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ABSTRACT
Graph kernels are powerful tools to bridge the gap between machine learning and data e
graphs. Most graph kernels are based on the decomposition of graphs into a set of patterns.
ilarity between two graphs is then deduced to the similarity between corresponding patterns
based on linear patterns constitute a good trade-off between accuracy and computational co
In this work, we propose a thorough investigation and comparison of graph kernels based on
linear patterns, namely walks and paths. First, all these kernels are explored in detail, inclu
mathematical foundations, structures of patterns and computational complexity. After th
iments are performed on various benchmark datasets exhibiting different types of graphs,
labeled and unlabeled graphs, graphs with different numbers of vertices, graphs with differe
vertex degrees, linear and non-linear graphs. Finally, for regression and classification tasks
and computational complexity of these kernels are compared and analyzed, in the light o
kernels based on non-linear patterns. Suggestions are proposed to choose kernels accord
types of graph datasets. This work leads to a clear comparison of strengths and weaknesse
kernels. An open-source Python library containing an implementation of all discussed kern
licly available on GitHub to the community, thus allowing to promote and facilitate the use
kernels in machine learning problems.

oduction
ine learning algorithms have been conventionally
n vector spaces, allowing to take advantage of the
in linear algebra operations. However, it is chal-
to vectorize many data types due to their complex
s. Graphs are able to model a wide range of real-
ta, by encoding elements as well as the relation-
een them. Due to these properties, graph repre-
has broad applications in wide domains, such as
D image analysis, document processing, bioinfor-
hemoinformatics, web data mining, etc., where it
tructures such as molecules, social networks, and
sition (Conte, Foggia, Sansone and Vento, 2004).
natural to raise the problem of applying machine
methods for graph data, in order to unleash the
these two powerful tools. To achieve this goal, it

ial to represent the graph structure in forms that are
e accepted by most popular machine learning meth-
out losing considerable informationwhile encoding
s. Whenmachine learning algorithms rely on (dis-)
y measures between data, the problem boils down to
g the similarity between graphs. Graph similarity
s can be roughly grouped in two major categories:
ilarity and inexact similarity (Conte et al., 2004).
er requires a strict correspondence between the
hs being matched or between their subparts, such
isomorphism and subgraph isomorphism (Kobler,
and Torán, 2012). Unfortunately, the exact simi-

esponding author
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Figure 1: Illustrative comparison between graph em
and kernels, for two arbitrary graphs G and G′. Throug
embedding, the two graphs are represented by two ve
and X′. By kernels, the two graphs are implicitly em
by a function Φ(⋅) into a Hilbert space , yielding
and Φ(G′); moreover, their inner product ⟨Φ(G),Φ
easily computed using a kernel function k(G,G′).

larity cannot be computed in polynomial time by thes
ods; hence it is not practical for real-world data.

Inexact similarity measures are commonly app
graphs, in which category graph embedding and gra
nels lie. These strategies consist in embedding the
into a space where computations can be easily carr
such as combining embedded graphs or performing
fication or regression task.

Graph embedding explicitly computes vectors
code some information of the graphs; while kerne
an implicit embedding by representing graphs in a p
infinite-dimension feature space which relaxes the
tions on the encoded information. The two strategie
lustrated in Figure 1. Indeed, as generalizations of th
inner product, kernels are natural similarity measu
D(s): 0000-0002-3834-1498 (L. Jia)
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: Different types of graph patterns. G1, G2, G3 are
of linear patterns, non-linear (acyclic) patterns and

tterns, respectively.

ta, expressed as inner products between elements
feature space. By employing the kernel trick, one
uate the inner products in the feature space with-
icitly describing each representation in that space.
have been widely applied in machine learning, with
wn popular methods, such as Support Vector Ma-
herefore, defining kernels between graphs is a pow-
ign to bridge the gap between machine learning and
oded as graphs.
n comparing graphs and analyzing their properties,
arity principle has been widely investigated (John-
Maggiora, 1990). It states that molecules having
mon substructures turn to have more similar prop-

his principle can be generalized to other fieldswhere
odeled as graphs. It provides a theoretical support
uct graph kernels by studying graphs’ substructures,
e also referred to as patterns. There are three major
patterns, as illustrated byG1,G2 andG3 in Figure 2.t fundamental patterns are linear patterns, which
osed of sequences of vertices connected by edges.
, when a substructure contains vertices that have
n two neighbors, linear patterns are insufficient to
ly describe the structure. This is where non-linear
become useful, with either non-linear (acyclic) pat-
cyclic patterns, which contain cycles.
ite that non-linear patterns may encode more com-
ctural information than linear ones, the latter are of
erest. Linear patterns require lower computational
ity than non-linear patterns in some occasions. Nev-
, non-linear patterns normally include or imply the
es. For example, the treelet pattern is non-linear as
while treelets whose maximal size is less than 4
r (Gaüzere, Brun and Villemin, 2012). Moreover,
e intractable to compute non-linear or cyclic based
n large graphs. Therefore in this article, we focus
ing and comparing graph kernels based on different
tterns.
ear pattern is defined as a walk or a path. A walk is
ating sequence of vertices and connecting edges; A
walk without repeated vertices. Kernels based on
oposed include the common walk kernel (Gärtner,
dWrobel, 2003), the marginalized kernel (Kashima,
d Inokuchi, 2003) and the generalized randomwalk
ishwanathan, Schraudolph, Kondor and Borgwardt
eanwhile, the shortest path kernel (Borgwardt and
2005), the structural shortest path kernel (Suard,
amonjy andBensrhair, 2007) and the path kernel up
ℎ (Ralaivola, Swamidass, Saigo and Baldi, 2005)

are constructed based on paths, which are relieved fr
facts brought by walks due to tottering and halting (s
tion 3.1.4). More recently, many developments ha
carried out to enhance these graph kernels (Aziz, Wil
Hancock, 2013; Xu, Wang, Alvarez, Cavazos and
2014; Sugiyama and Borgwardt, 2015).

The main contributions of this article are studyin
kernels based on linear patterns, with an emphasis
aforementioned kernels, and comparing them theo
and experimentally. Among them, the generalized
walk kernel is split into four different kernels due to t
puting methods they use. Considering the theoret
pects, we examine their mathematical expressions w
nections between them, and their computational co
ties, as well as the strengths and weaknesses of each
In the exhaustive experimental analysis conducted
paper, each kernel is applied on various datasets ex
different types of graphs, and a thorough performan
ysis is made considering both accuracy and compu
time. This rigorous examination allows to provide
tions to choose kernels according to the type of gra
at hand. Finally, all the implementations are public
able as an open-source Python library on GitHub1. I
brary, every kernel is able to tackle different types of
and several computation methods are provided for
Moreover, we propose several advanced methods to
the computational complexity of the implemented gr
nels, by both accelerating computation and reducing
requirements.

