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a b s t r a c t

This paper presents numerical computations of three bladed horizontal axis marine current turbines in
a uniform free upstream current. The unsteady evolution of the turbine wake is taken into account by
some three-dimensional software, developed to assess the disturbances generated in the sea. An
unsteady Lagrangian method is considered for these computations using ”Vortex Method”; a velocity-
vorticity numerical implementation of the NaviereStokes equations. The vortex flow is discretised
with particles carrying vorticity, which are advected in a Lagrangian frame. The present paper aims at
presenting results on both power and thrust coefficient (CP and CT) predictions and wake character-
isation, up to ten diameters downstream of the turbine. Moreover, two different marine current turbines
configurations are considered: one is taken from literature [1] and the second one is an open-modified
version of turbine inspired from previous works [2].

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

At the present time, many studies are being carried out con-
cerning the energy resources available from tides or currents in the
oceans around Europe [3,4] and even around China [5,6], one of the
first being [7] for the U.K. However, with the future large deploy-
ment of marine current energy converters, many questions have
been raised about their impact on the environment [8e10]. Modi-
fications of the overall flow patterns in the area of current energy
devices [9] may alter the erosion and sediment transport by their
wake effects [11], and even the free surface of the sea [12,13]. There
is concern that even a small change to these processes could cause
significant environmental impacts. For these reasons, there is
a need for numerical prediction of the overall flow modification
prior to the installation of a marine current farm.

Concerning horizontal axis marine current turbines, Computa-
tional Fluid Dynamics (CFD) has already been used for power and
thrust coefficients (CP and CT) predictions [1,12,14,15]. In most of
these studies, the Blade Element Momentum theory (BEM) was
used and all the numerical results were compared to experimental
values issuing from [16]. In the present paper, CP and CT are also
compared to the same experimental results [16] as a matter of

validation. However, in the previous studies, the wake was not
evaluated except for [15] where the wake was used for a better
numerical evaluation of power and thrust coefficients.

CFD has also been used for wake computations under the
actuator disc approximation [13,17e20]. In this manner, compari-
sons with experiments are reasonable only if the numerical wakes
are compared to the wakes behind a disc [17,18]. It is actually very
different from the present approach where the unsteady flow
behind the turbine is computed. In addition, under the actuator disc
approximation, no real CP and CT evaluation is possible. To the
authors’ knowledge, the few numerical studies that treat both CP/CT

and wake characterisation mostly refer to vertical axis marine
current turbines [21,22]. Unfortunately, in the two latter studies,
there is no real comparison with experimental data.

The aim of the present paper is to present computations of
a three bladed horizontal axis marine current turbine. Both power
and thrust coefficients (CP and CT) predictions and wake charac-
terisation are presented and discussed. To this purpose, three-
dimensional software, initially issuing from [23,24] is being
developed in order to assess the disturbances generated in the sea.
This is an unsteady Lagrangian frame software designed to
compute the evolution of the wake emitted by the turbine. This
study can be viewed as a extension of a previous study [25]. In the
first part, the governing equations and the numerical imple-
mentations are presented. Then, in the second section, the two
different marine current turbine configurations are detailed. The
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first is taken from literature [1,14,16] and the second configuration
is an open-modified version of turbine inspired from previous
studies carried out by the same team of researchers [2]. The last two
sections present the numerical results and, as far as possible, these
results are compared to related experimental data in order to
validate the numerical tools. Furthermore, some convergence
analyses of the method are presented and discussed. The third part
is dedicated to power and thrust coefficients (CP and CT) evaluation
for the two different blade configurations. Finally, the last section
deals with wake characterisation: 2D velocity maps, velocity
profiles and axial velocity decay in the wake of a three-bladed
turbine.

2. Numerical methods

An unsteady Lagrangian method is used for these simulations
using a Vortex Method. It is considered that the flow is discretised
with vorticity-carrying particles, which are advected in
a Lagrangian frame. The particles are emitted at the trailing edge of
the turbine blades thanks to a panel method with dipoles using the
Kutta-Joukovski condition as an emission scheme.

2.1. Governing equations

The flow of an incompressible fluid is governed by the
NaviereStokes equations, which are written in velocity-vorticity
formulation (u,u):

V,u ¼ 0 (1)

Du

Dt
¼ ðu,VÞuþ nDu (2)

where u ¼ V^u is the vorticity field of the flow, u is the velocity
field and D/Dt is the material derivative. Equation (1) stands for the
mass conservation equation in an incompressible fluid and equa-
tion (2) is the transport equation of vorticity. Du/Dt represents the
transport term in a Lagrangian frame, ðu,VÞu stands for the
stretching term, which disappears in two dimensions and nDu

represents the diffusion. The Helmholtz decomposition of the
velocity field gives:

u ¼ V^jþ Vf ¼ uj þ uf (3)

where j is a vector potential and f is a scalar potential. With
equations (1) and (3), we obtain:

Dj ¼ �u (4)

Df ¼ 0 (5)

The velocity field u can be expressed as the sum of three
components, uj the rotational component of the velocity field, uf

the potential velocity field, and uN a constant uniform velocity
representing, in the present configuration, the marine current
inflow. We finally have:

u ¼ uj þ uf þ uN: (6)

The rotational component of the velocity field.
From equation (4), for any point M of the fluid domain D, the

rotational component uj ¼ V^j of the velocity field can be eval-
uated thanks to the Biot-Savart law:

ujðMÞ ¼ 1
4p

Z

v

KðMM0Þ^uðM0Þdy0; (7)

with KðMM0Þ ¼ MM0

jMM0j3
. In order to prevent the computations

collapsing owing to the singular behaviour of Kwhen two particles
are getting too close, a desingularised kernel Kε is used (equation
(8)) as in Lindsay & Krasny [26].

KεðMM0Þ ¼ MM0
�

�

�MM0
�

�

2þε
2
�3=2

(8)

This desingularised kernel is commonly used in the Lagrangian
vortex community; several references can be consulted on this
particular topic, amongst others in Cottet & Koumoutsakos [27].
The so-called smoothing parameter ε is equivalent to the charac-
teristic mesh size in Eulerian frame computations. A commonly
wide spread value of ε is 1.5 times the characteristic inter-particle
spacing.

Thefirst step consists in discretising the vorticityfield into vortex
elements, which are indifferently termed either blobs or particles

hereafter. A particle Pi physically represents the vortical barycentre
of a small volume of fluid dy. The position Xi of particle Pi and the
vorticity Ui carried by this particle are respectively defined by:

Xi ¼

Z

Pi

xdy

Z

Pi

dy
and Ui ¼

Z

Pi

udy: (9)

The particles’ emission process is described in details in
following section 2.3 and the time integration scheme in section
2.2. At a given location Xi of the fluid domain D, the discrete
rotational component Uj

i ¼ ujðXiÞ is derived from equation (7) as
follows:

U
j
i
¼ ujðXiÞ ¼ 1

4p

X

N

j¼1

Kε

�

Xi � Xj

�

^Uj; (10)

where N represents the total number of particles. Of course, the
computation being unsteady, as the wake develops, the total
number of particles increases with time (N ¼ N(t)). However, the
time dependence of N will not be written as a matter of simplifi-
cation. In addition, the Tree Code algorithm developed by Lindsay &
Krasny [26] has been implemented. This Tree Code is based on
a Taylor expansion on the desingularised kernel Kε in order to
speed up the determination of the velocity U

j
i (equation (10)). The

Tree Code performances in the present implementation can be
found in [24].

