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A B S T R A C T   

Multispectral imaging systems are currently expanding with a variety of multispectral demosaicking algorithms. 
But these algorithms have limitations due to the remarkable presence of artifacts in the reconstructed image. In 
this paper, we propose a powerful multispectral image demosaicking method that focuses on the G band and 
luminance component. We’ve first identified a relevant 4-and 5-band multispectral filter array (MSFA) with the 
dominant G band and then proposed an algorithm that consistently estimates the missing G values and other 
missing components using a convolution operator and a weighted bilinear interpolation algorithm based on the 
luminance component. Using the considered MSFA patterns, we’ve also demonstrated that our algorithm out
performs existing approaches both visually and quantitatively in terms of the PSNR and SSIM.   

1. Introduction 

Multispectral images are made of more than three bands. The higher 
the number of bands, the more information that is available and the 
more useful the image is [1,2]. The MSFA imaging system is still a 
subject of considerable research and is still under development. 

Multispectral image acquisition systems can be classified into three 
types [3]:  

- multi-camera systems that capture images in a single shot using 
several cameras with different filters, thereby making the system 
quite complicated because a perfect alignment of several different 
cameras is required [4];  

- single-camera multi-shot systems that capture images with a high 
spectral resolution but require multiple shots to obtain images with a 
high-speed lighting system for real-time imaging [5]; and  

- single-camera systems that overcome the problems of the first two 
categories of systems in terms of size, cost, and real-time imaging 
[6–8]. Examples of the latter are RGB cameras equipped with one of 
Bayer’s well-known color filter arrays (CFAs). 

To capture multispectral images with a single image capture system, 
a multispectral filter array (MSFA) inspired by digital cameras featuring 
a Bayer CFA is required. Therefore, the use of a single camera system 

involves the design of MSFA-selective spectral filters arranged in a pe
riodic mosaic defined by a basic pattern [2,7,9–13]. However, owing to 
the lack of a standard MSFA, as in the case of color images with a Bayer 
CFA, it is difficult to design an optimal MSFA and thus develop a 
powerful demosaicking algorithm. Several algorithms have been pro
posed in the literature [1,3,7,9,10,14–19] using different MSFAs and 
achieving an attenuated performance. Although the luminance compo
nent is important in an image, few algorithms have explicitly used it in 
their demosaicking process [18]. 

In this paper, we have identified a 4- and 5-band MSFA and proposed 
a luminance component-based multispectral demosaicking algorithm 
(LCBD) that estimates the missing G component at each pixel by 
applying a convolution method, and the other components missing at 
each pixel using a luminance component. This paper is organized as 
follows: In the second section, we review the multispectral imaging 
systems proposed in the literature, and in the third section, we describe 
the actual proposed algorithm. The results and discussion are presented 
in the fourth and fifth Sections respectively. 

2. State-of-the-art demosaicking techniques for multispectral 
image 

For the implementation of multispectral image demosaicking tech
niques, the design of an optimal MSFA and an efficient demosaicking 
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algorithm are two fundamental processes for the reconstruction of a full- 
resolution multispectral image that best limits the presence of artifacts. 
Several related proposals have been made in the literature. 

2.1. Approaches to the design of the MSFA 

Although Bayer’s CFA was unanimously approved for use with color 
images, this is not the case with multispectral images. Numerous MSFA 
patterns have also been proposed [6]. For example, Miao et al. proposed 
a generic method for the design of MSFAs based on a binary tree, 
considering the probability of occurrence of each spectral band [10,14]. 
The MSFA is generated based on the number of spectral bands and their 
appearance probabilities. Many of the recently proposed MSFAs have 
been inspired by this generic method. In addition, Monno et al. [7] 
proposed a 5-band MSFA pattern based on the high-density requirement 
of the G-band, as with Bayer’s CFA, and their proposal was applied by 
Jaiswal et al. in their multispectral demosaicking algorithm [20]. Ban
gyong et al. also proposed a 4-band MSFA pattern [18] with the same 
probability of occurrence for each band and a 9-band MSFA [19] in 
which one band is dominant and the other bands with equal probability 
of occurrence arranged in 4 × 4 patterns. Brauers and Aach [11] 
implemented a six-band MSFA in a 3 × 2 pattern to speed up the linear 
interpolation. Aggarwal and Majumdar proposed another simple MSFA 
by arranging four diagonally distributed filters [21] and then another 
random MSFA pattern [22], where each channel has the same proba
bility of occurrence. Noting that the number of bands is inversely pro
portional to the spatial correlation, Shrestha et al. [23] proposed a 
particular MSFA pattern for a spectral reconstruction and estimation of 
the reflectance spectra. To find the best compromise between spatial and 
spectral resolution, Yasuma et al. designed a seven-band MSFA 
composed of three primary and four secondary color filters [12]. To 
overcome the difficulties in combining the spectral resolution and 
spatial correlation in multispectral imaging systems, Mihoubi et al. 
proposed a 16-band MSFA without dominant bands [2]. 