The paper is organized as follows: Section 2 int
preliminaries for graph and kernels in machine le
Section 3 presents detailed discussions on each gra
nel. Experiments and analyses are performed in Se
Finally, Section 5 concludes this work.

2. Preliminaries
2.1. Basic concepts of graph theory

In the following, we define notations that will be
this paper. For more details, we refer interested re
(West et al., 2001). First, we clarify definitions of d
types of graphs. Figure 3 shows types of graphs me
below. Let | ⋅ | denote the cardinality of a set, nam
number of its elements. The indicator function 1A
{0, 1} is defined as 1A(x) = 1 if x ∈ A, and 0 otherw

A graph G is defined by an ordered pair of disjo
(V ,E) such that V corresponds to a finite set of vert
E ⊂ V ×V corresponds to a set of edges. u is adjacen
(u, v) ∈ E. We denote the number of graph vertices a
n = |V |, and the number of graph edges as m, i.e., m
A labeled graphG is a graph that has additionally a s
belsL along with a labeling function l that assigns a
each edge and/or vertex. In edge-labeled graphs, the
function le ∶ E → L assigns labels to edges only; in
labeled graphs, the labeling function lv ∶ V → L
labels to vertices only; in fully-labeled graphs, the

1
The GitHub link is https://github.com/jajupmochi/py-graph.
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abeled graph

undirected graph directed graph

edge-labeled graphvertex-labeled graph

: The different types of graphs. In vertex- and edge-
raphs, vertices and edges with different labels are dis-
d by color in the figure.

lf ∶ V ∪ E → L assigns labels to both vertices
s. Unlabeled graphs have no such labeling function.
an be either symbolic or non-symbolic, for vertices
ges. A symbolic label is a discrete symbol, such as
of atoms or chemical bonds; a non-symbolic label is
ous value. Due to this difference, symbolic labels
dered equal as long as they are the same and unequal
e (namely the Kronecker delta function; see below),
n-symbolic labels are compared by continuousmea-
r instance, the Gaussian kernel (see below). Both
and non-symbolic labels can be one-dimensional
dimensional vectors. A label is also referred to as
ute.
similarity measures are used between labeled ver-
edges: Kronecker delta function for symbolic la-
Gaussian kernel for non-symbolic labels. The Kro-
elta function between two labels li and lj is defined
lj) = 1 if li = lj , and 0 otherwise. For the sake
eness, it is denoted as the delta function �lilj . Thekernel between labels li and lj of L is defined as
= exp

(
− ‖li−lj‖2

2�2

)
, where � is the tunable band-

rameter.
rected graph is a graph whose edges are directed
e vertex to another, where the edge set E consists
d pairs of vertices (u, v). An ordered pair (u, v) is
e an edge directed from u to v, namely an edge be-
at u and ending at v. In contrast, a graph where the
e bidirectional is called an undirected graph, i.e., if
E, then (v, u) ∈ E.
h substructures, such as walks, paths and cycles, al-
escribe graphs, thus providing elegant ways to con-
aph kernels. The concepts of the adjacency matrix,
s and degrees of vertices are fundamental for build-
kernels. In a graphG = (V ,E), a neighbor of a ver-
V is a vertex u that meets the condition (u, v) ∈ E.
ndirected, the degree of a vertex v ∈ V is the num-
ese neighbors, namely |{u ∈ V | (u, v) ∈ E}|; if G
d, then |{u− ∈ V | (u−, v) ∈ E}| is called the inde-
ertex v, |{u+ ∈ V | (v, u+) ∈ E}| is the outdegree
the degree of v is the sum of its indegree and out-

vertex degree of all its vertices. The adjacency matr
n-vertex graph G = (V ,E) is an n × n matrix A(G)
where aij = 1E((vi, vj)), namely aij = 1 if (vi, vand 0 otherwise. For a graph G = (V ,E), a walk o
ℎ is a sequence of vertices W = (v1, v2,… , vℎ+1
(vi, vi+1) ∈ E for any i ∈ {1, 2,… , ℎ}. The length o
W is defined as its number of edges ℎ. If each vertex
only once inW , thenW is a path. A walk with v1 =called a cycle. Note that when ℎ = 0, a walk or path
gle vertexwithout edges. The (contiguous) label sequ
a length ℎwalk/pathW of a fully-labeled graph is de
s = (lv(v1),le((v1, v2)),lv(v2),le((v2, v3)),… ,lvFor a vertex-labeled or edge-labeled graph, the l
quence of W is constructed by removing all edg
le((vi, vj)) or vertex labels lv(vi) in s, respectively.
2.2. Kernel methods

In this section, formal definitions of a kernel an
matrix are first introduced. Then the kernel trick is pr
to show its ability of evaluating inner products in so
ture space. To this end, two classical kernel based m
learning methods are presented next, kernel ridge
sion and support vector machines for classification,
plied in this paper to assess the relevance of grap
more details on kernel methods, we refer intereste
ers to (Shawe-Taylor and Cristianini, 2004; Schölk
Smola, 2002). Let  denotes the input space.
Definition 1 (positive semi-definite kernel). A
semi-definite kernel defined on  is a symmetri
ear function k ∶ 2 → ℝ that fulfills the co∑n
i=1

∑n
j=1 ci cj k(xi, xj) ≥ 0, for all x1,… , xn ∈

c1,… , cn ∈ ℝ.

Positive semi-definite kernels have some gener
erties. Of particular interest, the products and
weighted with non-negative coefficients, of a set of
semi-definite kernels are also positive semi-definite
Moreover, any limit limn→∞ kn of a sequence of
semi-definite kernels kn is also a positive semi-defin
nel (Schölkopf and Smola, 2002). These properties
ful for constructing graph kernels The first one is app
all six graph kernels discussed in this paper, and the
one for the common walk kernel and the generalized
walk kernel.

Mercer’s theorem states that any positive semi-
kernel corresponds to an inner product in someHilbe
(Mercer, 1909), namely for all (xi, xj) ∈ 2:

k(xi, xj) = ⟨Φ(xi),Φ(xj)⟩ ,
whereΦ ∶  →  is an embedding function. The
semi-definiteness of the kernel is a sufficient cond
the existence of this function. For the sake of conc
positive semi-definite kernels are simply denoted as
in this paper.

