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Abstract
Since the Message Passing (Graph) Neural Net-
works (MPNNs) have a linear complexity with
respect to the number of nodes when applied
to sparse graphs, they have been widely imple-
mented and still raise a lot of interest even though
their theoretical expressive power is limited to
the first order Weisfeiler-Lehman test (1-WL). In
this paper, we show that if the graph convolution
supports are designed in spectral-domain by a non-
linear custom function of eigenvalues and masked
with an arbitrary large receptive field, the MPNN
is theoretically more powerful than the 1-WL test
and experimentally as powerful as a 3-WL exist-
ing models, while remaining spatially localized.
Moreover, by designing custom filter functions,
outputs can have various frequency components
that allow the convolution process to learn differ-
ent relationships between a given input graph sig-
nal and its associated properties. So far, the best
3-WL equivalent graph neural networks have a
computational complexity inO(n3) with memory
usage in O(n2), consider non-local update mech-
anism and do not provide the spectral richness of
output profile. The proposed method overcomes
all these aforementioned problems and reaches
state-of-the-art results in many downstream tasks.

1. Introduction
In the past few years, finding the best inductive bias for
relational data represented as graphs has gained a lot of
interest in the machine learning community. Node-based
message passing mechanisms relying on the graph structure
have given rise to the first generation of Graph Neural Net-
works (GNNs) called Message Passing Neural Networks
(MPNNs) (Gilmer et al., 2017). These algorithms spread
each node features to the neighborhood nodes using train-
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able weights. These weights can be shared with respect
to the distance between nodes (Chebnet GNN) (Defferrard
et al., 2016), to the connected nodes features (GAT for graph
attention network) (Veličković et al., 2018) and/or to edge
features (Bresson & Laurent, 2018). When considering
sparse graphs, the memory and computational complexity
of such approaches are linear with respect to the number of
nodes. As a consequence, these algorithms are feasible for
large sparse graphs and thus have been applied with success
on many downstream tasks (Dwivedi et al., 2020).

Despite these successes and these interesting computational
properties, it has been shown that MPNNs are not pow-
erful enough (Xu et al., 2019). Considering two non-
isomorphic graphs that are not distinguishable by the first
order Weisfeiler-Lehman test (known as the 1-WL test), ex-
isting maximum powerful MPNNs embed them to the same
point. Thus, from a theoretical expressive power point of
view, these algorithms are not more powerful than the 1-WL
test. Beyond the graph isomorphism issue, it has also been
shown that many other combinatorial problems on graph
cannot be solved by MPNNs (Sato et al., 2019).

In (Maron et al., 2019b; Keriven & Peyré, 2019), it has been
proven that in order to reach universal approximation, higher
order relations are required. In this context, some powerful
models that are equivalent to the 3-WL test were proposed.
For instance, (Maron et al., 2019a) proposed the model
PPGN (Provably Powerful Graph Network) that mimics the
second order Folklore WL test (2-FWL), which is equivalent
to the 3-WL test. In (Morris et al., 2019), they proposed to
use message passing between 1, 2 and 3 order node tuples
hierarchically, thus reaching the 3-WL expressive power.
However, using such relations makes both memory usage
and computational complexities grown exponentially. Thus,
it is not feasible to have universal approximation models in
practice.

In order to increase the theoretical expressive power of
MPNNs by keeping the linear complexity mentioned above,
some researchers proposed to partly randomize node fea-
tures (Abboud et al., 2020; Sato et al., 2020) or to add a
unique label (Murphy et al., 2019) in order to have the
ability to distinguish two non-isomorphic graphs that are
not distinguished by the 1-WL test. These solutions need
massively training samples and involve slow convergence.
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(Bouritsas et al., 2020; Dasoulas et al., 2020) proposed to
use a preprocessing step to extract some features that cannot
be extracted by MPNNs. Thus, the expressive power of
their GNN is improved. However, these handcrafted fea-
tures need domain expertise and a feature selection process
among an infinite number of possibilities.

All these studies target more theoretically powerful models,
closer to universal approximation. However, this does not
always induce a better generalization ability. Since most of
the realistic problems are given with many node/edge fea-
tures (which can be either continuous or discrete), there is
almost no pair of graphs that are not distinguishable by the
1-WL test in practice. In addition, theoretically more power-
ful methods use non-local updates, breaking one of the most
important inductive bias in Euclidean learning named local-
ity principle (Battaglia et al., 2018). These may explain why
theoretical powerful methods cannot outperform MPNNs
on many downstream tasks, as reported in (Dwivedi et al.,
2020). On the other hand, it is obvious that 1-WL equivalent
GNNs are not expressive enough since they are not able to
count some simple structural features such as cycles or trian-
gles (Arvind et al., 2020; Chen et al., 2020; Bouritsas et al.,
2020; Vignac et al., 2020), which are informative for some
social or chemical graphs. Finally, another important aspect
mentioned by a recent paper (Balcilar et al., 2021) concerns
the spectral ability of GNN models. It is shown that a vast
majority of the MPNNs actually work as low-pass filters,
thus reducing their expressive power.

In this paper, we propose to design graph convolution in the
spectral domain with custom non-linear functions of eigen-
values and by masking the convolution support with desired
length of receptive field. In this way, we have (i) a spatially
local updates process, (ii) linear memory and computational
complexities (except the eigendecomposition in preprocess-
ing step), (iii) enough spectral ability and (iv) a model that is
theoretically more powerful than the 1-WL test, and experi-
mentally as powerful as PPGN. Experiments show that the
proposed model can distinguish pairs of graphs that cannot
be distinguished by 1-WL equivalent MPNNs. It is also able
to count some substructures that 1-WL equivalent MPNNs
cannot. Its spectral ability enables to produce various kind
of spectral components in the output, while the vast majority
of the GNNs including higher order WL equivalent models
do not. Finally, thanks to the sparse matrix multiplication, it
has linear time complexity except the eigendecomposition
in preprocessing step.

The paper is structured as follows. In Section 2, we set
the notations and the general framework used in the follow-
ing. Section 3 is dedicated to the characterization of WL
test, which is the backbone of our theoretical analysis. It
is followed by our findings in Section 4 on analysing the
expressive power of MPNNs and our solutions to improve

expressive power of MPNNs in Section 5. The experimental
results and conclusion are the last two section of this paper.

2. Generalization of Spectral and Spatial
MPNN

Let G be a graph with n nodes and an arbitrary number
of edges. Connectivity is given by the adjacency matrix
A ∈ {0, 1}n×n and features are defined on nodes by X ∈
Rn×f0 , with f0 the length of feature vectors. For any matrix
X , we used Xi, X:j and Xi,j to refer to its i-th column
vector, j-th row vector and (i, j)-th entry, respectively. A
graph Laplacian is given by L = D − A (or L = I −
D−1/2AD−1/2) where D ∈ Rn×n is the diagonal degree
matrix and I is the identity. Through an eigendecomposition,
L can be written by L = Udiag(λ)UT where each column
of U ∈ Rn×n is an eigenvector of L, λ ∈ Rn gathers
the eigenvalues of L and diag(·) creates a diagonal matrix
whose diagonal elements are from a given vector. We use
superscripts to refer to vectors or matrices evolving through
iterations or layers. For instance, H(l) ∈ Rn×fl refers to
the node representation on layer l whose feature dimension
is fl.

GNN models rely on a set of layers where each layer takes
the node representation of the previous layerH(l−1) as input
and produces a new representation H(l), with H(0) = X .
According to the domain which is considered to design the
layer computations, GNNs are generally classified as either
spectral or spatial (Wu et al., 2019; Chami et al., 2020).
Spectral GNNs rely on the spectral graph theory (Chung,
1997). In this framework, signals on graphs are filtered using
the eigendecomposition of the graph Laplacian (Shuman
et al., 2013). By transposing the convolution theorem to
graphs, the spectral filtering in the frequency domain can
be defined by xflt = Udiag(Ω(λ))U>x, where Ω(.) is
the desired filter function which needs to be learnt by back-
propagation. On the other hand, spatial GNNs, such as GCN
(graph convolutional network) (Kipf & Welling, 2017) and
GraphSage (Hamilton et al., 2017), consider two operators,
one that aggregates the connected nodes messages and one
that updates the concerned node representation.

In a recent paper (Balcilar et al., 2021), it was explicitly
shown that both spatial and spectral GNNs are MPNN, tak-
ing the general form

H(l+1) = σ
(∑

s

C(s)H(l)W (l,s)
)
, (1)

where C(s) ∈ Rn×n is the s-th convolution support that
defines how the node features are propagated to the neigh-
boring nodes and W (l,s) ∈ Rfl×fl+1 is the trainable matrix
for the l-th layer and s-th support. Within this generalization,
GNNs differ from each other by the design of the convo-
lution supports C(s). If the supports are designed in the
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spectral domain by Φs(λ), the convolution support needs to
be written as C(s) = Udiag(Φs(λ))U>.

One can see that as long asC(s) matrices are sparse (number
of edges is defined by some constant multiplied by the
number of nodes), MPNN in Eq.1 has linear memory and
computational complexities with respect to the number of
nodes. Because, the valid entries in C(s) that we need to
keep is linear with respect to the number of nodes and thank
to the sparse matrix multiplication C(s)H(l) takes linear
time with respect to the number of edges thus nodes as well.

