ̃1 = 0. Therefore Γ̃P = γ̃0, for which condition (30) yields
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LÃ

(
Γ̃P

)
= LB̃

(
Γ̃P

)
= 0, implying that Γ̃P is constant (we still have Γ̃P ̸= 0 since β2Γ̃P = ΓP ).

Introduce coordinates (z̃, ỹ) such that Ã = ∂
∂z̃ and B̃ = ∂

∂ỹ , in which the system takes the form
(recall that γ̃1 = 0) {

˙̃z = w̃2 + c0
˙̃y = w̃

,

with c0 ∈ R∗. Finally, defining new coordinates (z, y) by z = z̃
|c0| and y = ỹ√

|c0|
, and reparametris-

ing by w = w̃√
|c0|

, yields the normal form Ξ±
P .

(ii) Necessity : Assume that ΞP , whose structure functions are (µ0, µ1, γ0, γ1) and ΓP = γ0 + γ21 ,
is feedback equivalent, via ϕ and (α, β), to Ξ̃P of the form Ξ′

P with (c0, c1) ∈ R2 satisfying
c0 + c21 ̸= 0. For Ξ̃P we have µ̃0 = µ̃1 = 0 and γ̃0 = c0, γ̃1 = c1, hence Γ̃P = c0 + c21 ̸= 0 implying
ΓP ̸= 0 since β2Γ̃P = ΓP . By relation (27), we obtain that β satisfies the relations of system
(31). Differentiating ΓP = β2Γ̃P along A we deduce

LA (ΓP ) = LA

(
β2Γ̃P

)
= 2Γ̃PβLA (β) = −2Γ̃Pβ

2µ1 = −2µ1ΓP ,

giving the first relation of (30). A similar computation, by taking the derivative of ΓP = β2Γ̃P
along B, implies the second relation of (30).

(iii) The proof of that statement is a special case of the proof of item (i) with the additional condition
ΓP ≡ 0.
Sufficiency : Use the proof of the sufficiency of item (i) to bring the system ΞP into Ξ′′′

P . For the
latter form we have ΓP = c0(x), hence c0(x) ≡ 0 (due to β2Γ̃P = ΓP and assumption ΓP ≡ 0)
and we obtain the normal form Ξ0

P .
Necessity : Assume that ΞP , whose structure functions are (µ0, µ1, γ0, γ1) and ΓP = γ0 + γ21 ,
is feedback equivalent, via ϕ and (α, β), to Ξ̃P of the form Ξ0

P (which is, actually, Ξ′
P with

c0 ≡ c1 ≡ 0). For that system we have µ̃0 = µ̃1 = 0 and Γ̃P ≡ 0 and since ΓP is transformed
under (α, β) by β2Γ̃P = ΓP , we obtain the necessity of ΓP ≡ 0. The necessity of (29) is deduced
from the necessity part of statement (i).

Observe that item (ii) of the above theorem does not explicitly require condition (29), while the
normal form Ξ±

P satisfies c1 ≡ 0 and hence that condition has to be hidden in (30). Indeed, this
can be observed by differentiating ΓP along [A,B] and using the constraint (30), which after a short
computation gives condition (29).

Remark (Interpretation of the conditions). We now give a tangible interpretation of our conditions.
To this end, consider the system Ξ′

P for which we have µ0 = µ1 = 0, γ0 = c0(x), γ1 = c1(x) and thus
ΓP (x) = c0(x) + (c1(x))

2. First, condition (29) implies ∂2c1
∂z2

= 0, that is, c1 is affine with respect to z,
namely, c1(x) = c01(y)z+ c11(y), and thus, ΓP (x) is given by c0(x)+ (c01(y)z+ c11(y))

2. This means that
if a weakly-flat system Ξ′

P is feedback equivalent to a strongly-flat system Ξ′′′
P , then it is parametrized

by 3 smooth functions, two of them being functions of y only, and it has the following form{
ż = w2 + ΓP (x)−

(
c01(y)z + c11(y)

)2
ẏ = w + c01(y)z + c11(y)

.