Several proposals have also been made for imaging systems 
involving the visible and near infrared (NIR) domains. Hershey and 
Zhang [24] designed a multispectral camera based on a 4-band MSFA 
with three color bands and a near-infrared band. Lu et al. [38] proposed 
an MSFA pattern as an optimization problem in the space domain by 
providing an iterative procedure to search locally for the optimal solu
tions. In addition, Kiku et al. [25] proposed a modified Bayer CFA 
pattern in which the additional fourth band was weakly sampled and 
arranged in a slightly tilted square grid. Indeed, their approach is based 
on the assumption that there is no correlation between the RGB and 
additional bands. The so-called Hybrid CFA still maintains a high den
sity of the G band. Lapray et al. [6] defined two MSFA patterns with a 
periodic spatial distribution corresponding to two different approaches. 
One approach favors spatial information, and the other favors spectral 
information. For remote sensing applications, Mercier et al. [26] 
examined the usefulness of the design of an MSFA instantaneous sensor. 
These different MSFAs have been used in several multispectral demo
saicking algorithms. 

2.2. Review of the MSFA demosaicking algorithms 

Demosaicking is one of the most delicate tasks in a multispectral 
imaging system. Numerous demosaicking algorithms have been pro
posed based on an extension of a classical CFA algorithm [27,28]. Miao 
et al. [9] proposed a generic multispectral demosaicking method that 
interpolates each missing band using edge correlation information. The 
method first determines the interpolation order of the different spectral 
bands, followed by the interpolation order of the pixel locations for each 
spectral band. Finally, an interpolation algorithm that uses the edge 

correlation information is applied. By exploring the spatial and spectral 
correlation information in an interpolation of the missing bands, 
Aggarwal et al. [29] proposed a linear demosaicking technique that 
applies linear filtering on a raw MSFA image with a kernel whose pa
rameters are determined through training. In Ref. [12], the MSFA is 
composed of three primary and four secondary color filters, and a 
low-pass filter in the Fourier domain is used to reconstruct the primary 
color, whereas the principle of a constant channel difference and re
sidual interpolation by means of the correlation between channels is 
exploited to reconstruct the secondary spectral bands. In Ref. [11], 
Brawers and Aach proposed a linear algorithm in which the conven
tional color difference is first smoothed. The authors initially compute 
the sparse channel difference for each spectral band, and a fully defined 
channel difference is then estimated at each spectral band through a 
convolution of the previous sparse channel difference with a low-pass 
filter, which is a smoothing operation. Finally, a weighted bilinear 
interpolation is applied to the channel difference estimated to obtain the 
band at each pixel. Mizutani et al. [39] proposed an improvement of 
Brawers and Aach’s method by iterating the process a certain number of 
times depending on the neighborhood considered. The interpolation was 
then extended to a multispectral approach. Wang et al. [13] extended 
classical median filtering to MSFA demosaicking. The spectral response 
of the filtering is derived from the input vectors by estimating the 
missing value at one band with another value close to the same or 
another band. In Ref. [30], the authors extended a CFA method based on 
the discrete wavelet transform to multispectral demosaicking by esti
mating the low- and high-frequency components of the missing bands. 
Later, they proposed a generic MSFA demosaicking algorithm based on 
linear interpolation, which combines the linear minimum mean square 
error (LMMSE) technique and the residual interpolation method [31]. 
Monno et al. [3,7,16,17,32] also proposed a series of demosaicking al
gorithms for a 5-band MSFA with a dominant G-band with a probability 
of occurrence of 50%. The first of these algorithms [3] uses an adaptive 
kernel that is estimated directly from a raw MSFA image and applied to 
an adaptive Gaussian oversampling to generate a guide image from the 
G-band data. The technique of joint bilateral adaptive oversampling is 
applied to both the guide image and the data of each spectral band to 
obtain the reconstructed image. In Ref. [16], the authors improved this 
method by using a guide filter, which is an excellent structure preser
vation filter that performs a linear transformation of a given guide image 
to interpolate the missing bands. The authors used a residual interpo
lation to generate a guide image for a structure preserving interpolation 
[17] and proposed an adaptive residual interpolation by adaptively 
combining two algorithms based on residual interpolation and selecting 
an appropriate number of iterations for each pixel [32]. The authors 
then developed several guided images that were used in the interpola
tion of different bands [7]. Jaiswal et al. [20] also used the 
high-frequency component of the G-band to interpolate the other bands 
based on an inter-band correlation analysis. In addition, Mihoubi et al. 
[2] proposed a 16-band MSFA algorithm based on a 
pseudo-panchromatic image (PPI), which is estimated by applying an 
averaging filter to the raw image and then adjusted such that the PPI 
values are correlated. The difference between each available value of the 
adjusted raw image and PPI is calculated. The calculated local direc
tional weights are then used to estimate the fully defined difference 
using an adaptive weighted bilinear interpolation. Each band is finally 
estimated by adding a PPI and the difference. In Ref. [33], the authors 
proposed a method that uses spatial and spectral correlations to estimate 
the missing bands. Recently, Amba et al. [34] extended the algorithm 
based on linear minimum mean square errors for RGB color to multi
spectral demosaicking by applying a linear operator that minimizes the 
mean square error between the reconstructed image and the original 
raw image. This linear operator multiplied by the MSFA image provides 
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an estimate of the reconstructed image. In Ref. [18], a method of 
applying directional interpolation along the edges of an image was 
proposed. In this method, the image edges are calculated from the raw 
image to define the direction interpolation with the neighbors. Consid
ering the features of the filter arrays, image edges, and a constant hue, 
the missing bands per pixel were recovered from the existing bands. 
Then, the image is separated into high- and low-frequency components 
by applying a wavelet transform, and the high-frequency images that are 
highly correlated are modified using luminance information to refine the 
demosaicked image. In Ref. [19], a multispectral algorithm that esti
mates the missing dominant band at each spatial position with a 
weighted average of the neighboring values of the dominant band was 
described. The dominant band reconstructed at different spatial posi
tions is then used as a guided image to estimate all other missing bands 
using the guided filter and a residual interpolation. 