2.1.1. The potential velocity

From equation (5), for any point M of the fluid domain D, the
potential velocity uf ¼ Vf is defined in order to take into account
the turbine blades S:

�

vf

vn
ðPÞ ¼ �vðPÞ,nðPÞ cP˛S (11a)

n

DfðMÞ ¼ 0 cM˛D (11b)

(

lim
jMPj/þN

Vf ¼ 0 cM˛D;cP˛S (11c)

with v ¼ u� uf ¼ uj þ uN the residual velocity in the case of
a motionless turbine. For rotating blades, an additional velocity



component must to be defined as it will be presented hereafter (cf.
equation (19)). The slip velocity condition (equation (11a)) is
imposed at every control point P˛S of the turbine. Moreover, the
potential velocity uf induced by these boundaries must satisfy the
two last conditions, equation (11b) initially issuing from the sole-
noidal condition (1) and the perturbation velocity decay far from
the turbine (equations (11a, b, c)). This velocity potential f is
calculated using equation (12) and Green’s third identity:

fðMÞ ¼ 1
4p

ZZ

S

mðPÞMP,nðPÞ
jMPj3

ds; (12)

m(P) representing a distribution of normal dipoles on the turbine
blade surface S. Assuming that the turbine blades are discretised
into NP surface elements with normal vectors np and elementary
surfaces dsp, that the dipoles distribution m(P) is constant onto
a surface element and equal to mp, the semi-discrete velocity
component ufðMÞ is defined as:

ufðMÞ ¼ 1
4p

X

Np

p¼1

mpVM
MP,nðPÞ
jMPj3

!

dsp

¼ � 1
4p

X

Np

p¼1

mp

Z

Cp

VM

�

1
MP

	

^dl; (13)

whose last formulation, on the right hand side of previous equation
(13), comes from [28]. We obtain the final discrete formulation of
U
f
i ¼ ufðXiÞ by basically replacing the Cp curvilinear integral by

the contribution of the four segments lnp (n¼ 1,.,4) of the pth facet:

U
f
i ¼ ufðXiÞ ¼ 1

4p
mp
X

4

n¼1

an
ip; (14)

with

an
ip ¼

rn1
ip ^r

n2
ip

�

�

�rn1
ip ^r

n2
ip

�

�

�

2

h
�

�

�
rn1
ip

�

�

�
þ
�

�

�
rn2
ip

�

�

�

i

"

1�
rn1
ip ,r

n2
ip

�

�

�
rn1
ip

�

�

�jrn2
ip

�

�

�

#

: (15)

Fig. 1 can be refered to for geometrical details. In order to
determine the normal dipoles distribution mp on the blade surface
S, equation (11a) can be rewritten for each control point PðXpÞ of
the turbine, assuming that Vp ¼ vðXpÞ :

Uf
p,np ¼ �Vp,np; p ¼ 1;/;NP : (16)

Solving this previous equation for all control points PðXpÞ˛S is
equivalent to defining a linear matrix system:

½A�½m� ¼ ½SM�; (17)

where
[A] is a matrix obtained using equation (18):

aqp ¼ nq

4p
,

X

4

n¼1

an
qp; (18)

with an
qp evaluated with the help of equation (15). This term

physically represents the influence of the pth element (resp. mp
dipole) onto the qth element (resp. mq dipole). This so-called
influence matrix [A] only depends on the turbine surface mesh
geometry and can therefore be reversed and stored once at the
beginning of the computation.

[m] is an unknown vector representing the dipoles distribution
mpðp ¼ 1;/;NPÞ

[SM] is the second member of the matrix system and physically
represents the residual velocity we want to annihilate on the blade
control points PðXpÞ in order to enforce the slip condition (equation
(16)). However, as explained in section 2.3, the emitted particles
mainly depend upon the bounded vortex sheet strength g (equa-
tion (36)), which is closely linked to the normal dipoles distribution
(equation (38)). In the case of a moving obstacle, the bounded
vortex sheet strength has to be evaluated in the moving frame (i.e.
the rotating frame). Therefore, these residual velocities consist of
the rotational velocity uj due to the presence of the particles, the
main stream velocity uN and the blades’ rotation velocity
urotðrÞ ¼ F^r, with F the turbine rotation vector and r the radius
between the concerned location and the rotation centre. [SM] is
then basically obtained from equation (11a), modified in order to be
expressed in the rotating frame, and reads:

½SM� ¼ Uf
p,np ¼ �Vp,np (19)

with Vp ¼ Uj
p þ UNp � Urot

p the residual velocity in the case of
a rotating turbine.

2.2. Numerical scheme

Thanks to the Helmholtz decomposition (equations (3) and (6)),
the discrete velocity Ui ¼ uðXiÞ at a given location Xi of the flow in
the Galilean frame Rg is basically obtained by the following sum:

Ui ¼ U
j
i
þ U

f
i
þ UNi (20)

where
UNi is the infinite upstream velocity field, which is reduced in

the present paper to a constant velocity,
U
j
i is the velocity field induced by the vortical wake, obtained by

equation (10),
U
f
i is the potential velocity field induced by the normal dipoles

distribution m in order to enforce a free-slip velocity condition onto
the blades, obtained by equation (14).

The discrete evolution of the vortical particles ðXi;UiÞ is given by
the transport equation of the particles positions Xi by their own
velocities Ui as presented in equation (21):

DXi

Dt
¼ Ui (21)

DUi

Dt
¼ ðUi,VÞUi þ nDuðx¼XiÞVi (22)

Equation (22) is the transport equation of the vortex particlesUi

and represents a discrete version of the Navier-Stokes equation (2)
in velocity-vorticity formulation. The term ðUi,VÞUi, only in 3D
configurations, is the deformation term and deals with the
stretching and reorientation of the vortical particles in the flow (see
[27,29]).

A second order Runge-Kutta method is used as the time inte-
gration scheme for equations (21) and (22) in order to have a good
compromise between accuracy and time saving. To prevent the
calculation from collapsing, a global re-meshing of the particles is
also included every four time steps. This re-meshing process usesFig. 1. Representation of the rnk

ip ðk˛f1;2gÞ.



the interpolation formulaM0
4. A more complete survey on the effect

of global re-meshing is available in [27], where different interpo-
lation formulae have been studied in terms of the velocity L2 error
introduced in the simulation. These studies concluded that the
third order interpolation formula M0

4 provides a good compromise
between accuracy, smoothness of the results and implementation
work. The present computations are run on parallel architectures
thanks to MPI (Message Passing Interface) libraries.