By additionally applying the first equation of (30), we obtain ∂c0
∂z +2c01(y)

2z+2c01(y)c
1
1(y) = 0 and thus

c0(x) is a polynomial of degree 2 in z, related to c1(x) by c0(x) = −(c1(x))
2 + c2(y), for an arbitrary

smooth function c2(y). We now have ΓP = ΓP (y) = c2(y) and we use the second equation of (30).
Thus, we get ΓP (y) = G exp

(
−2
∫
c11(y) dy

)
, with G ∈ R. To summarise, any system Ξ′

P satisfying
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(29) and (30), i.e. equivalent to a constant-form parabolic system, is parametrized by two arbitrary
smooth functions of y and a constant G ∈ R, and is expressed by the form{

ż = w2 + ΓP (y)−
(
c01(y)z + c11(y)

)2
ẏ = w + c01(y)z + c11(y)

,

where ΓP (y) = G exp
(
−2
∫
c11(y) dy

)
. Finally, Ξ′

P (satisfying (29) and (30)) is feedback equivalent to
Ξ0
P if and only if G = 0, and is feedback equivalent to Ξ+

P , respectively to Ξ−
P , if G > 0, resp. G < 0.

The distinction between the three normal forms comes from the sign of ΓP , which is thus a discrete
invariant (and that sign is dictated by the value of the constant G).

5 Conclusions

In this paper, we studied the characterisation and the classification problem of 3-dimensional subman-
ifolds of the tangent bundle of a smooth surface. We showed that the equivalence of submanifolds is
reflected in the equivalence, under feedback transformations, of their first and second extensions treated
as control-nonlinear and control-affine systems, respectively. We gave a complete characterisation of
non-degenerate quadratic submanifolds and proposed a classification of the regular ones, namely the
classes of elliptic, hyperbolic, and parabolic, submanifolds. To achieve our characterisation results, we
introduced the novel class of quadratic control-affine systems and we gave a characterisation of that
class in terms of relations between structure functions. Using our characterisation, we identified the
subclasses of elliptic, hyperbolic, and parabolic control-affine systems (second extensions of elliptic,
hyperbolic, and parabolic submanifolds). Moreover, we constructed a normal-form for all quadratis-
able systems and thus gave a normal form of quadratic submanifolds, that may smoothly pass from
the elliptic to the hyperbolic classes. Finally, working within the class of control-nonlinear systems
subject to a regular quadratic nonholonomic constraint, we exhibited several normal forms of elliptic,
hyperbolic, and parabolic systems. In particular we highlighted a connection between the Gaussian
curvature of a well-defined metric and the existence of a commutative frame for elliptic and hyper-
bolic systems. Normal forms include systems without functional parameters. As a consequence of our
classification of quadratic systems, we obtained a classification of elliptic, hyperbolic, and parabolic
submanifolds.

The purpose of future works is two folds. First, we want to study the properties (such as control-
lability, stability, optimal trajectories...) of the class of control systems that we identified. Second, we
plan to extend our results to higher dimensional quadratic nonholonomic constraints, in particular, we
will generalise our results for parabolic systems to the case of control-nonlinear systems (with the state-
space being an n ≥ 3 dimensional manifold) subject to paraboloid nonholomic constraints. Another
interesting problem is to characterise control-nonlinear systems subject to any algebraic nonholonomic
constraint. For instance, in order to generalise our results for parabolic systems, one can study polyno-
mial systems, that is, systems subject to the nonholonomic constraint ż−

∑d
i=0 ai(x)ẏ

i = 0, (z, y) ∈ R2.
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A Resolution of equation (3)

Consider ζ a smooth function of (z, y, w), we will abbreviate (z, y) as x to shorten the notation. We
show how to represent all smooth solutions around (x0, w0) of the equation

∂3ζ

∂w
= τ(x)

∂ζ

∂w
.