3. Proposed multispectral demosaicking system 

3.1. Selected MSFA pattern 

In multispectral single-sensor imaging, an increase in the number of 
spectral bands weakens the spatial correlation. To preserve the spectral 
coherence and spatial uniformity, we generate the MSFA using a generic 
method based on a binary tree [9,10,14,15]. With this method, the 
MSFA is generated by recursively dividing the checkerboard pattern 
based on a binary tree. The binary tree is defined by the number of 
spectral bands and the sampling densities of each spectral band, which 
are considered as parameters. The MSFA is formed by assigning each 
spectral band to the leaf of the binary tree. 

In our case, for the 4- and 5-band MSFA patterns identified (see 
Figs. 1 and 2), we assigned higher sampling densities in the following 
order: G, R, and B–O for the 4-band MSFA and G, R-B-O-C for the 5-band 
MSFA, respectively. Table 2 shows the probability of the occurrence of 
spectral bands in each MSFA pattern. 

3.2. Estimating multispectral luminance 

A multispectral image is represented by an array of M rows, N col
umns, and P spectral channels. At each spatial location (x, y), several 
spectral components (Sp) are defined by 

Sp(x, y) =
∫

λ
L(x, y, λ)ϕp(λ)dλ (1)  

where L(x, y, λ) is the spectrally dependent irradiance at each location, 
φp(λ) is the spectral sensitivity function for a given sensor response 
(Fig. 3), and λ is the wavelength [6]. 

Let IMSFA(x, y) be a raw multispectral digital image from a single 
sensor. IMSFA(x, y) is a mosaic image with one channel per pixel and can 
be represented by 

IMSFA(x, y) =
∑

p
Sp(x, y)Zp(x, y) (2)  

where Zp(x, y) are the orthogonal functions of dimension P and take 
values of 1 or 0 if channel p is present or not at the location (x, y), 
respectively. 

In frequency domain, referring to the MSFA in Ref. [18], an N-band 
single-sensor spectral imaging process raw data is expressed as follows: 

IMSFA(x, y) =
∑

p
Sp(x, y)mp(x, y) (3)  

where mp(x, y), (p= R,G,B,O,C) are the modulation functions at posi
tion (x, y) whose expressions depend on the MSFA pattern. Applied to 
our 4- and 5-band MSFA patterns chosen in Figs. 1(c) and 2(c), these 
modulation functions can be expressed as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

mR(x, y) = (1 + cos(πx))(1 + cos(πy))/4
mG(x, y) = (1 + cos(πx)cos(πy))/2
mB(x, y) = (1 − cos(πx))(1 + cos(πy))/8
mO(x, y) = (1 − cos(πx))(1 − cos(πy))/8

(4) 

For 4-band MSFA 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mR(x, y) = (1 + cos(πx))(1 + cos(πy))/8
mG(x, y) = (1 + cos(πx)cos(πy))/2
mB(x, y) = (1 − cos(πx))(1 + cos(πy))/8
mO(x, y) = (1 − cos(πx))(1 − cos(πy))/8
mC(x, y) = (1 + cos(πx))(1 − cos(πy))/8