2.2.1. Viscous and turbulent diffusion: PSE scheme and LES model

In this section, the discretisation of the diffusion term of the
Navier-Stokes equation (22) will be discussed. In the present
numerical tool, a turbulence model based on a simple LES (Large
Eddy Simulation) is implemented. For this reason, non uniform
viscosity has to be considered. Amore general way to treat diffusion
with non uniform viscosity would be to use the term V,ðn VuÞ. It is
precisely this term that is discretised in the following paragraphs.
And in the case of homogeneous and constant viscosity, this last
term V,ðn VuÞ basically is reduced to nDu.

The Particle Strength Exchange (PSE) method [30e32], as its
name points out, models diffusion with a transfer of vorticity
from one particle to another without changing the support Pi of
the blobs. The following equations lead to the discrete formula-
tion. First of all, an expression for the vorticity is defined in
equation (23):

uðxÞ ¼
Z

V

uðx0Þz
ε
ðjx � x0jÞdx0; (23)

with ε the cut-off parameter, and z
ε
a 3D-radially symmetric regular

function of unit weight, whose limit, as ε/0, is the Dirac measure.
The following smoothing function is chosen:

z
ε
ðrÞ ¼ 1

�

pε2
�3=2

exp
�

� r2

ε
2

	

: (24)

The diffusion term V,ðnVuÞwith non uniform viscosity n is then
evaluated as in equation (25), defining a function h

ε
ðrÞ calculated

from z
ε
ðrÞ (cf [31].). The expression for the diffusive part of the

Navier-Stokes equation (22) is now obtained by an integral
representation.

V,ðnVuÞðxÞ ¼
Z

V

ðnðxÞ þ nðx0ÞÞðuðx0Þ � uðxÞÞh
ε
ðjx � x0jÞdx0

with h
ε
ðrÞ ¼ �Vz

ε
,r

r2
¼ 2

ε
2
z
ε
ðrÞ (25)

The next step consists in discretising this last equation (25):

ðV,ðnVuÞÞðx¼XiÞViz
X

NU

j¼1

�

ni þ nj
��

UjVi �UiVj

�

h
ε

�
�

�Xi � Xj

�

�

�

;

(26)

with V i the volume of the ith particle.
Equation (26) completes the discretisation of the diffusive part

of the Navier Stokes equations. As mentioned above, a simple
turbulence model is added on top of the molecular viscous diffu-
sion. This is an LES model based on enstrophy introduced by
Mansour et al. [33], defining an eddy viscosity nturbi . The total
viscosity ni used in equation (26) is the sum of the molecular
viscous term and the turbulent term, ni ¼ nvisc þ nturbi with:

nturbi ¼ ðCvhÞ2
ffiffiffi

2
p

juðXiÞj (27)

Somemathematics can be found in [34] in order to demonstrate
the previous form nturbi (named alternate form in [34], p. 115) from
the Kolmogorov hypothesis of isotropic homogeneous turbulence.
The limitations of the current model mainly reside in the fact that
the hypothesis of isotropic homogeneous turbulence is not met in
the present application. An improved model, using a dynamic LES
scheme can be found in Mansfield et al. [35]; one can also refer to
[36] for a review. The present computations use a somewhat
simpler version, particularly with respect to the value of the
constant Cv, which is fixed a priori and set to a typical value of 0.15.
The length h is equal to the smoothing parameter ε, which is an
intuitive and widely spread way of determining the sub-grid scale.
The motivations for choosing this model are twofold. Firstly, it is
quite easy to implement within a particlemethod and secondly, it is
built for vorticity diffusion, which is exactly what is required. It
should be noted that in these computations, the total viscosity ni is
very close to the eddy viscosity nturbi , since nvisc turns out to be small
compared to nturbi . This kind of behaviour is generally true except for
moderate or low Reynolds numbers. The concerned Reynolds
numbers are presented in Table 1 and are discussed hereafter.

2.3. Vortex particles emission at the trailing edge

This section is mainly inspired from [37] and [38]. The vortex
particles emission at the trailing edge uses the unsteady Bernoulli
relation around the lifting surface which is, in the present case, the
blades. The blades are considered here in the thin air-foil theory, i.e.
the blade thickness is not taken into consideration as it is supposed
to be infinitely thin. The boundary layers are not computed either,
which implies that cases of flow separation cannot be treated in the
present implementation of the numerical tool.

Denoting by (þ) the upper face of the lifting surface (extrados)
and (�) the lower face (intrados), the Bernoulli relation may be
written

v

�

fþ � f�
�

vt
þ
�

pþ � p�
�

r
þ 1
2

�

uþ2 � u�2
�

¼ 0: (28)

At the trailing edge, there is pþ ¼ p�and the previous equation
(28) becomes

v

�

fþ � f�
�

vt
þ
�

uþ þ u��

2

�

uþ � u�
�

¼ 0 (29)

With m representing the potential jump ðfþ � f�Þ through the
lifting surface, the following definitions are obtained:

Vm ¼ V

�

fþ � f�
�

¼ uþ � u�; (30)

and denoting by um the mean velocity

um ¼ 1
2

�

uþ þ u�
�

; (31)

Table 1

Marine current turbine general description for both BBMC [1] and IFREMER-LOMC

configurations.

Description BBMC (1) IFREMER-LOMC

Rotor Radius (R) 400 mm 350 mm
Hub Radius 50 mm 46 mm
Hub length n/a 720 mm
Pitch (set angle) 0� , 5� , 10� and 13� 0�

TSR [2e10] [0e10]
Sense of rotation clockwise anti-clockwise
Reynolds ðReNÞ z580; 000 z280;000



we finally obtain from equation (29) that the normal dipoles
distribution m is advected by the mean flow at the trailing edge:

vm

vt
þ um,Vm ¼ Dm

Dt
¼ 0: (32)

The normal dipole, or somehow the vortex sheet, is thus
introduced in the flow field at the trailing edge of the bladewith the
velocity um.

