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Networks

Guillaume Rentona,∗, Muhammet Balcilara, Pierre Hérouxa, Benoit Gaüzèrea,
Paul Honeinea, Sébastien Adama

aLITIS Lab, Université de Rouen Normandie, 76100 Rouen, France

Abstract

In this paper, we propose a method to both extract and classify symbols in floorplan
images. This method relies on the very recent developments of Graph Neural Networks
(GNN). In the proposed approach, floorplan images are first converted into Region
Adjacency Graphs (RAGs). In order to achieve both classification and extraction, two
different GNNs are used. The first one aims at classifying each node of the graph while
the second targets the extraction of clusters corresponding to symbols. In both cases,
the model is able to take into account edge features. Each model is firstly evaluated
independently before combining both tasks simultaneously, increasing the quickness
of the results.

Keywords: Graph Neural Network, Graphs, Floorplans

1. Introduction

For a long time, the pattern recognition community has focused its contributions on
data encoded in Euclidean space, taking benefit of the numerous mathematical proper-
ties of grid-based representations in order to solve complex and challenging learning
problems. However, Euclidean spaces are not optimal to encode certain kinds of in-
formation when data contains structural information, such as molecular compounds,
networks, and complex patterns.

Floorplans produced by architects are an example of data that implicitly integrate
an underlying structural information. Each component of the plan can be connected
to other ones. For example, a table is inside a kitchen or a living room, a bed lies in
a bedroom, and living room and kitchen may be connected by a door, etc. Although
we can see this information in a floorplan image, it is not explicitly encoded inside.
However, many approaches that aim to analyse or understand floorplans or technical
drawings try to reconstruct and exploit this high level structural information as it was
initially encoded by CAD softwares [19, 21, 26].

∗Corresponding author:
Email address: guillaume.renton@univ-rouen.fr (Guillaume Renton)

Preprint published in Pattern Recognition Letters December 2021



Graphs are mathematical objects that are efficient to encode such structural infor-
mation. A graph G can be defined as a pair G = (V, E), with V defining a set of
elements called nodes. Two nodes vi and v j are said to be connected by an edge if
there exists a corresponding edge (vi, v j) in the set of edges E ⊂ V × V . Graphs can be
directed or undirected. An undirected graph is a graph where the order of nodes in the
pair forming the edge has no importance, meaning (vi, v j) = (v j, vi). The neighborhood
N(vi) of a node vi is the set of nodes connected to vi by an edge. Nodes and edges
can be attributed, meaning they can also carry information individually. If µ : V → Lv

is a function representing the information carried by nodes and ξ : E → Le is a func-
tion representing the information carried by edges, a graph can be redefined as a tuple
G = (V, E, µ, ξ). This data structure allows to encode topological relationships between
individual elements as well as features of both elements and binary relationships, such
as atom properties and covalency in molecule for example.

Using such representations, graph-based methods such as subgraph isomorphisms
or graph edit distance [8, 27, 30, 31, 20] have to be used to take decisions. Error-tolerant
subgraph isomorphism methods exploiting graph representations have been applied for
symbol symbol detection on floorplans [19, 21]. Unfortunately, those methods often
induce a complexity problem. Hence, even fundamental problems such as determining
if two graphs are similar are NP-Hard, which limits their use in real-world problems.
To overcome this drawback, many methods have been proposed to compute descrip-
tors from graphs, and then embed graphs into a Euclidean space in order to benefit
from state-of-the-art machine learning methods [36, 14, 6]. However, selecting and
computing these descriptors results in a loss of information with respect to the original
graph representation.

Nowadays, most efficient machine learning methods are based on neural networks.
These methods have broken many performance records by using deep architectures to
learn meaningful features from thousands of examples. Thus, deep neural networks
manage to be the state of the art on most of pattern recognition and computer vision
tasks. However, as for most of the machine learning frameworks, deep neural networks
have been for a long time restricted to Euclidean data such as vectors, matrices or
tensors (e.g. images). The connection between graph representation and deep learning
has recently became a challenge. This recent emergence has led to many Graph Neural
Networks (GNN) that bridge the gap between neural networks and graphs [13, 28,
22, 12, 5, 37, 35]. Those methods tackle the problem of dimension and permutation
invariance or equivariance through different ways, and are able to exploit the structural
information included within graphs.

In this paper, we propose a GNN based approach to address the task of identifying
the class and the location of different furniture symbols that appear frequently within
floorplans. The proposed approach firstly transforms images into graphs where nodes
represent parts of images and edges represent binary relationships between these parts.
This allows our prediction model to use the topological information around each furni-
ture symbol, and thus to include some contextual information during learning process.