(5) 

For 5-band MSFA. 
From equation (4) of 4-band MSFA, Eq. (3) becomes  

Fig. 1. 4-band MSFA configuration preceded by binary tree: (a) Binary tree considering appearance probabilities (b) Decomposition and subsampling processes (c) 
MSFA configuration. 
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Let consider the following transformation: 

cos(πx) = cos(π(x + y − y) )

= cos(π(x + y) )cos(πy) + sin(π(x + y) )sin(πy) (A) 

Our MSFA pattern is such that the sum of the spatial coordinates x 
and y at G pixels in the MSFA image is even, 

then, 

cos(π(x + y) ) = 1 ; sin(π(x + y) ) = 0. (B) 

From (A) and (B), we have cos(πx) = cos(πy). Therefore, at G pixels, 
Equation (6) becomes 

IMSFA(x, y) = 1 /4

[

R(x, y) + 2G(x, y) + 1 /2 B(x, y) + 1 /2 O(x, y)
]

+ 1 /4

[

R(x, y) − 1 /2 O(x, y)
]

[cos(πx) + cos(πy) ] + 1 /4

[

R(x, y)

+ 2G(x, y) − 1 /2 B(x, y) + 1 /2 O(x, y)
]

cos(πx)cos(πy)

(7) 

This equation can be separated into two parts through 

IMSFA(x, y) = 1 /4

[

R(x, y) + 2G(x, y) + 1 /2 B(x, y) + 1 /2 O(x, y)
]

+
∑

S(x, y)m̃S(x, y)
S=R,G,B,O

(8) 

Similarly, under the same conditions, the 5-band MSFA multispectral 

image can be written as 

IMSFA(x, y) = 1 /8 [R(x, y) + 4G(x, y) + B(x, y) + O(x, y) + C(x, y) ]

+ 1 /8 [R(x, y) − O(x, y) ][cos(πx) + cos(πy) ] + 1 /8 [R(x, y)

+ 4G(x, y) + O(x, y) − B(x, y) − C(x, y) ]cos(πx)cos(πy) (9)  

and (9) can be separated into two terms as 

IMSFA(x, y) = 1 /8 [R(x, y) + 4G(x, y) + B(x, y) + O(x, y) + C(x, y) ]

+
∑

S(x, y)m̃S(x, y)
S=R,G,B,O,C

(10) 

From equations (8) and (10), we obtain the following terms 

L4 MSFA(x, y) = 1 /4

[

R(x, y) + 2G(x, y) + 1 /2 B(x, y) + 1 /2 O(x, y)
]

(11)  

L5 MSFA(x, y) = 1 /8 [R(x, y) + 4G(x, y) + B(x, y) + O(x, y) + C(x, y) ] (12) 

Equations (11) and (12) represent the luminance components at the 
G pixels, in the 4- and 5-band MSFA, and the other terms of equations (8) 
and (10) represent the chrominance components. In Ref. [35], a 
Gaussian low-pass filter with 11 × 11 support was used to estimate the 
luminance at each pixel of the CFA image. Lyan et al. [36] also showed 
the limitations of this filter and proposed a Gaussian low-pass filter with 
a 5 × 5 support to estimate the luminance at the G pixels of the CFA 
image because there is less overlap between the luminance and chro
minance. Consequently, the complexity of the algorithm is reduced and 
the results are improved as much as possible. In our case, the condition 
of the spatial coordinates at G pixels reduces the overlap between the 

Fig. 2. 5-band MSFA configuration preceded by binary tree: (a) Binary tree considering appearance probabilities (b) Decomposition and subsampling processes (c) 
MSFA configuration. 

IMSFA(x, y) = 1 /4

[

R(x, y) + 2G(x, y) + 1 /2 B(x, y) + 1 /2 O(x, y)
]

+ 1 /4

[

R(x, y) − 1 /2 O(x, y)
]

[cos(πx) + cos(πy)]+

1 /4

[

R(x, y) + 2G(x, y) − 1 /2 B(x, y) + 1 /2 O(x, y)
]

cos(πx)cos(πy) − 1 /8 B(x, y)[cos(πx) − cos(πy)]
(6)   
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Table 1 
Comparison table of existing methods.  

Authors Contributions Limitations References Dates of 
Publication 

Miao et al.  