On a lifting surface, a bound vortex layer is attached to the
surface. The relation between the normal dipole distribution m and
the bound vortex strength g is the following:

g ¼ n^Vm (33)

with n the vector normal to the considered surface. Looking at the
discretised form on the k-surface element discretising the blade, we
have

gk ¼ nk^Vmk (34)

and the integrated form to obtain an equivalent to a bound vortex
particles attached to the blade is

Uk ¼
ZZ

Sk

gkdsk (35)

At the trailing edge, as equation (32) and Fig. 2 explain, the
bound vortex sheet is advected in the flow with velocity um, so the
emitted particle ðXe;UeÞ can be expressed as follows:

Ue ¼
Z

dt

Z

d[

jumjgTEdtd[ (36)

Xe ¼ XTE þ
1
2
umdt (37)

with gTE obtained with equation (34) and the approximation
jumjdtd[zdse. Hence, equation (36) can be rewritten as:

Ue ¼
Z

dt

Z

d[

jumj
 

� vm

vxj
iþ vm

vxi
j

!

dtd[; (38)

with i a unit vector aligned with the trailing edge and j defined so
that ði; j;nkÞ is a local orthonormal direct vector base. The partial

derivative
vm

vxi
can easily be obtained by a simple finite difference:

Ue,j ¼
Z

dt

Z

d[

jumj
vm

vxi
dtd[ ¼ dt

�

�um

�

�

mkþ1 � mk�1

2
; (39)

where the vortex sheet strength is assumed to be zero on the outer

lateral border of the blade. Evaluating the second derivative �vm

vxj
is

a little more complicated and equation (32) should be recalled.
From this equation, it must be remembered that the attached

vortex sheet is advected at the trailing edge by um and can be
written

vm

vxj
¼ �1

ðum,jÞ

�

vm

vt
þ ðum,iÞ

vm

vxi

	

z

�1
jumj

vm

vt
; (40)

and the last component of Ue is obtained under the following form

Ue,i ¼
Z

dt

Z

d[

vm

vt
dtd[ ¼ d[ðmkðt þ dtÞ � mkðtÞÞ: (41)

Several conclusions can be drawn from these equations. More
particularly, from equation (41), we can say that the unsteady
contribution of the vortex sheet is mainly aligned with the trailing
edge (i). However, the three-dimensional effects are perpendicular
to the trailing edge normal (j), which is obvious from equation (39)
and consistent with the fact that these three-dimensional effects
appear only if there is a variation along the span direction. Details of
the previous demonstration can be found in [37].

2.4. Elementary force evaluation

As the bound vortex sheet g, which is linked to the normal
dipole distribution m, has been evaluated in the rotating frameRrot ,
an additional pseudo Coriolis force fc ¼ �2F^U has to be
considered. For any lifting surface in an unsteady flow, the total
force F may be evaluated as follows:

F ¼
ZZ

S

r
vm

vt
dsþ

ZZ

S

rU^gdsþ
ZZ

S

�2rF^Uds: (42)

A discretised form of this equation for an elementary panel of
surface sk and vector normal nk would be the following:

fk ¼ r
mkðt þ dtÞ � mkðtÞ

dt
sknk þ

X

4

n¼1

rvnmkU
�

Pn;k
�

^dln;k

� 2rF^UðPkÞsk (43)

with the following definitions:

� UðPn;kÞ the velocity at the centre of the nth segment of the kth
elementary panel,

� dln;k the vector corresponding to this nth segment of the kth
elementary panel,

� vn a coefficient equal to the surface ratio between the two
neighbouring elements, if the nth segment belongs to two
elementary panels, and 1 otherwise,

� UðPkÞ the velocity at the centre of the kth elementary panel.

With these definitions, the total force F and momentMO at the
centre of rotation (i.e. the frame centre O) can be defined as follows:

F ¼
X

Nf

k¼1

fk (44)

MO ¼
X

Nf

k¼1

OPk^fk (45)

3. Turbine description and discretisation

3.1. Marine current turbine configurations

In order to validate the numerical tool, two different three
bladed horizontal axis turbine configurations were used, both
experimentally tested in flume tanks (cf. Table 1). The first set of

Fig. 2. Schematic representation of a particle emission at the trailing edge.



blades is composed of NACA 63-8xx profiles. They were experi-
mentally and numerically tested first by Bahaj et al. [1] and by
Batten et al. [14]. For this reason, this set of blades will be named
hereafter BBMC for Bahaj Batten McCann. A description of chord c,
thickness t and pitch distribution is given in Table 2. In [1], a large
number of results can be foundwith four different set angles, 0�, 5�,
10� and 13�. The second set of blades used for validation purposes
was first designed by Tidal Generation Limited (TGL) [39] and
experimentally tested in the IFREMER flume tank of Boulogne-sur-
Mer (France) [2]. However, this set of blades, presented in Maganga
et al. [2], is patented so a similar and open set of blades was
developed for experimental validation at IFREMER and numerical
trial at LOMC-Le Havre University (France). In the present paper,
this last open blades configuration will be named as the IFREMER-

LOMC configuration. The turbine blades are designed from
a NACA63418 profile. More detailed descriptions can be found in
Table 2.

The Tip Speed Ratio (TSR) is defined as:

TSR ¼ FR

UN
; (46)

where R stands for the turbine radius (cf. Table 1), F for the rota-
tional speed and UN represents the modulus of the upstream
current velocity, which is supposed to be a constant vector in the
present study. The Reynolds number ðReNÞ based on the rotor
radius R, the upstream velocity UN and the kinematic viscosity at
20�C, is given for both configurations in Table 1. All the computa-
tions were run dimensionless with a rotor radius R ¼ 1.0 and
UN ¼ 1:0. So depending on the tested configuration, the numerical
molecular viscosity n

visc was adjusted in order to obtain Reynolds’

invariance. In both cases, BBMC and IFREMER-LOMC configurations,
n
visc were then very small, which corroborates with the previous
remark that the numerical molecular viscosity was very small if
compared to the eddy viscosity nturb (see section 2.2).

Several observations can be drawn from blades descriptions
(Tables 1and 2). Firstly, the rotation sense is clockwise for the BBMC

configuration and anti-clockwise in the present configuration
owing to the IFREMER-LOMC experimental model. Apart from that,
the general configuration of bothmodels is very similar in rotor and
hub size as well as in tested TSR values. However, the blades’
configurations are quite different: the dimensionless chord size c/R
of the IFREMER-LOMC blades is larger than that of the BBMC blades,
which are slimmer and more elongated. In the [0.2e1.0] r/R region,
the blades’ thickness t is almost always inferior to 25% of the chord c

in both cases. However, owing to the lifting surface theory, the
blades’ thickness will not be considered in the present numerical
study as the lifting surface is supposed to be infinitely thin. Another
important aspect resides in the fact that the present IFREMER-LOMC

configuration is more twisted with a total angle variation of
approximately 20� compared to less than 15� in the BBMC case. The
three latter observations might be important issues for the possible
explanation of a slight discrepancy in the results (see section 4.2).
The Galilean reference frame Rg is presented in Fig. 3.

3.2. Blade mesh description

In order to proceed to the convergence analysis of the numerical
model, different surface meshes of the three-bladedmarine current
turbines were designed including the meshing of the hub.
Geometrical characteristics are described in Fig. 4, where notations
are given for the blades’ discretisation (cf. Table 3). The conver-
gence analysis, presented in section 4.1, was performed considering
the smoothing parameter ε, which is proportional to the inter-
particle spacing dh. Here, we take:

ε ¼ 1:5� dh: (47)

In Lagrangian methods, there is no Eulerian meshing of the fluid
domain, and only vortical zones are represented by vorticity-
carrying particles ðXi;UiÞ (see section 2.2).