In the symbol detection problem, there may be several occurrences of the same
symbol in one image. Moreover, different classes of symbols can be requested. We
then decide to tackle this problem with a two-step strategy. The first step is used to
classify nodes in the graph, according to the different classes of symbols. In a previous
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paper [25], we already considered this task by using a state of the art approach . Here,
we extend this first contribution by proposing a new model. The second step is used to
group nodes into clusters with the aim that clusters are made of nodes representing the
different parts of a symbol occurrence. As a consequence, this work can be seen as a
first attempt to solve a multi-subgraph isomorphism problem using a GNN.

This paper is structured as follows. First, we review in Section 2 different neu-
ral network architectures proposed to process graphs within a classification scheme.
Second, Section 3 details our contributions. It first describes how we build graph rep-
resentations from floorplan images. Then, it presents a new GNN method able to take
into account edge features and its application for both the classification and the clus-
tering task. Section 4 details our experiments on ILPIso dataset. Results show that
the proposed model performs similarly to state-of-the-art method using edge features,
while being more robust to noise.

2. Related works

Historically, Graph Neural Networks (GNN) have been firstly theorised by [13]
and extended by [28]. In those papers, each node has a state, and this state is updated
iteratively by aggregating information contained in the node own labelling, its neigh-
borhood labelling and the labelling of the edges linking the node to its neighborhood
according to

ht+1
v = f (lv, lN(v), ht

v, eN(v)), (1)

where hv is the hidden state of the node v, lv encodes the labelling of node v, evw is
the edge between node v and node w, lvw represents the attributes of edge vw, N(v)
corresponds to the neighborhood of v, and thus lN(v) and eN(v) encode respectively the
nodes and edges attributes of v’s neighborhood. In this equation, f defines an arbitrary
function. Finally, a decision ov is taken for each node v as follows:

ov = g(ht
v, lv), (2)

where g is an arbitrary function of the final node state ht
v and the original node label lv.

Figure 1 shows an example of how a node is updated depending on its neighborhood.
In GNN, both functions f and g are generally defined as neural networks.

Recently, [12] proposed a general framework called Message Passing Neural Net-
work (MPNN) where a message mt+1

v is computed through the following equation:

mt+1
v =

∑
w∈N(v)

Mt(ht
v, h

t
w, evw), (3)

with Mt being an arbitrary function and evw the edge features between node v and node
w. In MPNNs, the hidden state of each node is updated depending on an arbitrary
function Ut, which takes as input the actual node state and the computed message:

ht+1
v = Ut(ht

v,m
t+1
v ). (4)

It is shown in [12] that this model generalises multiple models, such as [10, 22, 4, 17,
29]
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Figure 1: Example of how the hidden state of a node is updated depending on its neighborhood. On the left
is the original graph. On the right, the hidden state of node v2 is updated depending on its neighborhood
v1, v3, v4, v5, and the edges between v2 and its neighbor (in bold).

Even more recently, [3] shows that most of existing GNNs, including spectral ones,
are MPNNs. It thus proposes a general model which also includes these spectral GNNs
(see Table 1 in [3]). The proposed general form is given by

H(t+1) = σ
(∑

s

C(s)H(t)W (t,s)
)
, (5)

where C(s) ∈ Rn×n is the s-th convolution support that defines how the node features
are propagated to the neighboring nodes and W (l,s) ∈ R fl× fl+1 is the trainable matrix for
the l-th layer and s-th support. With this notation, t can be seen as a layer index instead
of an epoch number in [12].

Using such a model, the main question is the definition of the convolution kernels
C(s). A natural method, named Vanilla ConvGNN, uses only one kernel defined by
C = A+ I where A denotes the adjacency matrix of the graph and I the identity matrix.
[10] used two convolution kernels defined by C(1) = A and C(2) = I to split the weights
applied to own node features and the weights applied to neighborhood features. They
also proposed to create C(s) convolution kernels by defining subset of adjacency matrix
according to node types if it is given. [24] proposed to find cardinal reordering of each
node neighborhood and create C(s) which shows the connection between the concerned
node and its s-th order neighbor.