- 
Generic MSFA based on binary tree  

- 
Generic multispectral demosaicking  

- 
Spatial and spectral correlation exploitation  

- 
Utilisation of edge correlation information  

- 
Probabilies occurrence of spectral bands are in order ½, ¼, or 1/ 

8 which are restrictive and cannot be arbitrary  

- 
The performance of edge sensing interpolation is limited 

[9] November 
2006 

Brauers et 
Aach  

- 
Periodic 6-band MSFA  

- 
Spectral correlation exploitation  

- 
Bilinear interpolation of color difference using convolution  

- 
Applicable to generic MSFA 

Not taken into account of degree of cross-correlation between 
the demosaicked spectral bands 

[11] October 2006 

Yasuma 
et al.  

- 
7-band MSFA with three primary and four secondary color 

filters  

- 
Linear interpolation with best compromise among spatial 

resolution, spectral resolution and dynamic range 

Insufficient performance 

[12] 
September 

2010 

Wang et al.  

- 
Interpolation based on discrete wavelet transform  

- 
Low-frequency and high-frequency components are interpo

lated differently 

The performance depends a lot on the spectral correlation 

[30] September 
2013  

- 
LMMSE and residual interpolation combination using Wiener 

interpolation  

- 
Low dependence on the MSFA pattern 

Sensitive to noise 

[31] July 2014 

Mizutani 
et al.  

- 
Improvement Brauers method by an iterative color difference 

algorithm 

Higher the number of spectral band, higher the iteration and 
more complex the algorithm 

[39] December 2014 

Aggarwal 
et al.  

- 
Periodic diagonal MSFA  

- 
Weighted linear interpolation based on prior learning of 

weights 

Limited performance for random MSFA 

[29] June 2014 

Monno et al.  

- 
Generic 5-band MSFA with dominant G-band  

- 
Guided filtering interpolation 

Insufficient performance 

[16] January 2012  

- 
Generic 5-band MSFA with dominant G-band  

- 
Adaptative residual interpolation 

Some appearances artifacts in the reconstruct image 

[32] December 2017 

Jaiswal et al.  - 
Using Generic MSFA of Monno et al. 

The performance depends on spectral correlation 
[20] February 2017 

(continued on next page) 
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luminance and chrominance components and can avoid artifacts in the 
reconstructed multispectral image. Thus, we use a Gaussian low-pass 
filter with a 5 × 5 support as in [36] to estimate the luminance 
component at the G pixels, and for other pixels, a Gaussian low-pass 
filter with 11 × 11 support as in [35]. The chrominance components 
were obtained by the color difference. 

3.3. Proposed multispectral demosaicking algorithm 

The algorithm is a multistep approach and first estimates the missing 
G components. 

3.3.1. G component missing estimation 
To consider the details at the edges, we used the convolution method 

to estimate the missing green components with a symmetric 3 × 3 low- 
pass filter according to equation (13). Let Ĝ be the estimated G 
component at each pixel R, G, B, O, and C. 

Ĝ(x, y) =
∑m

i=1

∑
g(i, j)
n

j=1
f (x − i, y − j) (13) 

The convolution kernel g is a low pass filter defined as 

g = 1 /4

⎛

⎝
0 1 0
1 4 1
0 1 0

⎞

⎠ (14) 

Table 1 (continued ) 

Authors Contributions Limitations References Dates of 
Publication  

- 
Algorithm based on inter-band correlation using frequency 

domain analysis 

Amba et al.  - 
LMMSE extension for 8-band MSFA algorithm 

Limited performance in the object edge 
[34] June 2017 

Mihoubi 
et al.  

- 
16-band MSFA algorithm  

- 
Algorithm based on the pseudo-panchromatic image 

estimation 

The complexity of the method 

[2] April 2017 

Sun et al.   

- 
Generic 4-band uniform MSFA  

- 
Method based on constant hue and wavelet transform 

Limited performance for random MSFA 

[18] April 2018  

- 
Generic 9-band MSFA with dominant G-band  

- 
Guided filtering and residual interpolation 

Processing limits information to edge 

[19] January 2020  

Table 2 
Probability occurrence of spectral bands.  

MSFA Spectral Band 

R G B O C 

4-band 1/4  1/2  1/8  1/8  – 

5-band 1/8  1/2  1/8  1/8  1/8   

Fig. 3. Spectral sensitivity of the 4- (left) and 5-band (right) filters.  
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The matrix product f of Ğ and IMSFA allows an updating of the values 
of the different pixels at each spatial position before the convolution. 

f (x, y)=G
⌣

(x, y)IMSFA (15) 

The subsampling Ğ of G band is obtained from MSFA (Figs. 1(c) and 2 
(c)) by filling in each G pixel with a 1 the other pixels by zero: 

G
⌣

(x, y)=
{

1 in G pixel
0 otherwise (16)  