For a given smoothing parameter ε (or equivalently for a given
dh), a corresponding lTE equal to dh is chosen to have a character-
istic mesh size at the trailing edge of the blades (cf. Fig. 4). Section
2.3 can be referred to for more explanation about dh ¼ lTE . In
addition, different chord discretisations were tested, corresponding
to different values of lc, as shown in Fig. 4. The three tested chord
discretisations are namely Nc ¼ 5, 10 and 15. For a given smoothing
parameter ε (equivalently dh), the time step dt is obtained
according to the turbine rotational speedF, in order to preserve the
following condition for each particle:

dhzjUjdt; (48)

which can be seen as a Lagrangian frame equivalent to the CFL

condition in Eulerian computations. For the most critical case, i.e.
the particle emitted at the top end of the blade, the following
relation for the determination of dt is finally obtained:

Table 2

Detailed blade geometry description of the BBMC configuration reproduced from
Bahaj et al. [1] (left) and the present IFREMER-LOMC configuration (right).

r/R c/R Pitch (deg) t/c (%)

(a) BBMC
0.20 0.125 15.0 24.0
0.30 0.116 9.5 20.7
0.40 0.106 6.1 18.7
0.50 0.097 3.9 17.6
0.60 0.088 2.4 16.6
0.70 0.078 1.5 15.6
0.80 0.069 0.9 14.6
0.90 0.059 0.4 13.6
1.00 0.050 0.0 12.6
(b) IFREMER-LOMC
0.13 0.06 29.57 80
0.15 0.06 29.57 100
0.16 0.06 29.57 100
0.20 0.15 25.63 36
0.24 0.25 22.15 21
0.29 0.24 19.30 21
0.33 0.23 16.97 22
0.37 0.21 15.05 22
0.42 0.20 13.46 22
0.46 0.19 12.12 22
0.50 0.18 10.98 23
0.55 0.17 10.01 23
0.59 0.17 9.18 22
0.63 0.16 8.45 22
0.68 0.15 7.82 22
0.72 0.15 7.26 21
0.76 0.14 6.77 21
0.81 0.14 6.34 20
0.85 0.13 5.95 19
0.89 0.13 5.61 19
0.94 0.12 5.29 18
0.98 0.12 5.01 18
1.00 0.07 4.87 25

Fig. 3. Reference frame for the computations in both configurations.



dt � dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F
2R2 þ U2

N

q ¼ ε

1:5UN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTSRÞ2þ1
q : (49)

For each combined ε and TSR values, a value for dt is chosen
according to equation (49) and the time step is fixed initially for the
whole unsteady computation (see Table 3).

Fig. 5 depicts raw results of the computations with particles
coloured according to their vortical intensity jUij and the IFREMER-

LOMC turbine coloured by dimensionless pressure jump. Mainly
two types of computations were run in order to evaluate either the
power and thrust coefficients or the wake characterisation. In order
to evaluate the power and thrust coefficients, the computations
were run over a total elapsed time of Dttot ¼ 3 s real time in order
to have stable values of rotational torques and forces. The results
are presented in section 4. In order to evaluate wake quantities
(velocity profiles, axial velocity decay, etc.) in the far field (10
diameters downstream), longer computations were run until
t ¼ 30 s real time with approximately one million particles and
longer CPU durations (cf. section 5).

4. Power coefficient evaluation

From raw results depicted in Fig. 5, the total force F and
moment M applied to the turbine at each time step can be
computed according to equations (44) and (45) presented in
section 2.4. In order to avoid the transient effect at the beginning of
the computations (for t � 1 s in Fig. 6), mean values of the force F
and momentM are computed, as well as standard deviation, for an
elapsed time between 1 and 3s. The Power Coefficient CP and
Thrust Coefficient CT for a marine current turbine are defined as:

CP ¼ MxF

0:5r
�

�UN
�

�

3
pR2

¼ MxðTSRÞ
0:5r

�

�UN
�

�

2
pR3

and CT ¼ F x

0:5r
�

�UN
�

�

2
pR2

;

(50)

with Mx the moment around the x-coordinate (i.e. the turbine
torque), F x the total force along the x-coordinate and F the scalar

rotational speed. Graphs of the Power Coefficient CP and Thrust
Coefficient CT are presented in the following section as a function of
TSR, the Tip Speed Ratio (eq. (46)). In the near future, tests will be
run in order to deal with different upstream conditions, for instance
a sea boundary layer profile [17] or combined wave and current
velocity profiles [40].

As a matter of validation of the numerical tool, a convergence
analysis was performed for different computation resolutions
depending on the ε parameter as presented in Table 3. A complete
description of the computations can be found in Table 3 and Fig. 4
including blade’s mesh resolution, inter-particles spacing, number
of emitted particles and time steps. Figs. 7e10 present the
convergence analysis for different parameters and for the two
tested configurations. Figs. 11 and 12 compare the converged
results with experimental and other numerical results in literature.

4.1. Convergence analysis

From Fig. 7, it can be observed that the computations converge
to a coherent value either on CP or CT compared to GH-Tidal bladed
and SERG-Tidal results reproduced from Bahaj et al. (1). Mean
values are presented with symbols and standard deviation with
error bars. From these results it can be concluded that the
computations are converged, at first order, from ε(0:1. From these
graphs, three observations can be drawn: first, for large ε values, CP
and CTevaluation errors can be very important. Convergence is then
obtained more rapidly in terms of CT than for CP. Finally, at first
order, it seems that the chord discretisation only has a minor
influence on the results. From Fig. 8, where only a single chord
discretisation Nc ¼ 5 is depicted, it can be seen that convergence is
obtained for each TSR value from ε(0:1.

Figs. 9 and 10 present the same parametric study for the
IFREMER-LOMC turbine configuration (cf. Tables 1and 2).
Comparing Figs. 7and 9 in terms of CP, it can be observed that the
convergence is still obtained but for lower ε values (i.e. ε(0:075)
than for the BBMC configuration ðε(0:1Þ. On the contrary, the CT
convergence seems to be easily obtained with the IFREMER-LOMC

configuration. In the authors’ opinion, this can be interpreted by the
fact that the blades are significantly more twisted in the IFREMER-

LOMC geometry than they are in the BBMC one. Other geometrical

Table 3

Mesh description for different values of ε.