[9] proposed to use Chebyshev kernels in ConvGNN where it was shown that all
spectral filters on graph can be written by weighted sum of these kernels in [16]. Ac-
cording to [9], the first two Chebyshev kernels are C(1) = I and C(2) = 2L/λmax − I and
the remaining kernels are defined by

C(k) = 2C(2)C(k−1) −C(k−2), (6)

where L is the graph Laplacian and λmax is the maximum eigenvalue of the graph
Laplacian. One major simplification of the previous Chebyshev kernels, named Graph
Convolution Network (GCN) is proposed in [18]. Their single convolution matrix is
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defined by:
C = D̃−1/2ÃD̃−1/2, (7)

where D̃i,i =
∑

j Ãi,i and Ã = (A+I) is the adjacency matrix with added self-connections.
So far, those methods use fixed convolution kernels and cannot use edge features.

There are also some other methods that use trainable convolution kernels in order to
make the convolutions more productive such as graph attention networks [34, 15]. The
attention mechanism tunes each element of the convolution kernel by a function of
connected nodes and/or edge features and some trainable parameters W (s)

AT by

C(s)
i, j = f

(
ht

i, h
t
j, ei j,W

(s)
AT

)
. (8)

Graph Attention Network (GAT) creates convolution kernels by the concatenation of
feature vectors of connected nodes [34].

3. Proposed approach

3.1. From images to graphs
Region Adjacency Graphs (RAGs) are well suited to encode symbols and technical

drawings since they allow to model the adjacency relationships between the regions
extracted by a segmentation process. Working on technical documents, the digital im-
ages are mainly binary images where white components correspond to the background
and black components to drawings. Segmenting such kind of images can be achieved
using component labelling [7]. However, aiming at finely modelling adjacency rela-
tionship between two regions, a binary image can be firstly thinned [2]. The obtained
image is then morphologically the same than the initial image of the document but the
thickness of the drawing components is reduced to a single pixel. Using this image,
each white component is mapped to a node of the graph. Then, the skeleton branches
represent frontiers and adjacency relationships between two regions. An edge is then
built between two nodes representing regions separated by a skeleton branch.

To enrich such a description, attributes have to be assigned to each node and edge.
Many features have been proposed to characterize shapes and spatial relations [33].
Among them, Zernike Moments (ZM) [32] yield interesting results for pattern recog-
nition tasks when invariance to affine transforms and robustness to degradations are
required. Hence, a feature vector corresponding to a set of ZM is assigned to each
vertex in order to characterize shapes. Attribute of an edge connecting two adjacent
regions (source and target) is defined by the relative distance between their gravity
centers, computed with respect to the overall area of the two regions:

esource,target =
de(gsource, gtarget)√

Area(source) + Area(target)
, (9)

where de denotes the Euclidean distance between gravity centers.
We finally define a graph-based representation G = (V, E, µ, ξ) of a document where

V encodes the white connected components (regions) and E corresponds to adjacency
relationships between regions. Labelling function on nodes µ : V → R24 encodes the
morphology of each region according to its ZM and labelling function ξ : E → R
expresses the geometrical properties of an adjacency relationship, as defined in Equa-
tion 9.
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(a) Initial image (b) Skeleton image of (a)

(c) Components labels of (b) (d) Corresponding RAG

Figure 2: From initial image to Region Adjacency Graph.

3.2. Node classification

As stated in the introduction, our method relies on the recent graph neural network
developments. In Section 2, we presented a general model of a GNN. In this subsection,
we focus our definition on the particular GNN we use.

As said before, one of the simplest GNN expressed with a tensor notation is given
by:

Ht+1 = σ((A + I) · Ht ·W), (10)

where a node and its neighborhood are updated independently with the W correspond-
ing to a neural network.

With Equation 10 no difference is made between the central node and its neighbor-
hood. For example, in Figure 3, the simplest GNN will update the node v similarly in
both cases, while intuitively, one would probably update them in a different way.

To tackle this limitation, one solution is to use two different neural networks, one
for the central node, and another one for the neighborhood. This can be obtained by
modifying Equation 10 to get

Ht+1 = σ(I · Ht ·W0 + A · Ht ·W1). (11)

This last equation defines our general model. However, it does not exploit edge at-
tributes. For this case, one common way is to use the Edge Network (EN) model
proposed by [12], defined as:
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Figure 3: During the hidden state update of vertex v, the simplest GNN that considers the central node
the same way as neighboring node cannot distinguish Case 1 and Case 2 since this update is based on 3
orange nodes and 1 green node in both cases. These two cases can be distinguished when the central node is
considered differently from the neighboring nodes

Ht+1 = σ(I · Ht ·W0 + Ht ·W1 · ReLu(AE ·WA)), (12)

where AE ∈ RN×N×|ξ| is the tensor of edge features and WA is a neural network
applied to the edges attributes which computes a fn × fn matrix, where fn is the number
of hidden cells computed by W0 and W1.