3.3.2. Other channels estimation at G pixels 
After estimating the missing green bands at different pixels, each 

missing component, R, B, O, and C, at G pixels is determined through a 
bilinear interpolation of the color difference R − Ĝ, B − Ĝ, O − Ĝ, and 

C − Ĝ, respectively. 
Referring to the 4-band MSFA (Fig. 1(c)), G pixels have red (R) 

neighbors in the horizontal or vertical direction. Therefore, we estimate 
R using  

Moreover, the G pixels have similar B and O neighbors in the hori
zontal and vertical directions. Therefore, B and O were estimated in the 
same manner. In the horizontal direction, they occupy either (x,y − 1), 
(x, y+3) positions (first possibility), or (x, y − 3), (x, y+1) positions 
(second possibility). Next, we estimate B as follows:  

In the vertical direction, B is estimated in the same way by inverting 
the index order. 

For a 5-band MSFA (Fig. 2(c)), the same strategy is used to estimate 
the R, B, O, and C bands in the G pixels. 

Fig. 4. G band estimation using convolution method: (a) f matrix (b) G estimated values at each pixel (c) g convolution kernel.  

R(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

G(x, y) + 1 /2 (R(x, y − 1) − G(x, y − 1) + R(x, y + 1) − G(x, y + 1) ) if G has R horizontal neighbors

G(x, y) + 1 /2 (R(x − 1, y) − G(x − 1, y) + R(x + 1, y) − G(x + 1, y) ) if G has R vertical neighbors
(17)   

B(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

G(x, y) + 1 /2 (B(x, y − 1) − G(x, y − 1) + B(x, y + 3) − G(x, y + 3) ) for the first possibility y positions

G(x, y) + 1 /2 (B(x, y − 3) − G(x, y − 3) + B(x, y + 1) − G(x, y + 1) ) for the second possibility y positions
(18)   
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Fig. 5. Block diagram of the proposed algorithm.  

Fig. 6. Visual comparison of R band of statue image: (a) Original R Band, (b) GF, (c) BTES, (d) LI, (e) ASCD, (f) POS, (g) IID, and (h) proposed approach for 5- 
band MSFA. 
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Fig. 7. Visual comparison of G band of bead image: (a) Original G Band, (b) GF, (c) BTES, (d) LI, (e) ASCD, (f) POS, (g) IID, and (h) proposed approach for 5- 
band MSFA. 

Fig. 8. Visual comparison of O band of sponge image: (a) Original G Band; (b) GF; (c) BTES; (d) LI; (e) ASCD; (f) POS; (g) IID; (h) proposed approach for 5- 
band MSFA. 
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3.3.3. Remaining missing components estimation 
The other missing components R, B, O and C at the pixels C, O, B and 

R are estimated by the weighted sum of the color differences, where the 
weights are calculated on the basis luminance components according to 
the following steps: 

3.3.3.1. Multispectral luminance L̂(x, y) estimation. We estimate the 
luminance component L̂(x, y) at different pixels according to the 
methods described in section 3.2. 

3.3.3.2. Weight calculation. The estimated luminance L̂(x, y) is 
decomposed using a low-pass filter normalized as H0 = 1/ 8 [1 3 3 1] and 
its transpose H0

′ into the horizontal L̂HL(x, y) and vertical L̂LH(x, y)
components, unlike the wavelets used in our previous article [27]. 

We calculated the energies of L̂HL(x, y) and L̂LH(x,y), denoting them 
as eHL(x, y) and eLH(x, y), respectively, and used them to compute the 
horizontal and vertical weights at each pixel: 

wh(x, y) =
F*eHL(x, y)

F*eHL(x, y) + F*eLH(x, y)
(19)  

wv(x, y) =
F*eLH(x, y)

F*eHL(x, y) + F*eLH(x, y)
(20)  

where F is a spatial averaging kernel of 3 × 3 size. 

F = 1 /9

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ (21) 

The energies eHL(x, y) and eLH(x, y) are calculated as 

eHL =

⃒
⃒
⃒L̂HL

⃒
⃒
⃒

2
eLH =

⃒
⃒
⃒L̂LH

⃒
⃒
⃒

2
(22) 

The red samples in the blue locations were estimated as follows: 

R̂(x,y)=B(x,y)+
wh(x,y)

2

(
D̂RB(x− 1,y)+ D̂RB(x+1,y)

)

+
wv(x,y)

2

(
D̂RB(x,y− 1)+ D̂RB(x,y+1)

)
(23)  

where: 

D̂RB(x, y) = R̂(x, y) − B̂(x, y) (24) 

The same strategy was applied to reconstruct the blue component in 
the red locations. This was the same for the other components. A block 
diagram of the proposed algorithm is shown in Fig. 5. 