ε dh NTE NTE min dt max dt

(ε/1.5) (BBMC) (IFREMER-LOMC) (TSR ¼ 0) (TSR ¼ 10)

0.200 0.133 6 5 0.133 0.013
0.150 0.100 8 7 0.100 0.009
0.100 0.067 12 11 0.066 0.006
0.075 0.050 16 15 0.050 0.004
0.050 0.033 24 23 0.033 0.003

Fig. 5. Particles coloured by vortical intensity jUij and the IFREMER-LOMC turbine
coloured by dimensionless pressure jump through the surface.
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Fig. 4. Description of the meshing parameters on a IFREMER-LOMC model.



aspects as the dimensionless blade chord c/R and relative thickness
t/c might be of importance as well (cf. Table 2).

It is important to recall now that the aim of the present study is
twofold: Power Coefficient CP and Thrust Coefficient CT evaluation
on the one hand as well marine current turbine wake character-
isation on the other hand. Further convergence in CP and CT,
together with lower ε values is possible, but it would lead to such an
considerable increase in the number of particles that the compu-
tations would be inaccessible in terms of CPU resources (see
discussion in section 6).

4.2. Power coefficient validation

In order to further validate the numerical tool, we compared the
performance (CP) on the BBMC configuration as a function of the
TSR for different set angles to the numerical and experimental data
from literature [1]. Concerning the experimental procedure, many
details can be found in [1]. As regards the numerical results, they
were obtained using two numerical tools based on the Blade
Element Momentum (BEM) theory and reproduced from [1] too.
The first numerical tool is a commercial code GH-Tidal Bladed (See
for instance [1,41] and the second one, SERG-Tidal is academic
software developed by the Sustainable Energy Research Group

(SERG) of Southampton university (See for instance (1); (14)). A

singlemesh discretisation (corresponding to ε¼ 0.075) is presented
since we have shown that the results are converged for this dis-
cretisation (cf. section 4.1).

For the four different set angles, Fig. 11 shows that the CP results
are in accordance with literature for the lower TSR (i.e. TSR(4:0), in
the ascending phase of the CP curve. For larger TSR, the CP values
carry on increasing erroneously. This behaviour was expected as
the present method is not able to correctly treat the flow separation
that occurs where the local angle of attack becomes too high. From
4:0(TSR(6:0, flow separation occurs on a larger part of the blade’s
span, and beyond TSRa6:0 flow separation occurs almost along the
whole span. The problem was discussed in section 2.3 and work
currently being carried out on a modified version of the particle
emission in order to take into account the flow separation.

For the IFREMER-LOMC configuration, both performance (CP)
and thrust (CT) were evaluated as a function of the TSR. A single
mesh discretisation (ε ¼ 0.075) is presented. Comparisons of the
numerical and experimental results are presented in Fig. 12. The
experimental data was obtained in the IFREMER flume tank of
Boulogne-sur-Mer [42]. The experimental set-up is presented in
detail in Maganga et al. [2] and the experimental trials were carried
out with the same experimental procedure. Concerning the power
coefficient (CP), from the results presented in Fig. 12, the same
observations as in the previous case (cf. Fig. 11) can be made: the
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Fig. 6. Torque around the x-coordinate (Mx) as a function of time, for different TSR with Nc ¼ 5 and ε ¼ 0.075 for both configurations.
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numerical CP values are in very good agreement with the experi-
ments in the validity range, that is in the ascending phase of the CP
curve (i.e. TSR(3:5 in that configuration). However, it is important
to notice that the numerical tool is consistent and correctly
reproduces the turbine performance whatever the geometry and
the set angles are. As far as the thrust coefficient (CT) presented in
Fig. 12 is concerned, the numerical results are also in accordance
with the experiments. However, the standard deviation of the
results are much larger than they are for the power coefficient. This
indicates that the drag force F x oscillates around the mean value
with a higher amplitude than for the x-moment. Consequently, the
turbine might be more stressed in terms of fatigue due to this
dynamic effect than it would be if only the static effect was
considered. The range of validity (i.e. TSR(3:5) is about the same as
for the performance coefficient (CP), even slightly larger (with
TSRz4:0, CT is still correctly reproduced).

5. Marine current turbine wake characterisation

To have a complete characterisation of the wake, computations
have to be run on a longer total physical time (i.e. Dttot ¼ 30:0s)
than for the CP and CT evaluation, in order to let the wake develop

correctly over a distance of more than 10 diameters behind the
turbine. In addition, an average has to be computed on the con-
cerned velocities over Dtm ¼ 4:0s in order to have mean values.
Fig. 13 presents the CPU time consumptions for the different dis-
cretisations (see Table 3 and Table 4 for details) as well as the total
number of particles in abscissae. The computations were run on
a parallel architecture, using MPI libraries, in CRIHAN (Centre des
Ressources Informatiques de HAute-Normandie), on 16 nodes of bi-
processors quad-cores Intel Nehalem EP @ 2,8 GHz.

Some general remarks and comments can be drawn from the
data presented in Fig. 13. Firstly, a finer discretisation leads to an
increasing number of particles. Consequently, the finer the dis-
cretisation is, the more CPU time consuming the computations
are. In fact, the coarsest discretisation (ε ¼ 0.200) only uses
approximately 90,000 particles with less than 3,000s of CPU
(z50 min), whereas the finest discretisation (ε ¼ 0.075) implies
more than one million particles with approximately 21,000s of
CPU (z2 days and 11 h). The problem being that with the two last
discretisations (ε ¼ 0.100 and ε ¼ 0.075), more and more small
scales appear in the unsteady flow, which enhances its unstead-
iness. As a conclusion, averaging over Dtm ¼ 4:0s becomes
insufficient to obtained a statistically correct mean value of the
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velocity components. A longer Dtm could have been used for the
average, together with a longer Dttot. However, these computa-
tions being already the two most CPU consuming, computations
on a longer Dttot are not accessible yet, keeping in mind that the
last physical seconds of computation are the most CPU
consuming. In fact, whatever the discretisation is, computation of

the last Dt ¼ 2s physical time approximately consumes 20% of the
total CPU time. For these reasons, the wake computation analysis
was performed on a new set of discretisations as described in
Table 4, inspired from the previous Table 3. The new discretisa-
tions were obtained to fractionate the interval between ε ¼ 0.200
and ε ¼ 0.150.
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5.1. Characterisation of the wake

Following the above discussion, this paragraph presents the
numerical wakes for the new discretisations presented in Table 4
and compares them with experimental results (42). The experi-
mental trials were carried out in the same configuration as detailed
in (2), with the same experimental procedure. Complete details of
the turbine geometry, the IFREMER-LOMC configuration, are pre-
sented in section 3.1: one can refer to Table 1 for a general
description and Table 2 for the blade description. Here, TSR¼ 3.67 is
considered since it is in the range of validity of our emission model
in the CP/CT curve (see Fig. 12). As far as the ambient Turbulent
Intensity ratio (TI) is concerned, it has to be noted that the
minimum reachable value for the experimental TI was 5% whereas
the numerical TI was assumed to be zero, comparable to experi-
mental conditions in a towing tank. As mentioned above, the
computational tool is not yet able to take into account an ambient

turbulent intensity ratio properly. Although the experimental TI is
rather weak, with only 5%, this might be a first explanation of the
discrepancies in the results. New trials are already scheduled with
different TSR and TI, the ambient Turbulent Intensity ratio, and will
be published in the near future.