However, this model presents multiple drawbacks. First, the shape of WA is im-
posed by fn. Second, WA requires f 2

n parameters, which greatly increases the number
of parameters required by the model. Finally, this model computes tensors of shape
N × N × fn × fn, which induces a huge spatial complexity.

In order to overcome those drawbacks, we propose a new model able to take into
account edge features. In this new model, edge features vectors are embedded into a
new space of fe dimensions, where fe is an hyperparameter. A new diffusion matrix
C ∈ RN×N× fe is computed as follows

C = ReLU(AWA) (13)

We call this new model Edge Embedding (EE). Following the general model defined
by [3], this matrix is then used to update the nodes hidden states H using the following
update rule:

H(l+1) = σ
( fe∑

i=0

C(i)HlW (l,i)
)

(14)

Our EE model can also be defined using the general framework defined as a combina-
tion of update and aggregate functions by [15]. Following this general framework, we
can define our aggregate function as :

hl
N(vi) =

∑
v j∈N(vi)

Ci, jhl−1
v j

W (l,i) (15)
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Figure 4: Example of the output matrix and its representation over the image

The update function can then simply be defined following :

hl
vi
= σ(hl

N(vi) + hl−1
vi

W l,i) (16)

In our experiments, models defined by Equations 11, 12 and 14 are tested.

3.3. Graph clustering

The second step of our model is the symbol detection part. There are several ways
to consider symbol detection. For example, it can be considered as an object detection
problem. In the proposed approach, we explore the symbol detection problem under
the spectrum of pairwise classification [1].

In [11], one of the studied methods consists in computing pairwise predictions to
decide if two elements belong or not to the same cluster. Therefore, our approach aims
to predict a N × N binary matrix M for a graph having N nodes. M is a symmetric
matrix, with M(i, j) equals to 1 if nodes vi and v j represent parts belonging to the same
symbol occurrence, and 0 otherwise. The matrix construction is shown in Equation
17, where S denotes the set of symbols in the graph, and S (k) one particular symbol.
Such a matrix can be seen as the adjacency matrix of a disconnected graph, where
each connected component of the graph correspond to a symbol. The symbols are then
represented by the different connected parts of the whole graph, each of them being a
clique. Figure 4 shows an example of a desired output, and its interpretation over the
input image.

M(i, j) =

1, if (vi, v j) ∈ S (k)
0, otherwise

(17)
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Figure 5: Symbol models

4. Experiments

4.1. Dataset presentation
To evaluate our models, we experiment them on the ILPIso dataset, a dataset made

of 200 floorplans (see Figure ?? for an example). We apply the RAG transformation
strategy to each floorplan image, thus leading to 200 graphs. This process results in a
total of 24 281 nodes and 105 110 edges, with 121 nodes and 525 edges per graph on
average. Nodes and edges are labelled according to Section 3.1.

For the classification task, each node is associated to one of the 17 classes corre-
sponding to the different objects in original floorplan images. These 17 classes corre-
spond to the 16 symbol types (Figure 5), plus a dummy class associated to nodes which
are not associated to any symbol.

For the clustering task, each pair of nodes is classified either as 1, if end nodes
represent image parts belonging to the same symbol occurrence, or 0 otherwise. A
pair made of twice the same node is classified as one if this node is a part of a symbol
occurrence, and 0 otherwise.

4.2. Classification task
In this section, we focus on the classification problem of nodes into the 16 symbols

described previously.

4.2.1. Evaluated models for classification
For the classification task, we evaluated 4 different models. The first model is a

neural network that aims at classifying each node using only its own features, and then
discarding all information encoded within the graph representation. This model serves
as a baseline in order to measure the information brought by the structural information
for node classification. It is made of three dense layers, with the third one used for
decision.

The second model is a Graph Neural Network (GNN) made of three layers. Simi-
larly to the baseline, the third layer is used for decision. With this model, we are only
able to use the existence of an edge between a pair of nodes, but not the label associated
to this edge.

The third and fourth experimented models use respectively the Edge Network (EN)
and the Edge Embedding (EE) defined in Section 3.2. Those models use both the
existence of an edge and its label.