3. Characterization of Weisfeiler-Lehman
The universality of a GNN is based on its ability to embed
two non-isomorphic graphs to distinct points in the target
feature space. A model that can distinguish all pairs of non-
isomorphic graphs is a universal approximator. Since the
graph isomorphism problem is NP-intermediate (Takapoui
& Boyd, 2016), the Weisfeiler-Lehman Test (abbreviated
WL-test), which gives sufficient but not enough evidence
of graph isomorphism, is frequently used for characterizing
GNN expressive power. The classical vertex coloring WL
test can be extended by taking into account higher order of
node tuple within the iterative process. These extensions are
denoted as k-WL test, where k is equals to the order of the
tuple. These tests are described in Appendix A.

It is shown in (Arvind et al., 2020) that for k ≥ 2, (k + 1)-
WL > (k)-WL, i.e., higher order of tuple leads to a better
ability to distinguish two non-isomorphic graphs. For k = 1,
this statement is not true, and 2-WL is not more powerful
than 1-WL (Maron et al., 2019a). To clarify this point,
the Folkore WL (FWL) test has been defined such that
1-WL=1-FWL, but for k ≥ 2, we have (k + 1)-WL ≈
(k)-FWL (Maron et al., 2019a).

In literature, some confusions occur among the two ver-
sions. Some papers use WL test order (Morris et al., 2019;
Maron et al., 2019a), while others use FWL order under the
name of WL such as in (Abboud et al., 2020; Arvind et al.,
2020; Takapoui & Boyd, 2016). In this paper, we explicitly
mention both WL and FWL equivalent.

In order to better understand the capability of WL tests,
some papers attempt to characterize these tests using a first
order logic (Immerman & Lander, 1990; Barceló et al.,
2019). Consider two unlabeled and undirected graphs repre-
sented by their adjacency matrices AG and AH . These two
graphs are said k-WL (or k-FWL) equivalent, and denoted
AG ≡k−WL AH , if they are indistinguishable by a k-WL
(or k-FWL) test.

Recently (Brijder et al., 2019; Geerts, 2020) proposed a
new Matrix Language called MATLANG. This language
includes different operations on matrices and makes some

explicit connections between specific dictionaries of oper-
ations and the 1-WL and 3-WL tests. Expressive power
varies with the operations included in each dictionnary.

Definition 1. ML(L) is a matrix language with an al-
lowed operation set L = {op1, . . . opn}, where opi ∈
{.,+,> , diag, tr,1,�,×, f}. The possible operations are
matrices multiplication and addition, matrix transpose,
vector diagonalization, matrix trace computation, column
vector full of 1, element-wise matrix multiplication, ma-
trix/scalar multiplication and element-wise custom function
operating on scalars or vectors.

Definition 2. e(X) ∈ R is a sentence in ML(L) if it con-
sists of any possible consecutive operations in L, operating
on a given matrix X and resulting in a scalar value.

As an example, e(X) = 1>X21 is a sentence of ML(L)
with L = {.,> ,1}, computing the sum of all elements of
square matrix X . In the following, we are interested in lan-
guages L1,L2 and L3 that have been used for characterizing
the WL-test in (Geerts, 2020). These results are given next.

Remark 1. Two adjacency matrices are indistinguishable
by the 1-WL test if and only if e(AG) = e(AH) for all
e ∈ L1 with L1 = {.,> ,1, diag}. Hence, all possible
sentences in L1 are the same for 1-WL equivalent adjacency
matrices. Thus, AG ≡1−WL AH ↔ AG ≡ML(L1) AH .
(see Theorem 7.1 in (Geerts, 2020))

Remark 2. ML(L2) with L2 = {.,> ,1, diag, tr} is
strictly more powerful than L1, i.e., than the 1-WL test,
but less powerful than the 3-WL test. (see Theorem 7.2 and
Example 7.3 in (Geerts, 2020))

Remark 3. Two adjacency matrices are indistinguishable
by the 3-WL test if and only if they are indistinguishable by
any sentence in ML(L3) with L3 = {.,> ,1, diag, tr,�}.
Thus, AG ≡3−WL AH ↔ AG ≡ML(L3) AH . (see Theo-
rem 9.2 in (Geerts, 2020))

Remark 4. Enriching the operation set to L+ = L ∪
{+,×, f} where L ∈ (L1,L2,L3) does not improve the ex-
pressive power of the language. Thus, AG ≡ML(L) AH ↔
AG ≡ML(L+) AH . (see Proposition 7.5 in (Geerts, 2020))

4. How Powerful are MPNNs?
This section presents some results about the theoretical ex-
pressive power of state-of-the-art MPNNs. Those results are
derived using the MATLANG language (Geerts, 2020) and
more precisely the remarks of the preceding section. Proofs
of the theorems are given in Appendix B.

Theorem 1. MPNNs such as GCN, GAT, GraphSage, GIN
(defined in Appendix H) cannot go further than operations
in L+

1 . Thus, they are not more powerful than the 1-WL test.

This result has already been given in (Xu et al., 2019), which
proposed GIN-ε (GIN for Graph Isomorphism Network) and
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showed that it is the unique MPNN which is provably exact
the same powerful with the 1-WL test, while the rest of
MPNNs are known to be less powerful than 1-WL test.

Chebnet is also known to be not more powerful than the
1-WL test. However, the next theorem states that it is true if
the maximum eigenvalues are the same for both graphs. For
a pair of graphs whose maximum eigenvalues are not equal,
Chebnet is strictly more powerful than the 1-WL test.

Theorem 2. Chebnet is more powerful than the 1-WL test
if the Laplacian maximum eigenvalues of the non-regular
graphs to be compared are not the same. Otherwise Chebnet
is not more powerful than 1-WL.

Figure 1. Decalin (G) and Bicyclopentyl (H) graphs are L1 and
also 1-WL equivalent, but Chebnet can distinguish them.

Figure 1 shows two graphs that are 1-WL equivalent and
are generally used to show how MPNNs fail. However,
their normalized Laplacian’s maximum eigenvalues are not
the same. Thus, Chebnet can project these two graphs to
different points in feature space. Details can be found in
Appendix C.

As stated in the introduction, comparison with the WL-test
is not the only way to characterize the expressive power
of GNNs. Powerful GNNs are also expected to be able to
count relevant substructures in a given graph for specific
problems. The following theorems describe the matrix lan-
guage required to be able to count the graphlets illustrated
in Figure 2, which are called 3-star, triangle, tailed triangle
and 4-cycle.

Figure 2. Sample of patterns: 3-star, triangle, tailed triangle and
4-cycle graphlets used in our analysis.

Theorem 3. 3-star graphlets can be counted by sentences
in L+

1 .

Theorem 4. Triangle and 4-cycle graphlets can be counted
by sentences in L+

2 .

Theorem 5. Tailed triangle graphlets can be counted by
sentences in L+

3 .

These theorems show that 1-WL equivalent MPNNs can
only count 3-star patterns, while 3-WL equivalent MPNNs
can count all graphlets shown in Figure 2.

(Dehmamy et al., 2019) has shown that a MPNN is not able
to learn node degrees if the MPNN has not an appropriate
convolution support (e.g. A). Therefore, to achieve a fair
comparison, we assume that node degrees are included as
a node feature. Note however, that the number of 3-star
graphlets centered on a node can be directly derived from its
degrees (see Appendix B.3). Therefore, any graph agnostic
MLP can count the number of 3-star graphlets given the
node degree.

5. MPNN Beyond 1-WL
In this section, we present two new MPNN models. The
first one, called GNNML1 is shown to be as powerful as the
1-WL test. The second one, called GNNML3 exploits the
theoretical results of (Geerts, 2020) to break the limits of 1-
WL and reach 3-WL equivalence experimentally. GNNML1
relies on the node update schema given by :

H(l+1)=σ(H(l)W (l,1)+AH(l)W (l,2)+H(l)W (l,3)�H(l)W (l,4))
(2)

where W (l,s) are trainable parameters. Using this model,
the new representation of a node consists of a sum of three
terms : (i) a linear transformation of the previous layer repre-
sentation of the node, (ii) a linear transformation of the sum
of the previous layer representations of its connected nodes
and (iii) the element-wise multiplication of two different
linear transformations of the previous layer representation
of the node.

The expressive power of GNNML1 is defined by the follow-
ing theorem. Its proof is given in Appendix B:

Theorem 6. GNNML1 can produce every possible sen-
tences in ML(L1) for undirected graph adjacency A with
monochromatic edges and nodes. Thus, GNNML1 is exactly
as powerful as the 1-WL test.

Hence, this model has the same ability as the 1-WL test to
distinguish two non-isomorphic graphs, i.e., the same as
GIN. This is explained by the third term in the sum of Eq.(2)
since it can produce feature-wise multiplication on each
layer. Since node representation is richer, we also assume
that it would be more powerful for counting substructures.
This assumption is validated by experiments in Section 6.

To reach more powerful models than 1-WL, theoretical re-
sults (see Remarks 1, 2 and 3 in Section 3) show that a
model that can produce different outputs than L+

1 language
is needed. More precisely, according to Remarks 2 and 3,
trace (tr) and element-wise multiplication (�) operations
are required to go further than 1-WL.

In order to illustrate the impact of the trace operation, one
can use 1-WL equivalent Decalin and Bicyclopentyl graphs
in Figure 1. It is easy to show that tr(A5

G) = 0 but
tr(A5

H) = 20, tr(A5) giving the number of 5-length closed
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walks. Thus, if a model can apply a trace operator over
some power of adjacency, it can easily distinguish these two
graphs. Computational details concerning this example are
given in Appendix C.