Kernel based methods in machine learning take
tage of Mercer’s theorem, in order to transform conv
he degree of the graph, denoted by d, is the largest

et al.: Preprint submitted to Elsevier Page 3 of 16
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odels into non-linear ones, by replacing classical in-
ucts between data with a non-linear kernel. LetX =
… , xN} be the finite dataset of N samples avail-
training the machine learning method, with associ-
labels {y1, y2,… , yN} where yi ∈ {−1,+1} for

lassification and yi ∈ ℝ for regression (extensions
lass classification and vector output is straightfor-
oneine, Noumir and Richard, 2013)). It turns out
does not need access to the raw dataX, but only the
n of the kernel on all pairs of the data, namely the
atrix K is sufficient. A Gram matrix K associated
el k for a training setX is anN ×N matrix defined
k(xi, xj), for all (xi, xj) ∈ 2.
el-basedmachine learning relies on regularized cost
s, namely argmin ∈ ∑N

i=1 c(yi,  (xi)) + � ‖ ‖2,cost function c and positive regularization param-
The generalized representer theorem (Schölkopf,
and Smola, 2001) states that the optimal solu-
the form  (x) =

∑N
i=1 !i k(xi, x), where k is

el inducing the Hilbert space . The coefficients
obtained using the Gram matrix. For example,
el ridge regression corresponds to the square loss
i)) = (yi −  (xi))2, which leads to [!1…!N ]⊤
�I)−1[y1… yN ]⊤ (Murphy, 2012). Support Vec-
ines (SVM) for classification considers the hinge
,  (xi)) = max(0, 1 − yi (xi)), and the optimal co-
are efficiently obtained by quadratic programming
s (Boser, Guyon and Vapnik, 1992).
el-based methods provide an elegant and powerful
rk in machine learning for any input space, without
to exhibit the data or optimize in that space, as long
an define a kernel on it. Besides conventional ker-
as the Gaussian kernel for vector spaces, kernels

ngineered by combining other valid kernels, using
or multiplicative rules. Of particular interest in ker-
eering areR-convolution kernels (Haussler, 1999),
rovide the foundation of kernels based on bags of
and can be regarded as the cornerstones to engineer
rnels using graph patterns.
ttern-based kernels
nvolution kernels propose a way to mea-
ilarity between two objects by measuring
ilarities between their substructures (Haus-
99). Suppose each sample xi ∈  has a
te structure, namely described by its “parts”
… , xiD) ∈ 1×2×⋯×D, for some positive in-
Since multiple decompositions could exist, letR(x)
all possible decompositions of x, namely R(x) =
× 2 ×⋯ × D ||| x is a decomposition of x

}
.

h decomposition space d , let kd be a kernel
on this space to measure the similarity on the
t. Then, a generalized convolution kernel, called
lution kernel, between any two samples xi and xj

from  is defined as:

k(xi, xj) =
∑

(xi1,…,xiD)∈R(xi)
(xj1,…,xjD)∈R(xj )

D∏
d=1

kd(xid , xjd).

By simply changing the decomposition, many
ent kernels can be obtained from the R-convolution
When it comes to graphs, it is natural to decompo
into smaller substructures, such as paths, walks, trees
cles, and build graph kernels based on similarities b
those components, as it is more easy to compare the
kernels differ mainly in the ways of composition and
ilarity measures used to compare the substructures.

3. Graph Kernels Based on Linear Patte
The fundamental class of graph kernels based

of patterns are based on walks and paths as elemen
compositions. This section studies their mathemati
resentations and compares their computational comp
Table 1 provides an insight into the characteristics o
kernels.
3.1. Graph kernels based on walks

Depending on how walks are generated, severa
kernels have been proposed.
3.1.1. Common walk kernel

The common walk kernel is based on the sim
to compare all possible walks starting from all ver
two graphs (Gärtner et al., 2003). Despite that som
it is referred to as the random walk kernel (Vishw
et al., 2010; Borgwardt and Kriegel, 2005), there is
no stochastic process applied.

In (Gärtner et al., 2003), the fully-labeled direct
graph is employed to reduce the computational com
within kernels based on contiguous label sequences
can deal with labels on vertices and/or edges. Th
product graph is then defined as following:
Definition 2 (direct product graph). The direct
graph of two graphs G1 = (V1, E1) and G2 = (V
denoted G× = G1 × G2, is defined by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V×(G1 × G2) =
{
(v1, v2) ∈ V1 × V2

||| lv(v1) = lv
E×(G1 × G2) =

{
((u1, u2), (v1, v2)) ∈ V 2(G1 × G2

(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ le
= le(u2, v2)

}
,

where lv(⋅) and le(⋅) are the labeling functions de
Section 2.1. In other words, vertices with the sam
from graphs G1 and G2 are compounded to new ver

graph G×, and an edge between two vertices in graph G×

et al.: Preprint submitted to Elsevier Page 4 of 16
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Table 1
Characteristics of graph kernels based on linear patterns, and two on non-linear patterns

Substructures Labeling

Directed Edge
Weighted

Computational
Complexity

(Gram Matrix)

Explicit
Representationlinear non-linear cyclic symbolic non-symbolic

vertices edges vertices edges

alk 3 7 7 3 3 7 7 3 7 (N2n6) 7

d 3 7 7 3 3 7 7 3 7 (N2rn4) 7

quation 3 7 7 7 7 7 7 3 3 (N2n3) 7

gradient 3 7 7 3 3 3 3 3 3 (N2rn4) 7

t iterations 3 7 7 3 3 3 3 3 3 (N2rn4) 7

composition 3 7 7 7 7 7 7 3 3 (N2n2 +Nn3) 7

th 3 7 7 3 7 3 7 3 3 (N2n4) 7

shortest path 3 7 7 3 3 3 3 3 7 (ℎN2n4 +N2nm)) 7

l up to length ℎ 3 7 7 3 3 7 7 3 7 (N2ℎ2n2d2ℎ) 3

3 3 7 3 3 7 7 3 7 (N2nd5) 3

ehman (WL) subtree 3 3 7 3 7 7 7 3 7 (Nℎm +N2ℎn) 3

tational complexity” column is a rough estimation for computing the Gram matrix. The “Explicit representation” column indicates whether the embedding of g
n space can be encoded by a vector explicitly; in other words, whether the patterns of graph kernels can be explicitly presented (see (Kriege, Neumann, Kersting
re detailed analysis). The “Weighting” column indicates whether the substructures can be weighted in order to obtain a similarity measure adapted to the probl
ri” indicates that the weights are set while constructing kernels. For example, weight �ℎ in (4) is set to 
ℎ when constructing the kernel by geometric series (see Se

1

2

1'

2'

3'4'

11'
22'

33'
34'