In order to make a fair comparison of the four models, we make them as similar as
possible. Thus, both the neural networks of the baseline and the three GNN produce
200 features for each node. For our edge embedding model, we studied 4 different
values for fe: 2, 4 , 8 and 16. Since fe = 8 obtained the best results on validation and
test, in each experiment, we only show results for this value.
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Table 1: Results obtained (in percentage of accuracy of nodes classification) by the different experimented
models.

Model Gaussian Noise Variance
0.0 0.05 0.1 0.2

MLP 95.57 ± 0.83 60.37 ± 1.82 39.99 ± 0.98 23.54 ± 0.79
GNN 99.54 ± 0.17 99.27 ± 0.30 96.36 ± 0.82 79.67 ± 3.03
EN 99.67 ± 0.12 99.54 ± 0.18 98.19 ± 0.36 85.77 ± 1.94
EE 99.64 ± 0.12 99.53 ± 0.17 98.08 ± 0.57 88.33± 2.16

4.2.2. Experimental protocol for classification task
In this section, we describe the protocol used to conduct the experiment for the

classification task. First, the 200 graphs are randomly divided into 3 sets. 160 graphs
are used for training, 20 for validation and 20 for test. Node and edge attributes are
normalized to have a value either between 0 and 1 or -1 and 1, depending on the min-
imum value of the attribute. Each model is then trained using the Adam optimizer
with an initial learning rate of 5.10−3. Each model is trained for 100 epochs using the
crossentropy loss and the best model in validation is used for test. In order to evaluate
the robustness of each model, a Gaussian noise is added on the node features for the
test dataset. This allows to evaluate the models behavior when test data are slightly
different from training and validation data. We ran those experiments using a 10-fold
cross-validation in order to limit split bias. Mean and standard deviation of accuracy
for each model are reported in Table 1.

As one can see, results for GNN, EN and EE are pretty similar and close to 100%,
widely increasing results obtained by the base model. However, adding noise allows
to show disparities between the different models. Indeed, EN and EE models perform
better than GNN when noise is added. Moreover, when Gaussian noise variance is set
to 0.2, our model EE obtains better result than EN.

4.3. Clustering task

In this section, we focus on the task of clustering nodes into subgraphs correspond-
ing to symbol occurrences.

4.3.1. Evaluated models for clustering
For the clustering task, we also compare the 4 different models described in Section

4.2.1. First model consists of 2 dense layers. A tensor P ∈ RN×N× fn∗2 is then computed,
where P(i, j, :) is the concatenation of hidden state vector ht

i of node vi and hidden state
vector ht

j of node v j Finally, a dense layer takes the decision whether the pair of nodes
vi and v j belong to the same cluster or not. This model does not use any topological
information.

The second evaluated model is composed of 2 GNN layers. The output node states
are then used to compute a tensor related to node pairs. A dense layer whose architec-
ture is similar to the one used in the first model finally predicts whether the nodes of
the pair belongs to the same cluster (symbol occurrence) or not.
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Table 2: Results obtained following the previous metric by the different experimented models.

Model Gaussian Noise Variance
0.0 0.05 0.1 0.2

MLP 45.65 ± 4.51 0.46 ± 0.32 0.0 ± 0.0 0.0 ± 0.0
GNN 90.13 ± 1.28 75.12 ± 4.37 44.22 ± 4.57 17.18 ± 3.62
EN 92.59 ± 1.02 76.54 ± 2.00 39.88 ± 3.25 12.31 ± 1.81
EE 92.22 ± 1.11 79.63 ± 3.03 49.72 ± 5.15 21.21 ± 2.71

Finally, the third and fourth model are similar to the second except that they also
uses either the edge network model or the edge embedding model, in order to take into
account edge features during the hidden state computation.

4.3.2. Experimental protocol for clustering task
In this section, we describe the protocol used to conduct the experiment for the

clustering task. Similarly to the previous experiment, the 200 graphs are randomly
divided into 3 sets following the same protocol. Node and edge attributes are also
normalized in the same way than before, and we keep using the Adam optimizer with
an initial learning rate of 5.10−3. The model is trained for 300 epochs. To tackle the
huge class imbalance, the focal loss is used [23], with γ = 2 and α = 0.3, where α is a
weights both classes (class 0 is weighted by α and class 1 is weighted by (1−α)) and γ is
an hyperparameter that controls the contribution of each sample in the loss computation
depending on how hard is the sample to be classified. A hard sample correctly classified
will thus have more importance than an easy sample correctly classified. α = 0.3 allows
us to weights the class 0, which is over-represented, with a lower weight than the class
1, which is under-represented. γ = 2 is a standard value for focal loss. The evaluated
metric is the ratio of symbols detected. We define a symbol as detected as a connected
component of the graph consisting of all the nodes describing a symbol occurrence and
that does not contain any extra node. Results obtained are given in Table 2.