Figure 3. Cospectral and 4-regular graphs from (Van Dam &
Haemers, 2003) are L1 and L2 equivalent.
Despite this interesting property of the trace operator, it is
not sufficient to distinguish cospectral graphs, since cospec-
tral graphs (see Figure 3) have the same number of closed
walks of any length (see Proposition 5.1 in (Geerts, 2020)).
In such cases, element-wise multiplication is useful. As an
example, the sentence e(A) = 1>f((A � A2)21) where
f(x) = x � x for any vector x, gives e(AG) = 6032 and
e(AH) = 5872 for the graphs of Figure 3. Thus, element-
wise multiplication helps distinguishing these two graphs.
The calculation details can be found in Appendix D.

As shown by these examples, a model enriched by element-
wise multiplication and trace operator can go further than
the 1-WL test. However, these operations need to keep
the power of the adjacency matrix explicitly and to multiply
these dense matrices to each other by matrix or element-wise
multiplication. Such a strategy is actually used by higher
order GNNs such as (Maron et al., 2019a; Morris et al.,
2019), which are provably more powerful than existing
MPNNs.

However, MPNNs cannot calculate the power of a given
adjacency explicitly. Indeed, a MPNN layer multiplies the
previous representation of the nodes by sparse adjacency
matrix or more generally sparse convolution supports C
in Eq.(1). More precisely, if the given node features are
H(0) = 1, a MPNN can calculate C31 by 3 layered MPNN
computing C(C(C1)) but not by (C3)1. Since a MPNN
does not keep C3 explicitly, it cannot take its trace or mul-
tiply element-wise to another power of support. This is a
major disadvantage of MPNNs, but it explains why MPNNs
need just linear time and memory complexity, making them
useful in practice.

A solution to the problem mentioned above is to design
graph convolution supports by the element-wise multipli-
cation of the s-power of the adjacency matrix and a given
receptive field, i.e., by C(s) = M � As where M masks
the components of the powered matrix and keeps the convo-
lution support sparse. M = A + I is an example of mask
that gives a maximum 1-length receptive field. This model
cannot calculate all possible element-wise multiplications
between all possible matrices, but it can produce any sen-
tence in a form of (M � As)l where l ∈ [0, lmax] is the

layer number and s ∈ [0, smax] is the pre-computed power
of convolution supports. In this proposition, the receptive
field mask and the number of power of adjacency should
be computed in a pre-processing step. However, we cannot
initially know which power of adjacency matrix is necessary
for a given problem. One solution is to tune it as an hyper-
parameter of the model. Another problem of this approach
is that using powers of adjacency makes the convolution
supports filled with high values that have to be normalized.

To overcome these problems, we propose through our GN-
NML3 model to design convolution supports in the spec-
tral domain as functions of eigenvalues of the normalized
Laplacian matrix or of the adjacency matrix. The follow-
ing theorem, with proof given in Appendix B, shows that
such supports can be written as power series of the graph
Laplacian or the adjacency matrix.

Theorem 7. A convolution support given by

C ′(s) = Udiag(Φs(λ))U>, (3)

where Φs(λ) = exp(−b(λ − fs)
2), fs ∈ [λmin, λmax]

is a scalar design parameter of each convolution support
and b > 0 is a general scalar design parameter, can be
expressed as a linear combination of all powers of graph

Laplacian (or adjacency) as follows, with αs,i =
Φ(i)

s (0)
i! :

C ′(s) = αs,0L
0 + αs,1L

1 + αs,2L
2 + . . . . (4)

Since design parameters fs of each matrix are different, each
C ′(s) in Eq.(4) consists of different linear combinations of
power series of the graph Laplacian (or adjacency). Thus,
necessary powers of the graph Laplacian (or adjacency) and
its diagonal part (for trace operation) can be learned and
their element-wise multiplication can be produced by:

C = M �mlp4 (mlp1(C ′)|mlp2(C ′)�mlp3(C ′)) , (5)

where C ′ = [C ′(1)| . . . |C ′(s)] ∈ Rn×n×S stacks initial
convolution supports on the third dimension, mlpk(.) is a
trainable model performed on third dimension of a given ten-
sor, C = [C(1)| . . . |C(S)] ∈ Rn×n×S sparsify convolution
support by defined receptive field mask M . The forward
calculation of one layer MPNN becomes:

H(l+1) = σ
(∑

s

(C(s)H(l)W (l,s))|mlp5(H(l))�mlp6(H(l))
)

(6)
where we concatenate MPNN representation under learned
convolution with element-wise product of node representa-
tions as in GNNML1.

There is an infinite number of selections of Φs(λ) that make
the convolution support written by power series of graph
Laplacian (or adjacency). However, we can design each
convolution support to be sensitive on each band of spectrum
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Algorithm 1 GNNML3 Preprocessing Step
Input: adjacency A ∈ Rn×n, receptive field mask M ∈
{0, 1}n×n, number of supports S ∈ N, frequency responses
function of each support Φ1(λ) . . .ΦS(λ)
Output: extracted edge features C′ ∈ Rm×S

Set basis matrix: B = I −D−1/2AD−1/2 or B = A.
Eigendecomposition: Udiag(λ)U> = B
for s = 1 to S do
C′:s = sparse2vec

(
M � (Udiag(Φs(λ))U>)

)
end for

Algorithm 2 GNNML3 Forward calculation
Input: extracted edge features C′ ∈ Rm×S , initial node feature
H(0) ∈ Rn×f0 , receptive field mask M ∈ {0, 1}n×n, number
of layers L, number of supports S
Output: new node representation H(L)

for l = 0 to L− 1 do
C̃=mlpl,4(mlpl,1(C

′)|mlpl,2(C′)�mlpl,3(C′))

for s = 1 to S do
C(s)=vec2sparse(C̃:s,M)

end for
H(l+1)=σ(

∑
s(C

(s)H(l)W (l,s))|mlpl,5(H(l))�mlpl,6(H(l)))
end for

(fs) by given bandwidth (b). Therefore, our model will be
able to learn properties depending on the spectrum of graph
signal.

Algorithm 1 calculates the initial convolution supports (C ′).
Since the supports are computed for valid indices in the
receptive field mask (where Mi,j = 1), one can see C ′ as
extracted edge features where the edge indices are defined by
M . In application, a function sparse2vec : Rn×n → Rm
converts the sparse matrix to a vector by just keeping the
components on valid indices of the mask. Algorithm 2
shows the forward calculation of the model for just one
graph. To make the representation as simple as possible,
we prefer to use tensor representation in Eq.(5). However,
implementation of Algorithm 2 just apply mlpk(.) to the
valid indices defined by receptive field mask M . Thus,
C,C ′ have the dimension of Rm×S , wherem shows number
of valid indices in M and mlpk(.) applies on columns of
C ′. Beside, we use a function vec2sparse : Rm → Rn×n
that converts the vector to the sparse convolution support
according to a given mask M .

The limit of the proposed method is similar to the limit of
3-WL (or 2-FWL) test. For instance, it fails to distinguish
strongly regular graphs, that can be defined by 3 parameters:
the degree of the nodes, the number of common neighbours
of adjacent node pairs, and the number of common neigh-
bours of non-adjacent node pairs. Such graphs are provably
known to be 3-WL equivalent (Arvind et al., 2020). In Ap-
pendix E, a strongly regular graphs pair and the result of a
sample sentence in L3 are presented.

6. Experimental Results
This section presents the experimental results obtained by
the proposed models GNNML1 and GNNML3. All codes
and datasets are available online 1. We use GCN, GAT, GIN
and Chebnet as 1-WL MPNN baselines and PPGN as 3-WL
baseline (see Appendix H). Experiments aim to answer four
questions:

Q1: How many pairs of non-isomorphic simple graphs that
are either 1-WL or 3-WL equivalent are not distinguished
by the models?
Q2: Can the models generalize the counting of some sub-
structures in a given graph?
Q3: Can the models learn low-pass, high-pass and band-
pass filtering effects and generalize the classification prob-
lem according to the frequency of the signal?
Q4: Can the models generalize downstream graph classifi-
cation and regression tasks?

In order to perform experimental expressive power tests,
we use graph8c and sr25 datasets2. Graph8c is composed
of all the 11 117 possible connected non-isomorphic sim-
ple graphs with 8 nodes. We compare all possible pairs
of graphs of this dataset, leading to more than 61M com-
parisons. According to our test, we found that 312 pairs
out of 61M are 1-WL equivalent and none of the pairs are
3-WL equivalent. The sr25 dataset contains strongly regular
graphs where each graph has 25 nodes, each node’s degree
is 12, connected nodes share 5 common neighbours and non-
connected nodes share 6 common neighbors. Sr25 consists
of 15 graphs, leading to 105 different pairs for comparison.

Moreover, we use the EXP dataset (Abboud et al., 2020),
having 600 pairs of 1-WL equivalent graphs. This dataset
also includes a binary classification task. Depending on
graph features, each graph of a pair of 1-WL equivalent
graphs is assigned to two different classes. We split the
dataset into 400, 100, and 100 pairs for train, validation
and test sets respectively. The test set is used to measure
the generalization ability: a model that fails to distinguish
1-WL equivalent graphs inevitably fails to learn this task.

We use 3-layer graph convolution followed by sum readout
layer, and then a linear layer to convert the readout layer
representation into a 10-length feature vector. We keep the
parameter budget around 30K for all methods. For graph8c,
sr25 and EXP tasks, there is no learning. Model weights are
randomly initialized and 10-length graph representations
are compared by the Manhattan distance. If the distance
is less than 10−3 in all 100 independent runs, we assume
the pairs are similar. For EXP-classification task, we train
the model and pick the best one according to validation set
performance and report its performance on test set.