=

Direct product of fully-labeled graphs

and only if edges exist between their correspond-
ces in graphs G1 and G2 while these two edges
same label. Figure 4 illustrates the direct prod-
G2 of two fully-labeled graphs G1 and G2, where
= 1, 2,…} denotes the set of vertex labels and
1, 2,…} the set of edge labels. This definition is

lization of the directed product of unlabeled graphs,
nsiders that all vertices and edges have the same la-
is shown by Figure 2 in (Vishwanathan et al., 2010).
ection exists between every walk in the direct prod-
and one walk in each of its corresponding graphs,
bels of all vertices and edges on these walks match
Consequently, it is equivalent to perform a walk on

product graph and on its two corresponding graphs
eously, which makes it possible to compute the ker-
een two graphs by finding out all walks in their direct
graph. The direct product kernel is then designed

n 3 (common walk kernel). For a graph G, let
(Φs1 (G),Φs2 (G),…) be a map to label sequence
space expanded by basis ΦS (G), where S =
) is the set of all possible label sequences of

nd Φs(G) the feature corresponding to label se-
. For each possible sequence s of length ℎ,Φs(G) =
|, where |Ws| is the number of walks that corre-
the label sequence s in G, and �ℎ ∈ ℝ is some

ight for length ℎ. Then we have the direct product

kernel k×(G1, G2) = ⟨Φ(G1),Φ(G2)⟩, with

k×(G1, G2) =
|V×|∑
i,j=1

[ ∞∑
ℎ=1

�ℎA
ℎ
×

]

ij

,

if the limit exists, whereA× is the adjacency matrix o
rect product graph G×. As each component [A×]ij in
whether an edge exists between vertex vi and vj , [
the number of all possible walks of length ℎ from v
to vj .

In practice, this limit cannot be computed directl
ever for A× that satisfies certain properties and
choices of �ℎ, closed-forms can be constructed fo
putation. Two examples are given here (Gärtne
2003): The first one employs exponential series of
matrices e�A× = I + �A×∕1! + �2A2×∕2! + �3A
... Computing it normally requires the diagonaliz
A× as T −1DT , where D is a diagonal matrix, and
�ℎ = �ℎ∕ℎ! where � is a constant. In th
k×(G1, G2) =

∑|V×|
i,j=1[T

−1e�DT ]ij , where e�D can b
lated component-wise in linear time. Diagonalizing
A× has roughly a cubic computational complexity. T
ond example applies geometric series of matrices.
weights be �ℎ = 
ℎ, where 
 < 1∕ min{Δ+(G),Δ−(
Δ+(G),Δ−(G) are the maximal outdegree and inde
graphG, respectively. Then the geometric series of a
is defined as I + 
1A1 + 
2A2 +… The limit of th
can be computed by inverting the matrix I − 
A, w
roughly of cubic computational complexity.

The common walk kernel constructs an infinite s
feature space consisting of all possible walk seque
graphs whose lengths are theoretically up to infinity
the kernel is represented by exponential or geometri
closed-forms are available to compute it in (n6). H
these closed-forms require that the coefficient �ℎ ha
chosen specially to converge, which not only is in
but also causes the halting problem, excessively res
the effect of long walk sequences on the kernel (s

tion 3.1.4). Moreover, it is still time consuming in practice

et al.: Preprint submitted to Elsevier Page 5 of 16
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-scale graphs and is more likely to induce unneces-
facts into the kernel due to trivial walks, which are
t to the task and therefore decrease the accuracy.
arginalized kernel

marginalized kernel relies on walks generated using
distributions on some hidden variables (Kashima
03), which is constructed as:

1, G2) =
∑

w1∈W (G1)

∑
w2∈W (G2)

kW (w1, w2)

⋅ pG1 (w1)pG2 (w2),
(5)

(G) is the set of all walks in graph G, kW is a
nel between two walks, usually defined as a delta
of label sequences of the two measured walks.

s the probability of traversing walk w in G. If
, v2,… , vℎ), then

(w) = p0(v1)
ℎ∏
i=2

pt(vi|vi−1)pq(vℎ), (6)

(v) is the initial probability distribution, indicates
bility that walkw starts from vertex v; pt(vi|vi−1) isition probability on vertex vi−1, describes the prob-f choosing vi as the next vertex of vi−1; the termi-
robability pq(vℎ) gives the probability that walk w
vertex vℎ. The latter two probability satisfy the re-
n
j=1 pt(vj|vi)+pq(vi) = 1.Without any prior knowl-
is set to be uniform over all vertices of graph G,
1) to be uniform over all neighbors of vertex vi−1,be a constant.
ima et al. (2003) proposed an efficient method to
this kernel as
k(G,G′) =

∑
v1,v′1

s(v1, v′1) limℎ→∞
Rℎ(v1, v′1),

(v1, v′1) = p0(v1)p′0(v
′
1)kv(v1, v

′
1) and Rℎ(v1, v′1)ed recursively in r iterations with Rℎ(v1, v′1) =

) +
∑
vi∈V

∑
v′j∈V ′

t(vi, v′j , v1, v
′
1)Rℎ−1(vi, v

′
j),

r1(v1, v′1) = q(v1, v
′
1) = R1(v1, v

′
1),

q(vℎ, v′ℎ) = pq(vℎ)pq(v
′
ℎ)

, v′i, vi−1, v
′
i−1) = pt(vi|vi−1)p′t(v′i|v′i−1)kv(vi, v′i)

ke(evi−1,vi , e
′
v′i−1,v

′
i
).

ing this method, the computational complexity of
ized kernel is the same as solving a linear system
equations and n2 unknown variables, which boils(rn4).
eneralized random walk kernel
generalized random walk kernel, as a unified frame-
r random walk kernels, was proposed by Vish-

randomwalks on a pair of graphs and then counting t
ber of matching walks, both the commonwalk kernel
marginalized kernel are special cases of this kernel. B
it is proven in the same paper that certain rational
(Cortes, Haffner and Mohri, 2004) also boils down
kernel when specialized to graphs.

Similar to the marginalized kernel, the generaliz
dom walk kernel introduces randomness with the co
tion of graphs’ subpatterns, namely random walks
an initial probability distribution over vertices is gi
noted p0, which determines the probability that wa
on each vertex, same as initial probability distribu
of marginalized kernels. Then, a random walk ge
a sequence of vertices vi1 , vi2 , vi3 ,… according to
ditional probability p(ik+1 | ik) = Aik+1,ik , where Anormalized adjacency matrix of the graph. This p
ity plays a similar role as the transition probabili
the marginalized kernel, which chooses vik+1 as t
vertex of vik being proportional to the weight of t
(vik , vik+1 ), namely pt(ik+1 | ik) = wik+1∕

∑
j wj , j ∈whereN(ik) is the set of neighbors of the vertex ik. Tweight here is a special label which represents the tr

probability from one vertex to another rather than
erty of the edge itself. Finally, like termination pro
pq of marginalized kernels, a stopping probability d
tion q = (qi1 , qi2 ,…), nik ∈ V is associated with
G = (V ,E) over all its vertices, which models t
nomenon where a random walk stops at vertex nikthe initial probability and the stopping probability a
tically set as uniform distribution.

Like the common walk kernel, defining the gen
random walk kernel takes advantage of the direct p
However, when performing the transformation, gra
considered unlabeled, which is a special case of Defin
It is worth noting that the direct product graph of un
graphs often has much more edges than the labeled o
generalized random walk kernel between two graphs
G2 is defined in (Vishwanathan et al., 2010) as

k(G1, G2) =
∞∑
ℎ=0

f (ℎ)q⊤×W
ℎ
× p×.