4. Results 

In our experiments, we’ve used 15 images from a cave dataset [37], 
in which multispectral images consist of 31-band acquired under illu
minant D65. The 31-band images were acquired every 10 nm between 
400 and 700 nm. The images have the size of 512 × 512 pixels. The 
CAVE dataset is often used as a standard multispectral image dataset. 

To evaluate the performance of the proposed algorithm, we’ve 
compared it with recent 4-band multispectral demosaicking methods, 
namely inter-band bilinear interpolation (IBBI) [28], generic binary tree 
edge sensing (BTES) [9], learned interpolation weights (LIW) [29], and 
directional filtering and wavelet transformation (DFWF) [18]. In the 
case of 5-band multispectral demosaicking methods, the comparison is 
done using the demosaicking algorithm based on adaptive 
spectral-correlation demosaicking (ASCD) [20], Practical One-Shot 
multispectral demosaicking (POS) [7], the BTES method [9], a guided 
filter (GF) [16], linear interpolation (LI) [31], and the iterative intensity 
difference (IID) [33]. 

Table 3 
PSNR results of 4-band MSFA demosaicking algorithms.  

Images IBBI [28] BTES [9] LIW [29] DFWF [18] LCBD 

Balloons 45.67 42.03 38.07 46.94 50.19 
Feathers 37.43 35.15 33.19 39.44 41.38 

Pompoms 41.40 38.46 30.06 41.29 43.14 
Toys 43.90 42.71 34.54 43.43 44.52 
Beads 32.31 30.75 26.48 33.21 31.68 
Cloth 30.86 28.53 29.99 31.36 34.29 
Statue 42.75 40.63 37.81 44.14 38.14 
Face 41.28 38.21 36.05 40.29 42.71 

Flowers 42.87 39.11 36.07 38.43 44.03 
Beans 35.04 32.62 30.68 36.93 35.26 

Painting 31.99 30.89 31.02 34.86 35.81 
Thread 38.62 36.34 37.77 43.30 41.22 

Superballs 43.59 41.79 39.47 44.93 39.60 
Food 42.73 40.08 37.37 43.26 40.65 

Watercolors 34.49 32.25 27.05 36.15 45.70 
Average 38.99 36.64 33.71 39.73 40.55  

Table 4 
SSIM results of 4-band MSFA demosaicking algorithms.  

Images IBBI [28] BTES [9] LIW [29] DFWF [18] LCBD 

Balloons 0.9012 0.9110 0.9025 0.9017 0.9980 
Feathers 0.9576 0.9934 0.9902 0.9907 0.9870 

Pompoms 0.9228 0.9928 0.9905 0.9898 0.9852 
Toys 0.9657 0.9983 0.9972 0.9972 0.9917 
Beads 0.8900 0.8857 0.8758 0.8823 0.8903 
Cloth 0.9011 0.8670 0.8677 0.8862 0.9272 
Statue 0.8816 0.8727 0.8849 0.8828 0.9776 
Face 0.9924 0.9972 0.9983 0.9970 0.9939 

Flowers 0.9663 0.9958 0.9946 0.9929 0.9859 
Beans 0.9539 0.9864 0.9911 0.9835 0.9500 

Painting 0.9415 0.9393 0.9833 0.9625 0.9231 
Thread 0.9818 0.9888 0.9969 0.9942 0.9812 

Superballs 0.9763 0.9968 0.9935 0.9952 0.9680 
Food 0.8821 0.8864 0.8827 0.8639 0.9688 

Watercolors 0.9739 0.9848 0.9934 0.9831 0.9857 
Average 0.9393 0.9531 0.9562 0.9535 0.9676  

Table 5 
Average PSNR results of 5-band MSFA demosaicking algorithms.  

Cave Dataset 

Algo. Spectral Band Mean 

R G B O C 

ASCD [20] 45.81 47.85 44.94 45.20 44.60 45.68 
POS [7] 45.36 48.06 43.96 44.75 44.69 45.36 
BTES [9] 42.60 46.54 40.46 39.41 37.84 41.37 
GF [16] 44.61 47.65 43.31 42.13 41.25 43.79 
LI [31] 43.79 47.05 41.05 40.65 39.12 42.33 
IID [33] 44.10 46.31 43.34 43.12 42.52 43.87 

LCBD 45.62 50.36 48.74 47.53 35.13 45.48  

Table 6 
Average SSIM results of 5-band MSFA demosaicking algorithms.  