Fig. 14 shows the different mean axial velocity u=UN maps
corresponding to different numerical discretisations, the last graph
(Fig. 14d) corresponding to the experimental one. At first sight, the
general shape of the wake is well reproduced if compared to the
experimental one, whatever the discretisation is and despite the
difference in ambient turbulence intensity rates. However, a better
observation of the results leads to three main remarks.

The first remark resides in the difference between the experi-
mental and the numerical results, of the lateral expansion of the
wake basically defined here as the locus where u=UN ¼ 1:0. In fact,
the experimental lateral expansion of the wake is approximately
1.5D at x=D ¼ 10:0 (i.e. between y=D ¼ �0:75 and y=D ¼ þ0:75).
At the same location in the numerical wake ðx=D ¼ 10:0Þ, for
ε ¼ 0.200, ε ¼ 0.160 and ε ¼ 0.150, this lateral expansion is
approximately 1.0D. These observations clearly indicate that the
turbulence model is at fault. In fact, as presented in section 2.2
equation (27), the eddy viscosity nturb is homogeneous whereas
wake flows are characterised by their directionality aligned with
the free stream. This problem of turbulence model will also be
discussed in the conclusion.

Secondly, the numerical wake shapes are somehowwavy, which
is very easily observable in Fig. 14c between x=D ¼ 5:0 and
x=D ¼ 9:0. This general wavy aspect is not present in the experi-
mental results (Fig. 14d). This difference can be attributed to the
unsteady property of the numerical results: even after an average
over Dtm ¼ 4:0s, the mean velocity does not seem to be completely
statistically correct. In fact, the computed flow becomes more and
more turbulent (and thus more and more unsteady) as the
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Table 4

Mesh description for different values of ε for the wake computations. Geometrical
description of these values can be found in Fig. 4. The CPU times are given in seconds
for a total physical time Dttot ¼ 30:0 s and obtained using 16 nodes of bi-processors
quad-cores Intel Nehalem EP @ 2,8 GHz.

ε dh NTE lTE Nhub lhub dt(TSR ¼ 3.67) CPU time (s)

0.200 0.133 5 0.156 6 0.128 0.035 2986
0.180 0.120 6 0.130 7 0.110 0.031 5508
0.160 0.106 7 0.111 8 0.096 0.028 9108
0.150 0.100 7 0.111 8 0.096 0.026 12,312



discretisation size decreases. Thus, the finer the discretisation is,
the more important the influence of the turbulence model is (cf.
section 2.2). The unsteadiness of the flow being more important,
averaging operations could have been applied on longer times than
Dtm ¼ 4:0s. That is to say, the complete computation has to be
computed on longer time than Dttot ¼ 30:0s, which is not acces-
sible at the present time with the present numerical implementa-
tion. The lack of averaging is actually the main reason for this wavy
behaviour of the computed wake.

From the graphs presented in Fig. 14, the final remark would be
the difference in the maximum velocity deficit just behind the
turbine, for x=D(4:0. In the experiments, the near wake flow is
a combination of three wakes: the hub wake, the mast wake and
the rotating blade wake. The asymmetry in the experimental near
wake (Fig. 14d) can clearly be attributed to the interaction of the
rotating blade wake with the fixed-mast wake. In the computa-
tions, only the hub and the blades are taken into account, which
may be one explanation. Furthermore, the minimum axial velocity

(inversely proportional to the maximum axial velocity deficit) is
approximately u=UNz0:3 for the numerical computations
(Fig. 14c) whereas it is only u=UNz0:5 in the experiments
(Fig. 14d). This discrepancy is rather difficult to analyse because the
flow is very complex in this region. Fig. 15 depicts the numerical
velocity profiles for two locations in the near wake (x=D ¼ 1:2 and
x=D ¼ 3:0x) for the first set of discretisations (see Table 3). On the
numerical profiles presented in Fig. 15a, the hub wake and the
blades wake are easily distinguishable, whereas the experimental
wake is already well mixed. At one diameter behind the blades, the
turbulent mixing is already not well reproduced numerically. At
three diameters downstream (Fig. 15b), the numerical maximum
velocity deficit converges around an approximate value of
u=UNz0:2 against u=UNz0:5 in the experiments. The conserva-
tion of mass is not at fault but the lack of mixing is even
strengthened with finer discretisations (ε ¼ 0:100 and ε ¼ 0:075):
the computations do not correctly recover the Gaussian velocity
deficit. As already mentioned, the weakness of our turbulence

Fig. 14. Numerical mean axial velocity maps for ε ¼ 0.2 (a), ε ¼ 0.16 (b), ε ¼ 0.15 (c) and the experimental axial velocity map with an ambient turbulence intensity (TI) of 5% (d).
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Fig. 15. Axial velocity profiles at two different locations in the near wake of the turbine for different ε values (see Table 3).
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model is highlighted. For the two lowest discretisations (ε ¼ 0:100
and ε ¼ 0:075), the far wakes are not presented owing to the
previous discussion at the beginning of section 5. In following
section 5.3, the axial velocity deficit will be discussed in more
depth.

5.2. Wake velocity profiles

From the maps presented on Fig. 14, a closer look can be taken
by considering the velocity profiles at different particular locations
behind the turbine, even far behind the wake at eight diameters
downstream. Fig. 16 depicts these velocity profiles taken at
x=D ¼ 1:2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0. The first profile could
only be taken at x=D ¼ 1:2 for experimental reasons.

Several comments arise from the numerical velocity profiles
presented in Fig. 16; which may emphasise the previous remarks.
Firstly, on Fig. 16a, the numerical velocity profiles show a minimum
velocity value well-marked at the profile centre (i.e. y=D ¼ 0). This
well-marked shape can clearly be attributed to the hub wake,
which at this point, has not yet mixed with the blade wake; the
corresponding experimental velocity profile is more or less flat
with u=UNz0:5 between y=D ¼ �0:45 and y=D ¼ þ0:45. On
Fig. 16c and d, the mixing has now occurred in the numerical
velocity profiles, at least for ε ¼ 0:160 and ε ¼ 0:150. The finest
discretisation (ε ¼ 0:150) is however the only one to correctly
reproduce the Gaussian velocity profile for x=D � 4:0 (Fig. 16deh).
This lack of mixing is clearly a sign of deficiency of our turbulence
model, as mentioned above. Smaller discretisations (ε < 0:150)
may improve the results and will be tested in the future together
with a better turbulence model.

For the far wake (x=D � 4:0, Fig. 16deh), the computed velocity
profiles are very close to the experimental ones for all the dis-
cretisations. One disadvantage should be mentioned, despite the
fact that the computed profiles are close, they all show a lower
deficit than expected.