In this expression, f (ℎ) is the weight chosen a priori
dom walks of length ℎ; p× = p01 ⊗p02 and q× = q1⊗the initial probability distribution and the stopping p
ity distribution on G×, respectively, where operato
notes the Kronecker product and W× ∈ ℝn×n is the
matrix.

Assuming the initial and the stopping probabilit
butions to be uniform and setting W× as the unnor
adjacency matrix of G×, (7) can be transformed to t
mon walk kernel. Meanwhile, applying f (ℎ) = 1
as a specific form, the marginalized kernel can be re
from (7).

The complexity of direct computation is (N2n
methods are presented to accelerate the computation
wanathan et al., 2010):
n et al. (2010). Based on the idea of performing

et al.: Preprint submitted to Elsevier Page 6 of 16
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Sylvester equation method is based on the gener-
ylvester equation M =

∑d
i=1 SiMTi + M0. For

ith symbolic edge labels, when f (ℎ) = �ℎ, the ker-) can be computed by q⊤×vec(M), with vec(⋅) the
stacking operator andM the solution of the general-
ester equationM =

∑d
i=1 �

iA2M iA⊤1+M0,wherenumber of different edge labels, vec(M0) = p×s the normalized adjacency matrix of graph G fil-
the i-th edge label ile of G; namely, iAjk = Ajk
vk) = ile, and zero otherwise. When d = 1, this
can be computed in cubic time; while its computa-
mplexity remains unknown when d > 1.
method does not directly compute weight matrices
product graphs. Benefiting from the Kronecker
only (normalized) adjacency matrices of original
re required, which have size of n2 and can be pre-
d for each graph. Besides, computing q⊤×vec(M)
(N2n2) time. Thus for N unlabeled graphs, the
ity of computing the corresponding Gram matrix is
), which is reduced compared to the direct compu-
ever, it has a strong drawback: libraries currently
to solve the generalized Sylvester equation, such
solver in MATLAB and control. dlyap function in
ontrol Systems Library (Murray et al., 2018), can
d as 1, which means the solver is limited to edge-

d graphs.
second method is the conjugate gradient method,
lves the linear system (I − �W×)x = p× for x,
onjugate gradient solver, and then computes q⊤×x.cedure can be done in (rn4) for r iterations.
third method, fixed-point iterations, rewrites (I −
p× as x = p× + �W×x, and computes x by finding

oint of the equation by iterating xt+1 = p×+�W×xt.st-case computational complexity is (rn4) for r it-
spectral decomposition method applies the W× =
1 decomposition, where the columns of P× are its
tors, and D× is a diagonal matrix of corresponding
ues. This method can be performed in (N2n2 +
N graphs.
generalized random walk kernel provides a quite
framework for walk based kernels (see (7)). How-
problems lie in the methods to compute the kernel
uced above. Despite of the improvement on com-
al complexity, the shortcomings of these methods
ous. First, some methods can only be applied for
ypes of graphs. By definition, the Sylvester equa-
od can only be applied for graphs unlabeled or with
edge labels (through possibly edge-weighted). The
vertex labels of two vertices on an edge can be
the edge label of that edge. However, due to the
olvers, no label can be dealt with in practice. The
decomposition method, on the other hand, can only
labeled graphs. Secondly, each method is desig-
a special case of the generalized random walk ker-

1

2
3

4

5 6

Figure 5: A tottering example: walk (v1, v2, v5, v2) has t
between vertices v2 and v5, i.e., (v2, v5, v2).

nel. The Sylvester equation method, the conjugate g
method and the fixed-point iterations are specified fo
ometric kernel only, namely, f (ℎ) set to �ℎ in (7). Th
tral decomposition method works on any f (ℎ) tha
(7) converge, but is only efficient for unlabeled grap

For conciseness in this paper, the generalized
walk kernel computed by the Sylvester equation, the
gate gradient, the fixed-point iterations and the spec
composition are denoted as the Sylvester equation
the conjugate gradient kernel, the fixed-point kernel
spectral decomposition kernel, respectively. In our
mentation, uniform distributions are applied by def
both starting and stopping probabilities (i.e., p0 an
recommended in (Vishwanathan et al., 2010). Users
to introduce prior knowledge with edge weights.

In contrast with the classic walk patterns, a s
graph kernels have been proposed based on quantum
Bai, Rossi, Torsello and Hancock (2015) and Rossi, T
and Hancock (2013) have introduced a quantum
kernel using the quantum Jensen-Shannon diverge
continunous-time quantum walks. Bai, Rossi, Cui,
Ren, Bai and Hancock (2017) and Bai, Rossi, Cui
and Hancock (2019) have extended this kernel to d
time quantum walks and for complete weighted
while Minello, Rossi and Torsello (2019) have con
both directed and undirected graphs and integrate
level topological information while constructing the
The quantum walk kernels are based on the comput
the mutual information between a pair of graphs a
composite graph such as quantum Jensen-Shanno
gence, rather than the similarities between isomorp
patterns asR-convolution kernels. Due to this reason
not examine quantum walk kernels in this paper.
3.1.4. Problems raised by walks

There are two problems that may lead to worse
mance of kernels based on walks: tottering and halt
discuss these problems in this section.

Tottering. When constructing awalk in a graph, t
nected vertices on this walkmay appear multiple tim
transition scheme allows transiting back. This pheno
called tottering, brings tottering artifacts into the w
Figure 5 shows, a tottering brings unnecessary stru
the pattern and may worsen the performance of gra
nels.

Mahé, Ueda, Akutsu, Perret and Vert (2004) pr
technique to avoid this problem for the marginalized
It first transforms each graph G = (V ,E) to G′ = (
et al.: Preprint submitted to Elsevier Page 7 of 16
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′ =V ∪ E
′ =