Cave Dataset 

Algo. Spectral Band Mean 

R G B O C 

ASCD [20] 0.9841 0.9917 0.9856 0.9865 0.9821 0.9860 
POS [7] 0.9831 0.9922 0.9822 0.9840 0.9825 0.9848 
BTES [9] 0.9724 0.9801 0.9710 0.9610 0.9524 0.9674 
GF [16] 0.9805 0.9910 0.9801 0.9770 0.9790 0.9815 
LI [31] 0.9780 0.9889 0.9791 0.9671 0.9612 0.9749 
IID [33] 0.9795 0.9874 0.9802 0.9701 0.9807 0.9796 

LCBD 0.9899 0.9946 0.9902 0.9897 0.9908 0.9910  
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4.1. Visual performance evaluations 

For evaluation purposes, we’ve selected the statue, bead, and sponge 
images from the cave dataset. Figs. 6–8 show the results of the visual 
comparison of repectively the R band of the image statue, the G band of 
the image bead and the O band of the image sponge for different 
algorithms. 

4.2. Quantitative performance evaluations 

To quantitatively assess the objective performance of the proposed 4- 
and 5-band MSFA algorithms, we’ve used the peak signal-to-noise ratio 
(PSNR) and the structural similarity index (SSIM) metrics [18,31]. 

The average results we’ve obtained with our proposed algorithm are 
recorded in Tables 3 and 4 for the 4-band MSFA and in Tables 5 and 6 for 
the 5-band MSFA.These results are compared to the ones provided in 
[20]. The hight scores are in bold. 

5. Discussion 

The fundamental problem of most of existing work in the literature 
on demosaicking multispectral images is the notable presence of arti
facts in the reconstructed image. The mission is therefore to find an 
optimal algorithm to overcome these limits. In Fig. 6, the images 
reconstructed by the different comparison algorithms appear sharper 
than those of the original image, but are highly noisy. The BTES, LI, and 
POS methods show an edge degradation; however, such problems are 
reduced with the GF, ASCD, and IID methods. The image reconstructed 
using the proposed method has almost the same sharpness as the original 
image, but with almost no edge distortion or blurring. As it can be seen 
in Fig. 7, the BTES and LI methods exhibit severe edge distortion and 
blurring. These distortions are also visible with the ASCD method but are 
less accentuated. With the GF, POS, and IID methods, blurring was 
noticeable. Our method presents slight edge distortions, but with an 
almost complete absence of blurring. With Fig. 8, we see that the image 
reconstructed by the GF method appears sharper than the original image 
but with artifacts, whereas the image reconstructed by the ASCD method 
is less sharper but retains the edges. With the BTES, LI, and POS 
methods, the reconstructed images show artifacts, and the result is 
extremely unclear. Similarly, the performance of the IID method is 
insufficient compared with our approach in terms of the reconstructed 
image. By contrast, the image reconstructed by the proposed algorithm 
contains fewer distortions, and the result is clearer. Clearly, the same 
behavior was observed for the B and C bands. 

According to the results in Table 3, our proposed 4-band MSFA al
gorithm outperformed the other methods for 10 out of 15 images used in 
the Cave dataset in terms of the PSNR, achieving the best average PSNR 
value. This one is followed by the DFWF method, which shows good 
scores for five of the images. In Table 4, according to the SSIM values, 
our method presents better results with five images and the best average 
SSIM value, followed by the BTES method, which presents good results 
with six images but a lower mean SSIM value than our approach. In 
general, the 4-band MSFA method proposed in this study is better than 
all other methods in terms of both the PSNR and SSIM. 

In Tables 5 and 6, our algorithm outperformed the others on three 
bands, i.e., G, B, and O, in terms of the PSNR, but with a slightly lower 
mean value, compared to the ASCD method. This can be explained by 
the fact that the convolution technique used to estimate the dominant 
band considers the details of the edge where the inter-channel correla
tion is sufficiently high, which is not the case for the other bands, 
notably, the C band. However, in terms of the SSIM, the proposed 
method outperformed all other approaches. Globally, our algorithm has 
a better visual and objective performance compared to the other 
methods. 

6. Conclusion 

In this paper, we’ve proposed a multispectral demosaicking algo
rithm that exploits a convolution method to estimate the G-band and the 
luminance component to estimate the other missing bands. We’ve 
generated the MSFA with the required density in the G-band using the 
generic Benary tree method. To extract the luminance component at the 
green pixels, we’ve used a 5 × 5 Gaussian low-pass filter, and for the 
other components we’ve applied an 11 × 11 Gaussian low-pass filter. 
The results of the tests carried out show that our proposed algorithm is 
more powerful than the existing approaches, both visually and in terms 
of objective measurements. In our future work, we will study the 
application of these results in areas such as agriculture, medicine, and 
other fields. Extensive studies will be undertaken to provide a general 
extension of the proposed algorithm to more than five image bands. In 
addition, the MSFAs upon which our study is related are rectangular, 
and we plan to explore the efficiency of hexagonal MSFAs. 
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