1https://github.com/balcilar/gnn-matlang
2http://users.cecs.anu.edu.au/∼bdm/data/graphs.html
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Table 1. Number of undistinguished pairs of graphs in graph8c,
sr25 and EXP datasets and binary classification accuracy on EXP
dataset. An ideal method does not find any pair similar and classi-
fies graphs with 100% accuracy. The number of pairs is 61M for
graph8c, 105 pairs for sr25 and 600 for EXP.

MODEL GRAPH8C SR25 EXP EXP-CLASSIFY

MLP 293K 105 600 50%
GCN 4775 105 600 50%
GAT 1828 105 600 50%
GIN 386 105 600 50%
CHEBNET 44 105 71 82%
PPGN 0 105 0 100%
GNNML1 333 105 600 50%
GNNML3 0 105 0 100%

Table 1 presents the obtained results. One can see that 99.5%
of the graphs in graph8c dataset can be distinguished even
by graph agnostic method MLP (293K out of 61M is not
separable by MLP). This can be explained by the fact that
the node degrees has been added as node features. Hence, all
methods initially know the result of first iteration of 1-WL
test. Thus, MLP (and also first iteration of 1-WL test) can
distinguish pairs of graphs when multiset of node degrees
are not same. GNNML1 and GIN’s result is very closed
to the theoretical limit of 1-WL test which is 312 pairs
for graph8c dataset. The difference can be explained by
threshold value to make decision if the two representations
are equal and/or the number of layers in the model. It is
possible that 1-WL test may need more than 3 iteration
to distinguish some pairs. Due to having less expressive
power of GCN and GAT compare to the 1-WL test, their
performances are worse than 1-WL test. Since graph8c
dataset has 1-WL equivalent non-regular graph pairs that
have different maximum eigenvalue, Chebnet could detect
these pairs and reaches better performance than theoretical
limit of 1-WL test as stated by Theorem 2.

On EXP dataset, composed of 1-WL equivalent graph pairs,
MPNNs cannot distinguish any pair of graphs, except Cheb-
net which is able to distinguish all the pairs with different
maximum eigenvalues. In EXP there is no regular graphs
and only 71 graph pairs have similar maximum eigenvalues.
Chebnet fails on these pairs but distinguishes the others, as
stated by Theorem 2. One can note that using a fixed value
for maximum eigenvalue (e.g. λmax = 2 as it is usually
done in practice) reduces Chebnet performance to those of
MPNNs.

Similarly to results on EXP, 1-WL equivalent MPNNs ex-
cept Chebnet fail to predict of EXP classification task and do
not perform better than random prediction. On the contrary,
PPGN and GNNML3 have perfect results on graph8c, EXP
and EXP-classify tasks thanks to their 3-WL equivalence.
However, since strongly regular graphs are 3-WL equivalent,
no model less or as powerful as 3-WL test can distinguish
the pairs in sr25 dataset. To obtain a better result on this

Table 2. Median of test set MSE error for graphlet counting prob-
lem on random graph dataset over 10 random runs.

MODEL 3-STARS CUSTOM TRIANGLE TAILED-TRI 4-CYCLES

MLP 1.0E-4 4.58E-1 3.13E-1 2.22E-1 1.73E-1
GCN 1.0E-4 3.22E-3 2.43E-1 1.42E-1 1.14E-1
GAT 1.0E-4 4.57E-3 2.47E-1 1.44E-1 1.12E-1
GIN 1.0E-4 1.47E-3 2.06E-1 1.18E-1 1.21E-1
CHEBNET 1.0E-4 7.68E-4 2.01E-1 1.15E-1 9.60E-2
PPGN 1.0E-4 9.19E-4 1.00E-4 2.61E-4 3.30E-4
GNNML1 1.0E-4 2.75E-4 2.45E-1 1.32E-1 1.14E-1
GNNML3 1.0E-4 7.24E-4 4.44E-4 3.18E-4 6.62E-4

dataset, we need to go further than 3-WL (see Appendix E).
These experiments reply to Q1.

To bring an answer to Q2, we propose to count 3-star, trian-
gle, tailed-triangle and 4-cycle substructures (Fig. 2). In ad-
dition to these 4 graphlets, we also create another task (noted
as CUSTOM in Table 2) that aims to approximate a custom
sentence ec ∈ L+

1 , ec(A) = 1>Adiag(exp(−A21))A1
with A the graph adjacency matrix. Since ec ∈ML(L+

1 ), it
may be learnable by 1-WL equivalent MPNNs. We used the
RandomGraph dataset (Chen et al., 2020) with same parti-
tioning: 1500, 1000 and 2500 graphs for train, validation
and test respectively. To create the ground truth of number
of graphlets, we count them according to theorem proofs in
Appendix B.3, B.4, B.5 and normalized the number to a uni-
tary standard deviations, to keep the errors in the same scale
as in Table 2. We use 4 convolution layers, a graph readout
layer computing a sum and followed by 2 fully connected
layers. All methods parameter budget is around 30K. We
keep the maximum number of iterations to 200 and we stop
the algorithm if the error goes below 10−4.

The results in Table 2 are consistent with Theorems 3, 4, 5.
3-WL models are able to count graphlets and approximate
our custom function (result < 10−3), while 1-WL equiva-
lent models can only count the 3-stars graphlet, as stated
in Theorem 3. Custom function approximation results also
show that GNNML1 and Chebnet provide better approxima-
tion of the target other MPNNs, which is again consistent
with our analysis.

Question Q3 concerns the spectral expressive power of mod-
els. Such an analysis is important when input-output rela-
tions depend on the spectral properties of the graph sig-
nal such as in image/signal processing applications. As
shown in (Balcilar et al., 2021), the vast majority of exist-
ing MPNNs operate as low-pass filters which limits their
capacity. To lead this analysis, we use the datasets presented
in (Balcilar et al., 2021). First, we evaluate if the models
can learn low-pass, high-pass and band-pass filtering effects,
through a node regression problem. Model performances are
thus reported R2 using mean square error (MSE) loss. The
original data consists in a 2-d grid graph of size 100x100.
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Table 3. Spectral expressive analysis results. R2 for LowPass,
HighPass and BandPass node regression tasks, accuracy on graph
classification task. Results are median of 10 different runs.

MODEL LOW-PASS HIGH-PASS BAND-PASS CLASSIFY

MLP 0.9749 0.0167 0.0027 50.0%
GCN 0.9858 0.0863 0.0051 77.9%
GAT 0.9811 0.0879 0.0044 85.3%
GIN 0.9824 0.2934 0.0629 87.6%
CHEBNET 0.9995 0.9901 0.8217 98.2%
PPGN 0.9991 0.9925 0.1041 91.2%
GNNML1 0.9994 0.9833 0.3802 92.8%
GNNML3 0.9995 0.9909 0.8189 97.8%

Since the PPGN’s memory and computational complexity is
prohibitive with a reasonable computer, we select 3 different
30x30 regions of the original 2-d grid graph as training, val-
idation and test sets. A second dataset consists of 5K planar
graphs, split into 3K, 1K and 1K sets for train, validation
and test. They are used to evaluate if the models can classify
graphs into binary classes where the ground truth labels
were determined according to the frequency of the signal on
the graph. Since the problem is binary graph classification
we use binary cross entropy loss.

The results of spectral expressive power analysis are pre-
sented in Table 3. Node regression results show that 1-WL
equivalent existing MPNNs can mostly learn low-pass ef-
fects. By applying different weights to self node and neigh-
bourhood, GNNML1 can learn high pass effect relatively
well. PPGN also learns high-pass effect better than 1-WL
equivalent methods. Band-pass can be generalized by Cheb-
net and GNNML3 thanks to the convolutions designed in
spectral domain. The reason why the band-pass regres-
sion results are worse than the low and high-pass results
is that the ground truth band-pass effect is created by very
stiff frequency function and Chebnet also GNNML3 need
more convolution supports to learn it. Because of non-local
process in PPGN, it cannot learn the band-pass effect and
provide no better result than 1-WL MPNNs in graph classifi-
cation problem. Thus, Chebnet and GNNML3 give the best
results on all spectral ability test, thanks to their spectral
convolutions process.

For answering the last question Q4, we apply the different
models on some common benchmark tasks and datasets.
Table 4 and Table 5 present the performance of both baseline
models and the proposed ones on these benchmark datasets.
The results on Zinc12K and MNIST-75 datasets are very
interesting because of the nature of these two problems.
The solution of the Zinc12K dataset mostly depends on
structural features of the graph. For instance, a recent study
reaches 0.14 MAE by using handcrafted features, which
cannot be extracted by a 3-WL equivalent model (Bouritsas
et al., 2020). Obtained results confirm that models that are
able to count substructures, such as PPGN and GNNML3,

Table 4. Results on Zinc12K and MNIST-75 datasets. The values
are the MSE for Zinc12K and the accuracy for MNIST-75. Edge
features are not used even if they are available in the datasets. For
Zinc12K, all models use node labels. For MNIST-75, the model
uses superpixel intensive values and node degree as node features.

MODEL ZINC12K MNIST-75

MLP 0.5869 ± 0.025 25.10% ± 0.12
GCN 0.3322 ± 0.010 52.80% ± 0.31
GAT 0.3977 ± 0.007 82.73% ± 0.21
GIN 0.3044 ± 0.010 75.23% ± 0.41
CHEBNET 0.3569 ± 0.012 92.08% ± 0.22
PPGN 0.1589 ± 0.007 90.04% ± 0.54
GNNML1 0.3140 ± 0.015 84.21% ± 1.75
GNNML3 0.1612 ± 0.006 91.98% ± 0.18

perform better than others with a large margin. On the other
hand, since MNIST-75 dataset is based on image analysis,
it needs a model with a higher spectral ability. Therefore,
Chebnet and GNNML3 perform significantly better than
other models on this task. Our proposal GNNML3 gives
comparable results on other TU datasets in (Morris et al.,
2020) such as MUTAG, ENZYMES, PROTEINS and PTC
presented in Appendix F.