Results show that integrating edge features definitively improves the symbol de-
tection when no noise is added. This seems to show that edge features carry new
information that help the models in decision, compared to GNN that only rely on struc-
tural information. The same result occurs with a Gaussian noise of variance equal to
0.5. However, in the case of EN, those results drop quickly and obtain worst results
with Gaussian noise variance above 0.1. This could be explained by the huge number
of parameters of EN, preventing the model to generalize on few noisy data. The poor
results obtained by the different models can be explained by two arguments. First, the
edge prediction task is a very imbalanced task. Most of the pairs of nodes do not belong
to the same symbol, leading to more than 96% of pairs that are labeled as 0. Second,
the importance of the noise. Since each feature is normalized, adding a Gaussian noise
of variance 0.2 leads to important noising.

4.4. Experimental protocol for combination of both classification and clustering
In this last experiment, we examine the effect of combining both clustering and

classification in the same model. Again, the same four models that were presented in
Section 4.2.1 are compared.
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Table 3: Results obtained by the different experimented models using the symbol detection accuracy.

Model Gaussian Noise Variance
0.0 0.05 0.1 0.2

MLP 40.69 ± 3.19 1.04 ± 0.46 0.08 ± 0.10 0.0 ± 0.0
GNN 86.30 ± 2.31 66.09 ± 3.12 37.51 ± 2.55 12.42 ± 1.48
EN 90.99 ± 0.64 75.29 ± 2.65 37.64 ± 4.29 12.10 ± 1.66
EE 87.22 ± 1.74 70.88 ± 2.53 41.00 ± 3.37 14.22 ± 3.02

The network is trained for 300 epochs, with a combination of both standard crossen-
tropy and focal loss. The computed loss is thus the mean of both losses. The computed
metric is the ratio of symbols detected, where a symbol is considered as detected as a
connected component of the graph consisting of all the nodes correctly classified de-
scribing a symbol occurrence and that does not contain any extra node. This task is
thus harder than before, due to the node classification condition. Results are shown in
Table 3.

Conclusions drawn from these results are similar to the previous ones: EN obtained
best results but are not robust to noise. Conversely, our method performs below EN
with unnoised data, but performs much better with noised data, the gap increasing with
the noise.

A fair comparison with the results given by subgraph isomorphism methods that are
not based on machine learning reported in [19, 21] is not easy for several reasons. Even
if those methods are evaluated on the same dataset, the reported results are expressed
with the precision-recall metrics when a symbol is considered as detected when half
of the graph nodes are correctly matched. The method described in [21] which is an
improvement of the one of [19] achieves an F1-score between 0.95 and 1.0 according
to the value of an hyperparameter. In our experiment we consider the accuracy measure
with a correct detection when all the nodes describing a symbol occurrence are found
without any extra node. Our criterion is more stringent. The noise model applied to
evaluate the method is also different. Besides, the experimental evaluation conducted in
[21] has been limited to the search of 13 among the 16 symbols that can be represented
by connected graphs whereas our proposition is able to handle symbols described with
disconnected graphs.

Methods based on subgraph isomorphism such as those described in [21] do not
need any training step. As a consequence, a new symbol can be directly used as a
query, whereas methods based on machine learning such as our proposition need the
knowledge of these symbols at the training step. On the other hand, machine learning
based methods operate in polynomial time whereas traditional graph matching methods
have an exponential complexity and can be intractable for large graphs.

5. Conclusion

In this paper, a new approach for floorplans segmentation is proposed. Floorplans
images are firstly transformed into Region Adjacency Graph by the approach. Graph
Neural Network are then applied on those graphs to take two different decisions: one
decision for node classification, and another for clustering.
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We compared three different models of graph neural network with a baseline who
does not use structural information. Each GNN models present great results for each
task, largely improving result obtained with the baseline model. Moreover, the baseline
model was not able to predict a satisfactory output for the clustering task, providing
cliques that do not correspond to symbols.

Even imperfect, we argue that these results provide a first empirical evidence that
machine learning can be used to solve a subgraph isomorphism problem when learning
data are available.

Future work will consider using graph pooling strategy to compute a new graph
where a node corresponds to a whole symbol. Another perspective would be to use
Siamese networks to detect a single symbol specified in input.
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