{
(v, (v, t)) ||| v ∈ V , (v, t) ∈ E

}

∪
{
((u, v), (v, t)) ||| (u, v), (v, t) ∈ E, u ≠ t

} (8)

ls its vertices and edges as follows: For a vertex
′, if v′ ∈ V , the label l′v(v′) = lv(v′); if v′ =
E, then the label l′v(v′) = lv(v). For an edge
, v′2) ∈ E′, where v′1 ∈ V ∪ E and v′2 ∈ E, the
e′) = le(v′2). Then it computes the marginalized
etween transformed graphs. This extension is able
e tottering from walks for the marginalized kernel,
hances the performance of the kernel. However,
ovement is onlyminor according to the experiments
t al., 2004). Meanwhile, it may significantly enlarge
f graphs, bringing computational complexity prob-
r a graph with n vertices, m edges and average ver-
e d, the transformed graph may at most have n+m
and nd + m2 edges, hence the worse case computa-
mplexity of the kernel is ((n + m)2), which is not
for graphs with high average vertex degree. For all
sons, experiments conducted in Section 4 evaluate
entional marginalized kernel with tottering.
ing. Besides tottering, a problem called halting may
r common walk kernels (Sugiyama and Borgwardt,
here, walk patterns with longer lengths contribute
e kernel values. It is as if the common walk halts
eral steps of computation. For example, as shown
n 3.1.1, the geometric common walk kernel applies
ic series as weights for walks with different lengths,
ℎ = 
ℎ, for 
 < 1. When 
 is small and ℎ is big, �ℎsignificantly small; when 
 is small enough, walks
1 dominate the other walks in the final results, thus
l is degenerated to the comparison of single vertices
s, and most of the structure information is lost.
vercome these issues, several graph kernels based
have been proposed.
aph kernels based on paths
hortest path kernel
shortest path kernel is built on the comparison of
paths between any pair of vertices in two graphs
rdt and Kriegel, 2005). The first step to compute
el is to transform the original graphs into shortest-
aphs by Floyd-Warshall’s algorithm (Floyd, 1962).
st-paths graph contains the same set of vertices as
nal graph, while there is an edge between all ver-
ich is labeled by the shortest distance between these
ices. Then the shortest path kernel is defined on the
nsformed graphs as follows:
n 4 (shortest path kernel). LetS1 = (V1, E1) and
V2, E2) be the Floyd-transformed graphs of two
1 and G2, respectively. The shortest path graph

kernel between graphs G1 and G2 is defined as

ksp(G1, G2) =
∑
e1∈E1

∑
e2∈E2

kw(e1, e2),

where kw is a positive semi-definite kernel on length

The basic definition of kw(e1, e2) is the productnels on vertices and edges encountered along the wa
kernel for symbolic vertex labels is usually the delta f
of labels of two compared vertices, while the kernel
symbolic vertex attributes is not given for general c
this paper, we consider the basic definition where th
of the compared edges are defined by the weighted
of their corresponding shortest paths. Nevertheles
information can be added for more thorough studies
wardt and Kriegel, 2005).

The Floyd-Warshall’s algorithm, required in th
est path kernel to perform the Floyd-transformation
done in (n3). For a connected graph G with n v
its shortest-paths graph S contains n2 edges. As
that vertex kernels and edge kernels are computed
then pairwise comparison of all edges in two shorte
graphs requires a computational complexity of(n4
is also the complexity to compute the shortest path k

Compared to walks based kernels, the shortest p
nel have some advantages: It avoids tottering while
simple both conceptually and practically. Howev
comes with a cost. Its major shortcomings include:

1) It simplifies the graph structure by Floyd tran
tion and only considers information concerning shor
tances. Only attributes of start and end vertices of
paths are considered, while intermediate vertices an
are ignored.

2) It cannot deal with graphs whose edges bear at
other than distances. Symbolic edge labels are om
well. The loss of structure information may cruci
crease the performance accuracy (Borgwardt and
2005).

3) Although non-symbolic vertex attributes are i
the kernel for them is not given explicitly for genera
and it is not clear how to bind it with the kernel for sy
vertex labels. This issue has not been studied pro
literature nor solved by any Python or C++ implem
in general case.

To tackle the last issue, our implementation pro
flexible scheme, where the vertex kernel can be cus
by users. In experiments, we introduce a kernel for
which is a product of two kernels: the delta function f
bolic vertex labels and the Gaussian kernel for non-sy
vertex attributes.
3.2.2. Structural shortest path kernel

The structural shortest path kernel is an extensio
shortest path kernel, as well as a special case of th
on bags of paths (Suard et al., 2007). This kernel ta
consideration vertices and edges on shortest paths,
of the shortest distance between two vertices. As

edge weights cannot be taken into account.

et al.: Preprint submitted to Elsevier Page 8 of 16
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onstruct this kernel, all shortest paths between all
in each graph are obtained, where the Dijkstra’s al-
is used (Dijkstra, 1959). Then, the kernel function
o shortest paths p and p′ of two graphs is defined

) = kv(lv(v1),lv(v′1))⋅
n∏
i=2

ke(le(vi−1, vi),le(v′i−1, v
′
i))kv(lv(vi),lv(v

′
i)),

(10)
i and v′i, for i = 1, 2,… , n, are vertices on paths
, lv(⋅) and le(⋅) are label functions of vertices andd functions kv and ke are kernels on labels of ver-
edges, respectively. In general, these two kernel

s are simply defined as the delta function for sym-
els and the Gaussian kernel for non-symbolic labels,
ill be multiplied if both symbolic and non-symbolic
ist.
structural shortest path kernel can then be derived
given in (10). Here we use the simple and straight-
mean average kernel:

sp(G1, G2) =
1
n1
1
n2

∑
pi∈P1

∑
pj∈P2

kp(pi, pj), (11)

1 and P2 are respectively the shortest path sets of
1 and G2. Other approaches can also be applied,
he max matching kernel and the path level-set based
uard et al., 2007).
n graphs with n vertices and m edges, the compu-
complexity of repeated Dijkstra’s algorithm using
i heaps is (n2 log n + nm) (Bajema and Merlin,
The complexity to match all paths in two graphs
), where ℎ is the average length of shortest paths.
e complexity of the kernel computation is (ℎn4 +
pared to the shortest path kernel, the structural
path kernel involves more structural information.
, since both kernels adopt only the shortest paths,
s of other paths are still hidden. The path kernel
overcome this issue.
ath kernel up to length h
path kernel compares all possible paths rather than
test ones (Ralaivola et al., 2005). The simple path
tween graphs G1 and G2 is defined as

ℎ(G1, G2) =
∑

p∈P (G1)∪P (G2)
�p(G1)�p(G2), (12)

(G) is the set of all paths in graph G, and �p(G)the feature map of path p for graph G. Two defini-
�p(G) are provided, the binary feature map, where
1P (G)(p), and the counting feature map, defined as
|{p | p ∈ P (G)}|.
d on the definitions of �p(G), different types of path

the binary feature map, is defined as

ktpℎ(G1, G2) =
kpℎ(G1, G2)

kpℎ(G1, G1) + kpℎ(G2, G2) − kpℎ(G

where kpℎ(G1, G2) is the kernel defined as (12) corring to the binary feature map. When �p(G) takes tof the counting feature map, then the MiniMax ker
be constructed as

kmpℎ(G1, G2) =
∑
p∈P (G1)∪P (G2)min(�p(G1), �p(G∑
p∈P (G1)∪P (G2)max(�p(G1), �p(G

These two kernels are related to the Tanimoto si
measure in the chemistry literature, and provide nor
tion for the path kernel. While the MiniMax kernel
ers the frequency of each path rather than just its appe
it measures more precisely the similarity between g
different sizes.