7. Conclusion
Despite a computational and memory efficiency, MPNN is
known to have an expressive power limited to 1-WL test.
MPNN is then unable to distinguish 1-WL equivalent graphs
and cannot count some substructures of the graph. In this
paper, we have presented new models, by translating the
insights of MATLANG to the GNN world. This solution
gives access to a new MPNN that is theoretically more pow-
erful than the 1-WL test, and experimentally as powerful as
3-WL existing models for distinguishing non-isomorphic
graphs and for counting substructures without feature engi-
neering nor node permutations in the training phase. The
proposed MPNN is also powerful in terms of spectral ex-
pressive ability, going beyond low-pass filtering, which is
another expressive perspective of GNNs. Experimental re-
sults confirm the theorems stated in the paper. The proposed
method has a big advantage over all studied MPNN on graph
isomorphism and substructure counting tasks. With respect
to the 3-WL equivalent baseline PPGN, the biggest advan-
tage of our proposal is its complexity. Proposed GNNML3
needs linear memory and time complexity with respect to
the number of nodes, while PPGN needs quadratic memory
and cubic time complexity, making the model infeasible for
large graphs. The second advantage over PPGN is that since
it is created in the spectral domain, its convolution process
takes care of signal frequencies, making it more efficient in
terms of output signal frequency profile.
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A. Weisfeiler-Lehman Test
The universality of a GNN is based on its ability to embed
two non-isomorphic graphs to distinct points in the target
feature space. A model which can distinguish all pairs of
non-isomorphic graphs is a universal approximator. Since
it is not known if the graph isomorphism problem can be
solved in polynomial time or not, this problem is neither
NP-complete nor P, but NP-intermediate (Takapoui & Boyd,
2016). One of the oldest but prominent polynomial approach
is the Weisfeiler-Lehman Test (abbreviated WL-test) which
gives sufficient but not enough evidence. WL test can be
extended by taking into account higher order of node tuple
within the iterative process. These extensions are denoted
as k-WL test, where k is equal to the order of the tuple. It
is important to mention that an higher order of tuple leads
to a better ability to distinguish two non-isomorphic graphs
(with the exception for k = 2) (Arvind et al., 2020).

The 1-WL test, known as vertex coloring, starts with the
given initial color of nodes if available. Otherwise all nodes
are colored with the same color (H(0)

v = 1). Then, colors
are updated by the following iteration:

H(t+1)
v = σ

(
H(t)
v |

{
H(t)
u : u ∈ N (v)

})
, (7)

where H(t)
v is the color of vertex v at iteration t,N (v) is the

set of neighbours of vertex v, | represents the concatenation
operator and {.} is the order invariant multiset3. In order to
avoid the new color of vertex become bigger after each itera-
tion due to the concatenation operation and to keep the color
description simple, the recoloring σ(·) function is applied
after each iteration. It assigns a new simple color identifier
to the any newly created color. The test is performed in
parallel for two graphs. The iterative process is stopped
when the color histograms are kept unchanged between two
consecutive iterations. The color histograms associated to
the compared graphs are examined. If in any iteration the
histograms are different, we can conclude that the graphs
are not isomorphic. However, the opposite conclusion can
not be drawn if color histograms are equal as two same his-
tograms may be computed even for non-isomorphic graphs.

Higher order WL tests use the same algorithm while their
color update schema is slightly different. The 2-WL test
uses second order tuple of nodes (all ordered pairs of nodes),
thus it needs H ∈ Rn×n matrix, where the initial color set
has two more colors than initial vertex colors as defined by:

H(0)
v,u =

 H
(0)
v if v = u

edge if u ∈ N (v)
nonedge if u 6∈ N (v)

(8)

Then, the iteration process is applied through the following

3It is generally implemented by stacking all colors in the set
and sorting them alphabetically

schema where [n] is the set of node identifiers.

H(t+1)
v,u = σ

(
H(t)
v,u |

{
H

(t)
v,k : k ∈ [n]

}
|
{
H

(t)
k,u : k ∈ [n]

})
,

(9)
Although for k ≥ 2, (k + 1)-WL is more powerful than
(k)-WL, it is not true for k = 1, thus 2-WL (Eq.(9)) is no
more powerful than 1-WL (Eq.(7)) (Maron et al., 2019a).
To clarify this point, Folkore WL (FWL) test is defined such
that 1-WL=1-FWL, but for k ≥ 2, we have (k + 1)-WL
≈ (k)-FWL (Maron et al., 2019a). The iteration process of
2-FWL is given by the following equation;

H(t+1)
v,u = σ

(
H(t)
v,u |

{(
H

(t)
v,k|H

(t)
k,u

)
: k ∈ [n]

})
, (10)

In the literature, there are different interpretations of the
order of the WL test. Some papers use WL test order to
denote the iteration given by Eq.(7) and Eq.(9) (Morris et al.,
2019; Maron et al., 2019a) but some others such as (Abboud
et al., 2020; Arvind et al., 2020; Takapoui & Boyd, 2016)
use FWL order under the name of WL. In this paper, we
explicitly mention both WL and FWL equivalent such as
3-WL (or 2-FWL) to alleviate ambiguities.

B. Proofs of Theorems
B.1. Theorem.1

Proof. All these methods can be written in Eq.(1) by dif-
ferent convolution matrices C. The main idea of the proof
is that as long as convolution matrices C can be explained
by operations from the enriched set L+

1 (Remark 4), Eq.(1)
also can be explained by operations from L+

1 as well. Thus
these methods cannot produce any sentence out of L+

1 . As a
consequence, their expressive power is not more than 1-WL
test. To provide a proof, the mentioned methods’ convolu-
tion matrices have to be expressed using operations from
L+

1 .

GCN uses C = (D + I)−0.5(A + I)(D + I)−0.5 where
D is the diagonal degree matrix (Kipf & Welling, 2017) in
Eq.(1). (D + I)−0.5 can be expressed as (D + I)−0.5 =
diag(f(A1 + 1)), where f(x) = x−0.5 is element-wise
operation on vector x. A + I can also be written A +
diag(1). When we merge these equations, we get C =
diag(f(A1 + 1))(A + diag(1))diag(f(A1 + 1)). The
convolution support C is then written using operations from
L+

1 .

In the literature, GraphSage method was proposed to sample
neighborhood and aggregate the neighborhood contribution
by the mean operator or LSTM in (Hamilton et al., 2017).
Since we restrict the method using full sampling and mean
aggregator, we can define GraphSage by the general frame-
work given by Eq.(1) with two convolution supports which
are the identity matrix C(1) = I and the row normalized ad-
jacency matrix C(2) = D−1A. These convolution supports
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can also be expressed by operations from L+
1 , by observing

that C(1) = diag(1) and C(2) = diag(f(A1))A, where
f(x) = x−1 elementwise operation on vector x.

GIN (Xu et al., 2019) uses a convolution supportC = A+Iε
in Eq.(1) which is followed by a custom number of MLP
layers. Each of these layers correspond to a convolution sup-
port that can by expressed as Cmlp = I in Eq.(1). Finally,
these convolution supports can be written thanks to opera-
tions from L+

1 . C = A+ ε×diag(1) and Cmlp = diag(1).

GAT (Veličković et al., 2018) can be expressed in
Eq.(1) by the convolution support designed by Cv,u =

m(Hv, Hu)/
∑
k∈Ñ (v)m(Hv, Hk), where Ñ (v) is the

self-connection added neighborhood of v and m(.) is
any trainable model. If we write the trainable model
m(.) as a sum of each node such as m(Hv, Hu) =
f1(Hv) + f2(Hu), we can define an intermediate ma-
trix B = diag(f1(H))(A + I) + (A + I)diag(f2(H)).
Finally the GAT convolution support can be written by
C = diag((B1)−1)B using all operations included within
the operation set L+

1 .

B.2. Theorem.2

Proof. Chebnet (Defferrard et al., 2016) uses desired num-
ber k of convolution supports in Eq.(1). As long as these
convolutions can be written by operations in L+

1 , we can
conclude that Chebnet is no more powerful than 1-WL test.
But if at least one convolution cannot be explained in L+

1 ,
we can say it is more powerful than 1-WL test.

Chebnet’s convolution supports are C(1) = I, C(2) =
2L/λmax − I, C(k) = 2C(2)C(k−1) − C(k−2). The first
support can always be written thanks to an operation from
L1 since C(1) = diag(1). Both normalized and combinato-
rial graph Laplacian can also be written as L = diag(A1)−
A or L = diag(1) − diag(f(A1))Adiag(f(A1)) where
f(x) = x−1/2 elementwise operation on vector x. If
λmax for both graphs are the same, we can use a constant
α = 2/λmax. The second convolution support can then be
written as C(2) = α× L− diag(1). It is then expressed by
means of operations from L+

1 . Other convolution supports
C(k) = 2C(2)C(k−1) − C(k−2) are created by matrix mul-
tiplication and subtraction of previous supports which can
all be expressed by mean of operations from L+

1 . Thus, if
the maximum eigenvalues of tested graphs Laplacians are
the same, Chebnet is not more powerful than 1-WL.