First, we will find an expression for ∂ζ
∂w that will be then integrated to obtain the desired form. Consider

the following linear system of PDEs: (∂ζ1
∂w
∂ζ2
∂w

)
=

(
0 1

τ(x) 0

)(
ζ1
ζ2

)
given for the functions ζ1 = ∂ζ

∂w and ζ2 = ∂2ζ
∂w2 . Solutions of this system (interpreted as a system of

ODEs with x being a parameter) are expressed by the exponential of the matrix
(

0 w
τ(x)w 0

)
given

by the formula

exp

(
0 w

τ(x)w 0

)
=

+∞∑
k=0

w2k+1τk(x)

(2k + 1)!

(
0 1

τ(x) 0

)
+

+∞∑
k=0

w2kτk(x)

(2k)!

(
1 0
0 1

)
obtained by expressing the power series of the exponential and by regrouping the terms of odd and
even degrees. Denote b(x) = ζ1(x,w0) and a(x) = ζ2(x,w0), thus we obtain

∂ζ

∂w
= ζ1(x,w) = a(x)

+∞∑
k=0

(w − w0)
2k+1

(2k + 1)!
τk(x) + b(x)

+∞∑
k=0

(w − w0)
2k

(2k)!
τk(x).
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Integration of this expression yields

ζ(x,w) = a(x)
+∞∑
k=0

(w − w0)
2k+2

(2k + 2)!
τk(x) + b(x)

+∞∑
k=0

(w − w0)
2k+1

(2k + 1)!
τk(x) + c(x).

B Detailed computation of the proof of Theorem 3.5

We detail the computation needed in the proof of Theorem 3.5.

B.1 Resolution of equation (12)

We show how to, locally around 0 ∈ R3, solve the equation ρ′′ − 2ρρ′ + 4
9ρ

3 = 0, where ρ = ρ(x,w)
and the derivatives are taken with respect to w. Introduce the new unknown function R(x,w) =
exp

(
−2

3

∫ w
0 ρ(x, t) dt

)
which satisfies R(x, 0) ̸= 0 and

R′ = −2

3
ρR, R′′ = −2

3
R

(
ρ′ − 2

3
ρ2
)
, R′′′ = −2

3
R

(
ρ′′ − 2ρρ′ +

4

9
ρ3
)

= 0.

Thus, R(x,w) = a(x)w2 + b(x)w + c(x) yielding ρ = −3
2
R′

R = −3
2

2aw+b
aw2+bw+c

. Since R(x, 0) = c(x) ̸= 0,
thus taking d(x) = a

c and e(x) = b
c we obtain

ρ(x,w) = −3

2

2d(x)w + e(x)

d(x)w2 + e(x)w + 1
.

B.2 Smooth form of h′

We integrate h′′(x,w) = a(x)(d(x)w2+e(x)w+1)−3/2 to obtain a smooth expression of h′(x,w) around
0 ∈ R3. Recall that we denote p = p(x,w) = dw2 + ew + 1 and ∆ = ∆(x) = e2(x)− 4d(x). We have

h′(x,w) = a(x)

∫
1

p(x,w)3/2
dw =

−2a(2dw + e)

∆
√
p

+ b̄(x).

Since h′(x, 0) = b(x) is smooth, we have −2ae
∆ + b̄ = b(x), where b(x) is a smooth function around 0.

We can then derive a smooth closed form expression of h′(x,w):

h′(x,w) =
−2a(2dw + e)

∆
√
p

+
2ae

∆
+ b =

−2a

∆
√
p
(2dw + e− e

√
p) + b

=
−2a

∆
√
p(ew + 2 + 2

√
p)

(2dw + e− e
√
p) (ew + 2 + 2

√
p) + b

=
−2a

∆
√
p(ew + 2 + 2

√
p)

(
2dew2 + 4dw + 4dw

√
p+ e2w + 2e+ 2e

√
p− e2w

√
p− 2e

√
p− 2ep

)
+ b

=
−2a

∆
√
p(ew + 2 + 2

√
p)

(
w
√
p(4d− e2) + 4dw + 2dew2 + 2e+ e2w − 2edw2 − 2e2w − 2e

)
+ b

=
−2a

∆
√
p(ew + 2 + 2

√
p)

(
w
√
p(4d− e2) + w(4d− e2)

)
+ b

=
2aw

√
p(ew + 2 + 2

√
p)

(
√
p+ 1) + b.