Similar to walks in the common walk kernel, the
of paths in a graph can be infinite. However, unlike t
mon walk kernel, no closed-form solution has bee
up for this phenomenon in the path kernel. The De
search scheme is then applied to find all paths, whic
the maximum length of paths to the depth ℎ. Our imp
tation applies a trie data structure to store paths in
which saves tremendous memory compared to direct
especially when label set is small (Fredkin, 1960). T
path kernel between two graphs is computed in(ℎ2

The path kernel up to length ℎ encodes inform
all paths no longer than ℎ in a graph, which is more
sive than other kernels based on paths. Yet the limit
paths’ maximum lengthmay be a significant drawbac
cially for the running time and memory usage in lar
graphs.

In order to analyze and compare the perform
the aforementioned graph kernels, we implemented
Python. Several methods are applied to accelerate t
putation of the kernels in the implementation.

4. Experiments and Results
In this section, we first introduce several ben

datasets corresponding to different types of graphs
types include labeled and unlabeled graphs, with sy
and non-symbolic attributes, different average verte
bers, different average vertex degrees, linear, non-lin
cyclic patterns. Then we introduce the computatio
tings. Finally, we perform each graph kernel on each
and analyze the accuracy and computational comple
cording to the types of graphs, offer advice to choos
kernels based on the type of datasets and discuss wh
work on particular graphs.
4.1. Datasets and settings

We examine 11 well-known benchmark data
both regression and classification tasks. Alkane (Ch
an be constructed. The Tanimoto kernel, based on
et al.: Preprint submitted to Elsevier Page 9 of 16
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Table 2
Structures and properties of real-world graph datasets.

s

Substructures Numbers of Labels

Directed N n̄ m̄ d Class
Numberslinear non-linear cyclic symbolic non-symbolic

vertices edges vertices edges

3 3 7 7 7 7 7 7 150 8.87 7.87 1.75 -
3 3 7 3 7 7 7 7 183 8.15 7.15 1.47 -
3 3 3 3 4 7 7 7 68 18.38 19.63 2.13 2
3 3 3 7 7 7 7 7 94 20.70 24.43 2.36 2
3 3 3 7 11 7 7 7 188 17.93 19.79 2.19 2

ed 3 3 3 7 7 2 7 7 2250 4.67 3.21 1.35 15
3 3 3 3 7 18 7 7 600 32.63 62.14 3.86 6
3 3 3 38 3 4 7 7 2000 15.69 16.20 2.01 2
3 3 3 37 7 7 7 7 4110 29.87 32.30 2.16 2
3 3 3 38 7 7 7 7 4127 29.68 32.13 2.15 2
3 3 3 82 7 7 7 7 1178 284.32 715.66 4.98 2

ures” are the sub-patterns that graphs contain; “Numbers of labels” include numbers of symbolic and non-symbolic vertex and edge labels, with 7 for no label;
exhibits whether directed graphs are included; N is the number of graphs; n̄ is the average number of graph vertices; m̄ is the average number of edges;
erage vertex degree; tasks are either regression (“R”) or classification (“C”).

emin, 1994), Acyclic (Cherqaoui, Villemin, Mes-
se and Kvasnicka, 1994), PAH (Brun, 2018), Mu-
nath, Lopez de Compadre, Debnath, Shusterman
sch, 1991), AIDS (Riesen and Bunke, 2008), NCI1
109 (Wale, Watson and Karypis, 2008) are chemi-
ounds; MAO (Brun, 2018), Enzymes (Schomburg,
Ebeling, Gremse, Heldt, Huhn and Schomburg,
orgwardt, Ong, Schönauer, Vishwanathan, Smola
gel, 2005) and D&D (Dobson and Doig, 2003) are
and proteins; Letter-med (Riesen and Bunke, 2008)
graphs of distorted letter drawings. See (Kersting,
Morris, Mutzel and Neumann, 2016) for more de-
ese datasets are chosen as they come from different
ch as bioinformatics and handwriting recognition,
different properties that allow to provide an exten-
ysis of graph kernels. Table 2 outlines the proper-
ese datasets.
criteria used for prediction are SVM for classifi-
d kernel ridge regression for regression. A two-
ted cross validation (CV) method is applied to se-
evaluate models as follows. In the outer CV, the
ataset is first randomly split into 10 folds, nine of
rve for model validation and one for an unbiased
of the accuracy. Then, in the inner CV, the vali-
t is split into 10 folds, nine of which are used for
and the remaining split is used for evaluating the
f the hyper-parameters. This procedure is repeated
, a.k.a. 30 trials, and the final results correspond to
ge over these trials.
machine used to execute the experiments is a clus-
28 CPU cores of Intel(R) Xeon(R) E5-2680 v4
Hz, 252GB memory, and 64-bit operating system
Linux release 7.3.1611. All results were run with
.5.2.
rformance analysis
es 3 and 4 gather the performances of all these ker-
all datasets for regression and classification tasks,
ely. It can be seen that, generally speaking, graph

kernels based on paths have better accuracy than thos
on walks for both regression and classification tasks,
that the application of walk patterns are constrained
common shortcomings, such as tottering and halting
over, due to their mathematical structures, the comm
kernel and the marginalized kernel are two of the slo
compute. For relatively large datasets, such as Enzym
average time to compute Gram matrices for these t
nels are more than 60 times of that of the fastest
For even larger datasets, such as NCI1, NCI109 and
these two kernels are ignored in our experiments due
expensive time complexity. As a result, these two ker
not recommended to be applied in real tasks, but bet
sidered baselines to test the performance of new con
kernels.

Among other kernels based onwalks, the Sylvest
tion kernel and the spectral decomposition kernel
tackle any labeling information. On unlabeled grap
as Alkane and PAH, accuracies that they provide a
worthy; however under other circumstances, the co
gradient kernel and the fixed-point kernel may offe
accuracies. The latter two kernels are able to tack
bolic and non-symbolic labels on both vertices and
therefore are among the best kernels based on wal
respect to accuracy on all considered datasets. Their
cies are sometimes competitive with those of kerne
on paths, such as onMutag and Letter-med datasets

Among kernels based on paths, the shortest path
and the structural shortest path kernel provide the a
tackle symbolic and non-symbolic labels. The latt
more structure information into consideration than
mer one, thus yields higher accuracy on most datase
requiring much more computational resources. T
kernel up to length ℎ is capable of tackling symboli
only, where it offers the best accuracy in most case
importantly, due to its relatively low computation
plexity, it is possible to apply this kernel to large d
such as D&D, whose average number of vertices is

Tables 3 and 4 exhibit additionally perform
et al.: Preprint submitted to Elsevier Page 10 of 16
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Table 3
Results of all graph kernels on datasets for regression tasks