However, if the maximum eigenvalues are not the same,
C(2) cannot be expressed with the help of the constant value
α. It means that different coefficients should be used for
each graph. For two tested graphs G and H , we can write
second kernel of Chebnet as C(2)

G = αG × LG − diag(1)

and C(2)
H = αH × LH − diag(1). If these two graphs are

1-WL equivalent, any sentence build on L+
1 applied on these

graph is equivalent as well. For instance, we can use the
sentences of e(X) = 1>X1 with operation in L+

1 . The out-
put of the sentence should be same such e(LG) = e(LH)
yields 1>LG1 = 1>LH1. If we assume that Chebnet can-
not separate these two graphs, we can calculate one layer
ChebNet’s output by second support with the same sentence
and they should be the same such e(C(2)

G ) = e(C
(2)
H ) yields

αG1
>LG1 = αH1>LH1. Last equation has contradiction

to the previous one as long as the maximum eigenvalues
are not same (i.e αG 6= αH ) and graphs are not regular (i.e
1>LG1 > 0 and 1>LH1 > 0 for normalized laplacian).
This contradiction says that assumption is wrong, so one
layer Chebnet’s second support can distinguish 1-WL equiv-
alent graphs whose maximum eigenvalues are not same and
graphs are not regular with the same degree.

Since the graph laplacians are positive semi-definite, it al-
ways yields 1>LG1 ≥ 0 and 1>LH1 ≥ 0 and they are zero
as long as the graphs are regular with the same degree. Thus,
if we add smallest positive scalar value on the diagonal of
the laplacian such L← L+ εI , we get rid of the necessity
that graphs must be non-regular. So Chebnet become more
powerful and will be able to distinguish all 1-WL equivalent
regular graphs whose maximum eigenvalues are different.
Considering the graph8c task, we have seen that classic
ChebNet could not distinguish 44 pairs where there are 312
1-WL equivalent pairs. If we use L← L+ 0.01I , the num-
ber of undistinguished pairs of graph decreased from 44 to
19, where 19 undistinguished pairs are all 1-WL equivalent
and have exact the same maximum eigenvalues. On the
other hand, original Chebnet was not able to distinguish
44-19=25 graphs pairs whose maximum eigenvalues are
different but all of them are regular thus 1>L1 = 0.

B.3. Theorem.3

Proof. The number of 3-star patterns can be determined by∑
v

(
d(v)

3

)
where d(v) is the degree of vertex v for undi-

rected simple graphs (Pinar et al., 2017). Using f(x) =
x!

(x−3)!3! as a function that operates on each element of a
given vector x, we can calculate the number of 3-star pat-
terns in a given adjacency matrix A by 1>f(A1) using
operations in L+

1 . According to the universal approximation
theory of multi layer perceptron (Hornik et al., 1989), if we
have enough layers, we can implement f(.) as an MLP in
our model.

B.4. Theorem.4

Proof. The number of triangles can be determined by using
trace operator as 1/6 × tr(A3) (Harary & Manvel, 1971)
which can be written by means of operations from L+

2 .

Number of 4-cycles is determined by 1/8 × (tr(A4) +
tr(A2)− 21>A21) (Harary & Manvel, 1971) which can be
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written by means of operations from L+
2 .

B.5. Theorem.5

Proof. If t(v) denotes the number triangles including vertex
v and d(v) denotes the degree of vertex v, the number of
tailed triangles can be found by

∑
v t(v).(d(v) − 2) for

simple undirected graphs (Pinar et al., 2017). Every node in
a triangle has two closed walks of length 3. Thus, t(v) =
(A3)v,v

2 . It yields the number of tailed triangles can be
found by 1

2 × 1>(A3 � diag(A1− 2))1. The computation
of t(v) which involves the element-wise multiplication can
be written with operations from L+

3 .

B.6. Theorem.6

Proof. Since the sentences in ML(L1) produce a scalar
value which can be reached in the graph readout layer as a
sum thanks to 1>H(lend), we need to show that the MPNN
can produce all possible vectors in L1 on the last node rep-
resentation layer. Since H(0) = 1, the output of the first
layer consists of linear combination of [1, A1] because, in
this case, the third term of the sum is just 1 ◦ 1 = 1. On the
second layer, the representation consists of a linear transfor-
mation of 4 different vectors [1, A1, A21, A1◦A1]. We can
notice that these 4 vectors are the all possible vectors that L1

can produce up to the second level. The diag operator can
produce other outputs if we apply diag(A1).diag(A1)1 =
A1 ◦ A1. Because diag(1) = I cannot change any-
thing if we use it any other expressions. Another selec-
tion would be A.diag(A1)1 = A21 and last option gives
diag(A1)A1 = A1 ◦ A1. So up to l = 2 the proof is
true. Then, we follow an inductive reasoning and assume
that in the k-th layer, Eq.(2) produces all possible vectors
(h1, . . . hn) in L1 and we show that it is true for k + 1-th
layer as well. In the k + 1-th layer, the first term of the sum
keeps h1, . . . hn. The second term produces Ah1, . . . Ahn.
Finally, the term of the sum produces all pairs of element-
wise multiplication such as h1 ◦ h1, h1 ◦ h2, . . . hn ◦ hn.
These are the all vectors that the language {.,1, diag} can
produce using one extra A and/or diag operator. The trans-
pose operator is neglected because the adjacency matrix is
symmetric. Furthermore, since at the readout layer these
vectors are to be summed up, their order or the fact that they
are transposed or not does not matter.

Beside, it was also shown that diag(.) operator can be imple-
mented by element-wise multiplication of vectors in (Geerts,
2020) in Proposition 8.1.

B.7. Theorem.7

Proof. If the given function is Φ(λ), it can be written by
power series using the Maclaurin expansion as follows:

Φ(λ) =
Φ(0)

0!
λ0 +

Φ′(0)

1!
λ1 +

Φ(2)(0)

2!
λ2 + . . . . (11)

Thus, the frequency response can be written by power series
with coefficients αi = Φ(i)(0)

i! . Using these coefficients, the
convolution support can be formulated as

C = α0UIU
>+α1Udiag(λ)U>+α2Udiag(λ)2U>+. . . .

(12)
Since UIU> = I = L0 and Udiag(λ)nU> = Ln, we can
reach the final expression:

C = α0L
0 + α1L

1 + α2L
2 + . . . (13)

The convolution support C is expressed as power series of
graph laplacianL as long as all order derivation of frequency
response is not zero (Φ(n)(0) 6= 0). Since the selection of
the function is based on exp(.) and its derivation is never
null, we can conclude that designed convolution support can
be written by power series of graph Laplacian.

C. L1 Equivalent Graphs

Figure 4. Decalin and Bicyclopentyl graphs are L1 equivalent and
so 1-WL.

Figure 4, shows Decalin and Bicyclopentyl graphs, with a
proposed node enumeration. According to these enumera-
tions, their adjacency matrices are AG and AH , respectively

AG=



0 1 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 0


and AH=



0 1 1 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 0



Their normalized Laplacian can be calculated by L = I −
D−1/2AD−1/2 and gives LG and LH as follows:

LG=



1 −0.33 −0.41 0 0 0 −0.41 0 0 0
−0.33 1 0 0 0 −0.41 0 0 0 −0.41
−0.41 0 1 −0.5 0 0 0 0 0 0

0 0 −0.5 1 −0.5 0 0 0 0 0
0 0 0 −0.5 1 −0.5 0 0 0 0
0 −0.41 0 0 −0.5 1 0 0 0 0

−0.41 0 0 0 0 0 1 −0.5 0 0
0 0 0 0 0 0 −0.5 1 −0.5 0
0 0 0 0 0 0 0 −0.5 1 −0.5
0 −0.41 0 0 0 0 0 0 −0.5 1
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LH=



1 −0.33 −0.41 0 0 −0.41 0 0 0 0
−0.33 1 0 0 0 0 −0.41 0 0 −0.41
−0.41 0 1 −0.5 0 0 0 0 0 0

0 0 −0.5 1 −0.5 0 0 0 0 0
0 0 0 −0.5 1 −0.5 0 0 0 0

−0.41 0 0 0 −0.5 1 0 0 0 0
0 −0.41 0 0 0 0 1 −0.5 0 0
0 0 0 0 0 0 −0.50 1 −0.5 0
0 0 0 0 0 0 0 −0.50 1 −0.5
0 −0.41 0 0 0 0 0 0 −0.5 1


Their second Chebnet convolution supports are C(2)

G =

2/2LG − I and C(2)
H = 2/1.8418LH − I because their

maximum eigenvalues are 2.0 and 1.8418 respectively. Fi-
nally, when computing the output of the first layer by linear
activation function without any learning parameters, we ob-
tain yG = 1>C

(2)
G 1 = −9.9327 and yH = 1>C

(2)
H 1 =

−9.9269. We observe a slight difference between these two
values, which means that Chebnet can project both graphs
to the different points, thus it is able to distinguish them.

Since the maximum eigenvalues of graphs Laplacians are
different, they are not cospectral as well. It means that
they can also be distinguished on the basis of the number
closed walks for some lengths which can be determined
by trace operator. Indeed, even if up to 4th power of the
adjacency matrix, the trace operator gives the same values
for both graphs, we can observe that tr(A5

G) = 0 whereas
tr(A5

H) = 20. This observation is sufficient to claim that
both graphs are not L2 equivalent.

D. L2 Equivalent Graphs
Figure 5 shows two non-isomorphic but L2 equivalent
graphs, where vertices are enumerated.

Figure 5. Cospectral and 4-regular graphs from (Van Dam &
Haemers, 2003) are L2 equivalent.