C Details of the computations of Lemma 4.3

Denoting cE(x) = cos(x), cH(w) = cosh(w), sE(w) = sin(w), and sH(w) = sinh(w) and starting from
the system

ẋ = (A,B)

(
cEH(w)
sEH(w)

)
+ (A,B)

(
γ0
γ1

)
,
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we apply a reparametrisation w = w̃ + α(x):

ẋ = (A,B)R̄EH(±α)
(
cEH(w̃)
sEH(w̃)

)
+ (A,B)

(
γ0
γ1

)
,

= (Ã, B̃)

(
cEH(w̃)
sEH(w̃)

)
+ (Ã, B̃)R̄−1

EH(±α)
(
γ0
γ1

)
.

This yields (γ̃0, γ̃1) = (γ0, γ1) R̄
−T
EH (±α), and by the definition of R̄EH(α) we have,

R̄−T
E (α) = R̄TE (−α) = R̄E(α), and R̄−T

H (−α) = R̄−1
H (−α) = R̄H(α).

Next, computing separately in the elliptic and hyperbolic cases, we have[
Ã, B̃

]
= (µ0 ∓ LA (α))A+ (µ1 − LB (α))B,

(A,B)R̄E(±α)
(
µ̃0
µ̃1

)
= (A,B)

(
µ0 ∓ LA (α)
µ1 − LB (α)

)
.

Thus, (
µ̃0, µ̃1

)
=
(
µ0 ∓ LA (α) , µ1 − LB (α)

)
R̄−T

E (±α)

and relation (19) follows.

D Gaussian curvature for metric given in terms of vector fields

Consider a 2-dimensional manifold X and two smooth vector fields A and B satisfying A ∧ B ̸= 0.
Construct the (pseudo)-Riemannian metric g± defined by

g±(A,A) = 1, g±(B,B) = ±1, and g±(A,B) = 0.

We will give a formula for the Gaussian curvature of g± in terms of the structure functions (µ0, µ1)
uniquely defined by [A,B] = µ0A+µ1B. We will use the following formula for the covariant derivative

∇EiEj =
1

2

∑
k

(
g±([Ei, Ej ] , Ek)− g±([Ei, Ek] , Ej)− g±([Ej , Ek] , Ei)

)
Ek

for Ei, Ej , Ek ∈ {A,B}, and the following formula for the Gaussian curvature of a 2-dimensional
manifold, see [17, Proposition 1.11.3],

κ± =
g±
(
(∇B∇A −∇A∇B +∇[A,B])A,B

)
det(g±)

,

where det(g±) = g±(A,A)g±(B,B)− g±(A,B)2 = ±1. Computing, we have

∇AA = −µ0B, ∇AB = µ0A, ∇BA = ∓µ1B, ∇BB = ±µ1A.

Then we can deduce

∇B∇AA = −LB (µ0)B ∓ µ0µ1A, ∇A∇BA = ∓LA (µ1)B ∓ µ0µ1A,

∇[A,B]A = µ0∇AA+ µ1∇BA = −(µ0)
2B ∓ (µ1)

2B.

Thus

κ± = ±g±
((
−LB (µ0)± LA (µ1)− (µ0)

2 ∓ (µ1)
2
)
B,B

)
,

= −LB (µ0)± LA (µ1)− (µ0)
2 ∓ (µ1)

2.

Therefore, we have obtained the expression of relation (22).
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