The conservation of mass is not at fault here, and the mean
velocity deficit (indicated by the vertical bars on Fig. 16 and
computed as in section 5.3) could be a good indicator. In fact, in the
near wake (x=D � 3:0, Fig. 16aec), the mean velocity deficits are
closer to the experimental one as the discretisation decreases. At
x=Dz4:0 (Fig. 16d), the mean velocity deficits are barely identical
whatever the discretisations are and remain very similar in the far
wake (x=D � 4:0, Fig. 16deh). Section 5.3 will treat this aspect in
detail.

5.3. Integrated axial velocity deficit

From these profiles, themean value of the axial velocity uðxÞwas
estimated at position x integrated on a R	 ¼ Rþ dr radius disc:

uðxÞ ¼ 1
R	2

Z

R	

�R	

jyjuðx; yÞdy: (51)

Here we take dr ¼ 0:05mx0:14R, which enlarges the integra-
tion interval to the two nearest experimental measurement nodes
outside the rotor. In this way, thewhole velocity deficit is taken into
account. The R	 radius disc thus represents the turbine’s area of
influence, which is slightly larger than the turbine’s cross-section
area. This mean axial velocity uðxÞ is very interesting in the
perspective of several rows of marine current turbines in a farm. In
fact, it approximately indicates the total amount of power
�

z

1
2
rpR2uðxÞ3

	

still present in the wake, keeping in mind that the

velocity profiles are not homogeneous and very turbulent.

Experimental studies are focusing on these configurations of
several rows of marine current turbines, amongst others [42].

Now that the evaluation of the axial velocity mean value on the
turbine’s area of influence has been defined, we can examine the
reduction of the velocity deficit as the distance from the turbine
increases. The mean axial velocity deficit g (in %) at a specific
location x behind the turbine is defined as

gðxÞ ¼ 100ð1� uðxÞÞ: (52)

Fig. 17 depicts the mean axial velocity deficit g (in %) as
computed with equation (52). Results of the four computations for
different ε values (Table 4) are compared to the experimental value
with an ambient turbulence intensity TI ¼ 5%. As observed earlier,
two different behaviours in the wake can be observed. The near
wake is characterised by a velocity deficit, which is approximately
constant and the far wake, where the velocity deficit decreases
more or less linearly until zero, indicating that the initial velocity
value has been recovered. First, the main difference between the
numerical results and the experiments resides in the fact that the
transition between the near and far wake does not occur at the
same location. In fact, it occurs very close to the turbine in the
experiments, approximately at x=Dz2:0, and only around
x=Dz3:0w4:0 for the numerical results depending on the resolu-
tion (ε). Once again, this behaviour is mainly due to a lack ofmixing

as discussed in section 5.2 and above.
Secondly, for the near wake, the finer the resolution is, the

higher the velocity deficit. And the closer to the experimental
results it gets. The increase in velocity deficit between x=D ¼ 1:2
and 2.0, very strong for ε ¼ 0:150 but also present in the experi-
ments, is only due to radial effects. In fact, the mean velocity deficit
g is only computed for a disc of radius R	. For the numerical far
wake ðx=Da3:0w4:0Þ, all the computations almost superimpose
themselves but not with the experimental curve. Two main
comments can be made: there is a gap ab initio, the velocity deficit
g is always inferior to the experimental one (except for ε ¼ 0:150
but it decreases very rapidly between x=D ¼ 3:0 and 4.0) and the
slope of decrease is higher in the numerics than in the experiments.
A higher slope can clearly be attributed to a higher dissipation than
expected in the numerical scheme. Here again, the turbulence
model can be blamed but not alone. A higher order integration
scheme than the present 2nd order Runge Kutta or a higher order
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smoothing function for the kernel regularisation (equation (8)) may
enhance the quality of the results.

6. Conclusion

Numerical computations of three bladed horizontal axis marine
current turbines were presented on both power and thrust coeffi-
cient (CP and CT) predictions as well as wake characterisation, up to
ten diameters downstream of the turbine. Concerning the CP and CT
predictions, a disadvantage has to be mentioned in that only the
ascending phase of the CP/CT curves can be modelled at the present
time. In fact, for large TSR-values, flow separation cannot be treated
with the present numerical implementation and this is going to be
one of the two major developments in the near future. However, in
the TSR validity range of the method, a convergence analysis study
was performed for two different marine current turbines configu-
rations. It shows that the numerical tool gives accurate results if
compared to literature [1,42]. Moreover, the present implementa-
tion is consistent as it gives accurate results for the two different
configurations, a thin and elongated blade shape for the BBMC

configuration [1] and a larger chord slightly thicker shape, for the
IFREMER-LOMC one [42]. Therefore, the expected results should be
as accurate for other blades’ configuration, in the limit of moderate
relative thickness (t/c) and TSR validity range.

Regarding the wake characterisation, computations of unsteady
3D wake flows were run in this study. Velocity maps and profiles in
the wake of the turbine are in good qualitative and quantitative
accordance with experiments, up to ten diameters downstream of
the turbine. However, owing to a growing CPU time consumption as
the computation resolution is refined, the wake flow could not be
obtained for the finest resolutions (i.e. ε(0:100). A better parallel
implementation together with the use of more than the current 128
cores maymake these computations accessible within a reasonable
duration. Nevertheless, the implementation of a better turbulence
model is compulsory as the present one fails in many points:
insufficient mixing behind the turbine hub, insufficient diffusion as
the lateral extension of the wake indicates and finally too high
a numerical dissipation as highlighted by the axial velocity deficit.
Several other turbulence models are available in literature (see for
instance [35,36]) and this will be the other major development of
the numerical tool for the future. In addition, the account of
different ambient turbulence intensity (TI) rates would be of great
interest if one wants to get a better evaluation of the wake flow
(and thus the global flow perturbation) of a marine current turbine
in real conditions, with more realistic ambient turbulence intensity
(TI) rates. Moreover, several TI rates are available in the IFREMER
flume tank of Boulogne-sur-Mer [2], whichmay form an interesting
starting point for numerical/experimental comparisons.

As short-term perspectives, numerical tests could be run with
the present tool for other blade configurations, with or without
a duct. The wake characterisation for different TSR could be eval-
uated in the perspective of marine current turbines in a farm. With
respect a turbine farm, another short term perspective would be to
run computations of wake interactions between two or three
turbines. No real important modification in the software is
required, as the present numerical scheme can easily handle
several turbines provided that the CPU performance is and/or an
access to larger CPU resources is granted. Experimental results on
turbine interactions are also already available [42] to validate these
future computations. For long-term perspectives, when a new
particles emission scheme and a better turbulence model are
implemented, more complex configuration could be foreseen:
a boundary layer profile in the upstream velocity, wave and current
upstream velocity and finally, more realistic sea states combining

the two previous cases together with realistic ambient turbulence
intensity rates.
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