According to these enumerations, their adjacency matrices
are the following:

AG=



0 1 0 1 0 1 0 1 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1
1 1 0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 1 1
0 0 1 0 1 0 0 1 1 0
1 0 0 1 0 0 1 0 1 0
0 0 0 0 0 1 1 1 0 1
0 0 1 0 1 1 0 0 1 0


and AH=



0 1 0 1 0 0 1 1 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 0 1 1 0 0 0 1
1 1 0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 1 1 0
1 0 0 0 1 0 0 0 1 1
1 0 0 1 0 1 0 0 1 0
0 0 0 0 0 1 1 1 0 1
0 0 1 0 1 0 1 0 1 0



We have seen that their normalized Lapla-
cian eigenvalues are λG = λH =
[0, 0.44, 0.61, 0.75, 1.25, 1.25, 1.25, 1.25, 1.56, 1.64].
Thus, they are cospectral. Considering that for cospectral

graphs, the trace of any power of the adjacency matrix
which gives the number of closed walks, is the same, we
conclude that the trace operator does not help to distinguish
these two graphs.

For instance, it can be verified that the trace of the adjacency
matrix up to its 5th power is equal: tr(A2

G) = tr(A2
H) =

40, tr(A3
G) = tr(A3

H) = 48, tr(A4
G) = tr(A4

H) = 360,
and tr(A5

G) = tr(A5
H) = 920).

However, the sentence e(X) = 1>((X �X2)21)2 which
implements the element-wise multiplication from L3 allows
to distinguish both graphs. Indeed, the computation of this
sentences on AG and AH gives 1>((AG � A2

G)21)2 =
6032 and 1>((AH � A2

H)21)2 = 5872. Thus, these two
graphs are not L3 equivalent (it means not 3-WL or 2-FWL
equivalent as well) because the sample sentence can be
explained in L3.

E. L3 Equivalent Graphs
Strongly regular graphs are known to be 3-WL equivalent
and L3 equivalent as well. Figure 6 shows sample non-
isomorphic graphs that are L3 equivalent.

Figure 6. Strongly regular graph pair. 4 × 4-rook’s graph and the
Shrikhande graph from (Arvind et al., 2020) are L3 equivalent.

When we enumerate the nodes from the top-left to the
bottom-right according to their locations in the Figure 6,
their adjacency matrices are the following:

AG=



0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0
0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0
0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0
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AH=



0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1
1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1
1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0
0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0
0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0
0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1
1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1
0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 1
1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0



The eigenvalues of the normalized Laplacian are equal
(λG = λH ). Both normalized Laplacians have 3 distinct
eigenvalues which are 0, 0.667 and 1.33 with the respective
multiplicity of 1, 6 and 9. Thus the graphs are cospectral.
Since they are 3-WL equivalent, none of the sentences in L3

can distinguish these graphs. For instance, we have seen that
1>((AG �A2

G)21)2 = 1>((AH �A2
H)21)2 = 331776.

In order to distinguish these two graphs, we need to mimic
the 3-FWL (or 4-WL) test which needs a 3-order relation-
ship between nodes. Thus, the adjacencies will be repre-
sented by AG, AH ∈ R16×16×16. For any 3 nodes there are
3 different pairs and thus 23 = 8 different states represent-
ing how these 3 nodes are connected or not. An additional
state is used for the tensor diagonal. Thus, there is a total of
9 states. The node tuple is denoted by Ai,j,k ∈ {0, . . . , 8}.
0 refers to the fact that none of three nodes are connected. 7
refers to the fact that all nodes are mutually connected (trian-
gle). 8 is used for the tensor diagonal elements. We can then
define an equivariant 3 dimensional tensor square operator
by (A2)i,j,k =

∑
s(As,j,k.Ai,s,k.Ai,j,s). By summing all

elements of the 3-dimensional squared adjacency where the
given adjacency is for instance 0, we can distinguish these
two graphs. Indeed,

∑
(A2

G�(AG= 0)) = 205632 whereas∑
(A2

H � (AH= 0)) = 208704. We can then conclude that
these two graphs are not 3-FWL (or 4-WL) equivalent.

F. Result of TU Datasets
Table 5 shows the results of 10-fold cross validation over
studied datasets named MUTAG, ENZYMES, PROTEINS
and PTC. All these datasets consist of chemical molecules
where nodes refer to atoms while edges refer to atomic
bonds. For these molecular datasets, node features is a one
hot coding of atom types and none of the model use any edge
feature even if it exists for MUTAG. In addition to these
results, we also provide results on the ENZYMES dataset
using extra 18-length continuous features on atoms. Us-
ing these continuous features, graph agnostic method MLP
performance increases drastically from 30.8% to 70.6%,
showing that these continuous features contain at least a
part of the structural information. Models were ran for a
fixed number of epochs on each fold and we select the epoch
where the general accuracy is maximum on the validation
set. The test procedure and train/validation split was taken
from (Xu et al., 2019).

G. Datasets and Application Details
Table 6 shows the summary of the dataset used in experimen-
tal evaluation. The evaluation has been performed on four
differents tasks depending on the dataset. These are graph
isomorphism (Iso), graph regression (Reg), node regression
(NReg) and n-class graph classification task (#-Class). We
did not use any edge features even if some were available.
All features were defined on nodes. These features were dis-
crete node labels coded by one-hot vectors (#Label) and/or
continuous features referred by numbers in Tab. 6. We can
notice that some graphs have no feature on nodes.

We get the Graph8c and Sr25 dataset from online sources4,
EXP dataset from (Abboud et al., 2020), Random graph
dataset from (Chen et al., 2020), 2D-Grid and Band-Pass
dataset from (Balcilar et al., 2021), Zinc12K from (Dwivedi
et al., 2020), Mnist-75 dataset from online source5 which
was used in (Balcilar et al., 2021) with exactly the same pro-
cedure, PROTEINS, ENZYMES, MUTAG and PTC from
TU dataset (Morris et al., 2020) downloaded from resources
of (Xu et al., 2019). All dataset except for EXP, Random and
2-D grid graph were used on a single task. We used EXP
for graph isomorphism test and binary classification task.
2D-Grid graph was used for three different node regression
tasks respectively on low-pass, band-pass and high-pass fil-
tering effect prediction. Finally, Random graph is used on
five different substructure counting tasks.

In all cases, we used roughly 30K trainable parameters
for all problems and all models. We tuned the number
of layers from 2 to 5 and the number of convolution ker-
nels in Chebnet from 3 to 5. We used Adam optimiza-
tion with learning rate in [10−2, 10−3] and a weight decay
in [10−3, 10−4, 10−5]. We also used dropout layer before
all graph convolution layers under selection of [0, 0.1, 0.2]
dropout rate. We used ReLU as non-linearity operation in
all layers if it is not mentioned explicitly for any specific
model. For classification problems, the loss function was im-
plemented through cross-entropy. For regression problems,
mean squared error was used as the loss function except on
Zinc12K dataset where the loss function was mean absolute
error. Unless otherwise specified, we used both sum and
max readout layer after last layer of graph convolution. It
is then followed by a fully connected layer which ended up
with output layer.

In GNNML3, we use the eigendecomposition of normal-
ized Laplacian to calculate the initial edge feature for all
problems, except for Zinc12K and substructure counting
problems where the eigen decomposition was performed on
the adjacency. Each initial convolution support is set such

4http://users.cecs.anu.edu.au/∼bdm/data/graphs.html
5https://graphics.cs.tu-dortmund.de/fileadmin/ls7-

www/misc/cvpr/mnist-superpixels.tar.gz
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Table 5. Results on TU datasets. The values are the accuracy. Edge features are not used even if they are available in the datasets. The
models use a one-hot encoding of node labels as node features, while the models also use extra 18 length continuous node features for
ENZYMES-cont.

MODEL MUTAG ENZYMES ENZYMES-CONT PROTEINS PTC

MLP 86.6% ± 4.95 30.8% ± 4.26 70.6% ± 5.22 74.3% ± 4.88 62.9% ± 5.89
GCN 89.1% ± 5.81 49.0% ± 4.25 74.2% ± 3.26 75.2% ± 5.11 64.3% ± 8.35
GAT 90.1% ± 5.84 54.1% ± 5.15 73.7% ± 4.47 75.9% ± 4.26 65.7% ± 7.97
GIN 89.4% ± 5.60 55.8% ± 5.23 73.3% ± 4.48 76.1% ± 3.97 64.6% ± 7.00
CHEBNET 89.7% ± 6.41 63.8% ± 7.92 75.3% ± 4.63 76.4% ± 5.34 65.5% ± 4.94
PPGN 90.2% ± 6.62 55.2% ± 5.44 72.9% ± 4.18 77.2% ± 4.53 66.2% ± 6.54
GNNML1 90.0% ± 0.42 54.9% ± 5.97 76.9% ± 5.14 75.8% ± 4.93 63.9% ± 6.37
GNNML3 90.9% ± 5.46 63.6% ± 6.52 78.1% ± 5.05 76.4% ± 5.10 66.7% ± 6.49

Table 6. Summary of the datasets used in our experiments.

GRAPH8C SR25 EXP 2D-GRID RANDOM BAND-PASS PROTEINS ENZYMES MUTAG PTC MNIST-75 ZINC12K
TASK ISO ISO ISO&2CLASS NREG REG 2CLASS 2CLASS 6CLASS 2CLASS 2CLASS 10CLASS REG
GRAPHS 11117 15 1200 3 5K 5K 1113 600 188 344 70K 12K
NODES 8.0 25.0 44.44 900.0 18.8 200.0 39.06 32.63 17.93 25.55 75.0 23.15
EDGES 28.82 300.0 110.21 3480.0 62.67 1072.6 72.82 62.14 39.58 51.92 694.7 49.83
FEATURE MONO MONO MONO 1 MONO 1 3LABEL 3LABEL+18 7LABEL 19LABEL 1 21LABEL
TRAIN NA NA 800 1 1500 3K 9-FOLD 9-FOLD 9-FOLD 9-FOLD 55K 10K
VAL NA NA 200 1 1000 1K 1-FOLD 1-FOLD 1-FOLD 1-FOLD 5K 1K
TEST NA NA 200 1 2500 1K NA NA NA NA 10K 1K

that Φs(λ) = exp(−b(λ− fs)2), where the bandwidth pa-
rameter b is set to the value of 5. The spectrum has been uni-
formly sampled between minimum eigenvalue and the max-
imum eigenvalue with a selection of sn = [3, 5, 10] points
in order to select the band specific parameter. Thus, band
specific parameter of each frequency profile can be written
fs = λmin + s−1

sn−1 (λmax−λmin) for s ∈ {1, . . . , sn− 1}.
For the convolution support s = 0, we used all-pass fil-
tering named identity matrix whose frequency response is
Φ0(λ) = 1. Thus, we have a total of sn convolution sup-
ports. The 1-hop distance is always used for receptive field
which corresponds to M = A+ I . For the learning of con-
volution supports needed in Eq.(5), we used a single layered
MLP in each mlpk where mlp1,mlp2,mlp3 : RS → R2S

with a sigmoid activation, and mlp4 : R4S → RS with
ReLU activation as long as S is the number of initial con-
volutions extracted in the preprocessing step. In Eq.(6), the
size of the output of mlp5 and mlp6 is another hyperparam-
eter where we used the same length with the first part of the
Eq.(6) defined by dimension of W (l,s).

Mentioned hyperparamters are optimzed for concerned
model according to validation set performance if it is avail-
able. For TU dataset, since the validation and test set is not
available in public split, we first created a hyperparameter
tuning task by dividing the dataset one time into pre-training
(80%) and pre-validation (20%). The optimal value of the
parameters is searched on the basis of the performance on
the pre-validation set. Then, these hyperparameter values
for the general test procedure as defined in (Xu et al., 2019).

Our tests were conducted with implementations of Chebnet,
GCN, GIN and GAT layer provided by pytorch-geometric

(Fey & Lenssen, 2019). Besides, PPGN, GNNML1 and
GNNML3 layer were implemented as a class of pytorch-
geometric and our models were tested on the basis of these
implementation. By doing so, we integrate the PPGN into
the widely used graph library pytorch-geometric and make
it publicly available beside our own proposals.

H. Summary of the Baseline Models
H.1. MPNN Baselines

In this section of the appendix, we present the baseline
methods which are GCN, GIN, Chebnet and GAT thanks to
the general framework given by Eq.(1). Each model differs
from others by selection of their convolution support C.

GCN uses a single convolution support given by;

C = (D + I)−0.5(A+ I)(D + I)−0.5, (14)

where D is the diagonal degree matrix (Kipf & Welling,
2017) in Eq.(1).

Chebnet relies on the approximation of a spectral graph
analysis proposed in (Hammond et al., 2011), based on
the Chebyshev polynomial expansion of the scaled graph
Laplacian. The number of convolution supports C(k) can
be chosen. They are defined by (Defferrard et al., 2016) as
follows:

C(1) = I, C(2) = 2L/λmax − I,
C(k) = 2C(2)C(k−1) − C(k−2), ∀k ≥ 2.

(15)

Graph Isomorphism Network (GIN) defined in (Xu et al.,
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2019) has a single convolution support defined as follows:

C = A+ (1 + ε)I, (16)

where ε is a parameter that makes the support trainable. An-
other version named GIN-0 is also defined in the same paper
where ε = 0, which makes C = A + I . GIN proposes to
use a desired number of MLP after each graph convolution.
In our implementation, we use one MLP (C = I) after each
GIN graph convolution as described in (Xu et al., 2019).

Graph attention networks (GATs) in (Veličković et al.,
2018) proposes to transpose the attention mechanism from
(Vaswani et al., 2017) into the graph world by the way of
sparse attention instead of full attention in transformers.
GAT convolution support can be seen as weighted, self loop
added adjacency. It can be represented in Eq.(1) by defining
its trainable convolution supports as follows:(

C(l,s)
)
v,u

=
ev,u∑

k∈Ñ (v) ev,k
, (17)

where ev,u = exp
(
σ(a(l,s)[H

(l)
:v W (l,s)||H(l)

:u W (l,s)])
)
,

and a(l,s) is another trainable weight. Convolution support
will be calculated from node v to each element of Ñ (v),
which shows the self-connection added neighborhood. In
application of GAT, we use concatenation instead of sum in
Eq.(1) where the paper proposed both and there is slightly
empirical advantage to use concatenation.

All MPNN baselines start with a given node features H(0)

and provide the node representation of the next layer by
Eq.(1). After the last layer, we apply a graph readout
function which summarizes the learned node representa-
tion. Graph readout layer is followed by a desired number
of fully connected layers ended with a number of neuron
defined by targeted number of classes.

H.2. PPGN Baseline

PPGN (Maron et al., 2019a) starts the process with a 3-
dimensional input tensor where the adjacency, edge features
(if it exists) and diagonalized node features are stacked on
the 3rd dimension as:

H(0) = [A|E1| · · · |Ee|diag(X1)| · · · |diag(Xd)]. (18)

Here, X ∈ Rn×d gathers node features and Xi is its i-th
column vector, E ∈ Rn×n×e is edge features and Ei ∈
Rn×n is its i-th edge feature matrix, thus initial feature
tensor is H(0) ∈ Rn×n×(1+e+d).

One layer forward calculation of PPNN would be:

H(l+1) = m3

([
m1(H(l)) ◦m2(H(l))|H(l)

])
(19)

where m1,m2 : Rn×n×dinp → Rn×n×dmid and m3 :
Rn×n×dmid+dinp → Rn×n×dout are trainable models that

can be implemented by a one layer MLP followed by non-
linearity. dinp is the feature length on the 3rd dimension.
dmid, dout are the feature lengths which can be seen as
hyperparameters of the layer. Multiplication (◦) operates
between matching features and means 2d matrix multiplica-
tion for each slice which has n× n dimensions. | operator
is just the concatenation of two tensor on the 3rd dimension.
The output of the model would be:

Y =
∑
l=1

mlpl

(∑
diag(H(l)) |

∑
offdiag(H(l))

)
.

(20)

We assign a function which selects the diagonal of each
2d slices of tensor as diag : Rn×n×d → Rn×1×d and
function for selection the element out of the diagonal as
offdiag : Rn×n×d → Rn×(n−1)×d. We use the sum op-
erator which performs sum over the first 2 dimensions as∑

: Rd1×d2×d → Rd and a trainable model that may be im-
plemented by an MLP mlpl : R2d → Rdy , transforms the
given vector into the targeted output representation length.

The one can see that in each layer, PPNN keeps H(l) ∈
Rn×n×dl , thus its memory usage is inO(n2). Since there is
a matrix multiplication in Eq.(19), its computation complex-
ity is in O(n3) when using the naive matrix multiplication
operations. The PPNN paper mentioned that the computa-
tional complexity can be decreased by using effective matrix
multiplication, but it is the same for all algorithms as well.
For this reason, we think that taking the naive implementa-
tion into account makes more sense to do a fair comparison.
In addition, again because of matrix multiplication, its up-
date mechanism is not local. Because of calculation of the
u, v node pairs representation in Eq.(19), it needs to perform∑
kH

(l)
u,k.H

(l)
k,v. That means that for each pair of nodes, k

should be all nodes in the graph regardless how far away the
node k from the concerned nodes u, v. In other words, very
far away nodes feature affect the concerned node.

Even though PPNN (Maron et al., 2019a) is a very straight
forward algorithm and has provable 3-WL power, the ex-
perimental results reported in the papers are not at the state
of the art (Maron et al., 2019a; Dwivedi et al., 2020). We
believe that this can be at least partly explained by some
implementation problems. Indeed, it was implemented by
gathering same size graphs into batches in order to han-
dle graphs of different size in a dataset. So the batches do
not consist of randomly selected graphs in each epoch dur-
ing the training phase. In our implementation, we first
find the maximum size of the graph denoted as nmax.
Then, we create an initial tensor in Eq.(18) in dimension
of Rnmax×nmax×1+e+d where left top n × n × 1 + e + d
part of the tensor is valid, and the rest is zero. We also
keep the valid part of the tensor diagonal and out of diag-
onal part mask in M0,M1 ∈ {0, 1}nmax×nmax that shows
which element is valid in the diagonal and which element
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is valid out of the diagonal of the representation tensor.
Since some part of the tensor H(l) are not valid, we need
to prevent to assign value after application of trainable
model mk in Eq.(19), because it affects the matrix mul-
tiplication result. One solution may be to mask the MLP
result by M0 + M1. Finally, we implement Eq.(20) by
selection diagonal and off-diagonal element by previously
prepared mask matrices by

∑
diag(H(l)) =

∑
M0 �H(l)

and
∑

offdiag(H(l)) =
∑
M1 � H(l). By doing so, we

can put any graph into same batch. These principles have
been implemented as a class of the widely used open-source
pytorch geometric library.