Kernels Train Perf Valid Perf Test Perf Parameters tgm tal
Common walk 6.76±0.72 10.79±2.08 15.52±15.10 method: geo, 
: 0.06, �: 1e-10 2.24"/3.04"±0.83" 184.1
Marginalized 41.82±2.41 42.38±2.16 43.75±18.88 iter: 16, pq: 0.1, �: 1e-10 4.68"/3.25"±1.48" 330.
Sylvester equation 6.89±0.35 12.60±1.28 8.97±8.84 �: 0.01, �: 3.16e-9 0.37"/0.38"±0.02" 20.1
Conjugate gradient 7.17±0.48 12.37±1.56 11.13±11.10 �: 0.1, �: 1e-8 0.76"/0.66"±0.04" 26.1
Fixed-point iterations 14.66±0.38 17.35±0.91 12.78±2.33 �: 1e-3, �: 1e-8 0.64"/0.60"±0.06" 20.2
Spectral decomposition 10.62±0.36 13.33±1.13 12.95±6.74 �: 0.1, �: 1e-10 0.59"/0.65"±0.08" 43.8
Shortest path 7.87±0.16 8.76±0.22 7.81±1.51 �: 1e-8 0.75" 3.2
Structural SP 7.89±0.17 11.04±0.30 8.65±1.55 �: 0.1 1.05" 3.2
Path up to length ℎ 0.52±0.03 6.96±1.04 9.00±12.87 ℎ: 9, k_func: MinMax, �: 3.16e-3 0.48"/0.51"±0.04" 52.2
Treelet 1.10±0.04 2.57±0.21 2.53±1.32 kernel: gaussian, 
: 1e-6, �: 1e-10 0.48"/0.50"±0.04" 212.
WL subtree 5.22±0.11 21.99±4.36 26.42±41.59 height: 2, �: 3.16e-4 0.38"/1.45"±0.89" 53.6

Common walk 7.60±0.22 12.77±1.00 12.93±3.91 method: geo, 
: 0.04, �: 1e-8 1.84"/2.27"±0.47" 177.
Marginalized 11.17±0.42 17.77±1.50 18.77±3.75 iter: 19, pq: 0.3, �: 1e-5 6.66"/4.16"±1.93" 400.
Sylvester equation 30.75±0.50 31.83±0.49 32.50±4.30 �: 0.01, �: 3.16e-10 0.41"/0.66"±0.83" 24.7
Conjugate gradient 9.07±0.31 12.81±0.81 13.15±3.64 �: 0.01, �: 3.16e-9 0.95"/0.92"±0.12" 31.8
Fixed-point iterations 11.30±0.72 13.06±0.97 14.20±5.93 �: 1e-3, �: 3.16e-9 0.87"/0.77"±0.11" 23.2
Spectral decomposition 30.97±0.48 31.90±0.60 33.05±4.34 �: 0.1, �: 1e-9 0.96"/0.79"±0.11" 50.6
Shortest path 6.28±0.21 9.77±0.68 9.03±2.36 �: 1e-3 0.84" 3.1
Structural SP 3.78±0.13 12.62±1.12 13.10±4.78 �: 1e-3 1.73" 4.4
Path up to length ℎ 1.89±0.14 6.83±0.43 6.66±1.63 ℎ: 2, k_func: MinMax, �: 3.16e-3 0.50"/0.50"±0.04" 55.3
Treelet 3.38±0.16 6.16±0.39 5.99±1.45 kernel: poly, d: 1, c: 1e+3, �: 1e-3 0.51"/0.49"±0.02" 274.
WL subtree 13.19±0.63 16.88±1.02 19.80±6.12 height: 1, �: 3.16e-10 0.37"/2.18"±1.32" 78.1

indicates the hyper-parameters values selected by CV, with grid search values of � and C being [1e-10, 1e-9.5, ...., 1e10]. Ranges of all the parameters can be
r Python library. tgm is the time to compute Gram matrix/matrices in seconds. Note for kernels which need to tune hyper-parameters that are required to com
ltiple Gram matrices are computed, and average time consumption and its confidence are obtained over the hyper-parameter grids, which are shown after the lab
efore “/” is the one spent on building the Gram matrix corresponding to the best test performance. Once hyper-parameters are fixed, learning is only performed
. tall exhibits the total time consumed to compute Gram matrix/matrices as well as to perform model selection for each kernel. For regression tasks (Acyclic and
erformances are given in terms of errors of boiling points. The last column is the row number.

l-known graph kernels based on non-linear pat-
mely the treelet kernel (Gaüzere, Grenier, Brun
emin, 2015) (see also (Bougleux, Dupé, Brun and
i, 2012; Gaüzere et al., 2012)) and the Weisfeiler-
(WL) subtree kernel (Shervashidze, Schweitzer,
, Mehlhorn and Borgwardt, 2011) (see also (Mor-
ting and Mutzel, 2017)). Several graph kernels
linear patterns, especially paths, provide compet-
ven higher accuracies than these two kernels. On
taset, the common walk kernel achieves 93% accu-
ble 4, Line 1), which is comparable to the accuracy
L subtree kernel (93.05%, Table 4, Line 11) and is
an that of the treelet kernel (91.19%, Table 4, Line
shortest path kernel achieves the highest accuracy
et Enzymes (70.09%, Table 4, Line 49), which is
% higher than the treelet kernel and the WL subtree
able 4, Lines 51 and 52). The structural shortest
nel has the equivalent accuracy as the WL subtree
n PAH (Table 4, Lines 19 and 22). The path kernel
gth ℎ achieves equivalent or higher accuracy with
comparable to or lower than kernels based on non-
tterns, on the datasets Acyclic, PAH, Mutag, En-
s well as larger datasets such asAIDS,NCI1,NCI109
. On the AIDS dataset, all exhibited kernels have

ble accuracies (Table 4, Lines 53 to 57).
treelet kernel and the WL subtree kernel are not
ackle non-symbolic labels. More recent work is
ackle this problem (see (Morris, Kriege, Kersting
zel, 2016) for instance), which may affect the per-
e of these kernels on datasets such as Letter-med,
and AIDS. However, on other datasets that do not
non-symbolic labels, the performance will remain

the same, and the aforementioned analyses still stan
According to average graph vertex numbers n̄,

of classification tasks in Table 2 can be classifi
small graphs (including Letter-med), big graphs (in
D&D) and medium graphs (including all the rests
ures 6(a)(b)(c) exhibit the time complexity and classi
accuracies of all kernels on these datasets. For small
(Letter-med), the kernels based on shortest paths, th
gate gradient kernel and the the fixed-point kernel
the best compromise between computational comple
accuracy. Kernels based on non-linear patterns are
as they are not suitable for Letter-med dataset (Figu
As sizes of graphs grow, kernels based on walks, pa
non-linear patterns may all have good trade-offs b
computational complexity and accuracy for certain
(Figure 6(b)). Accuracies of the latter two groups
nels are higher in general. On the big dataset D&D,
kernel up to length ℎ performs better than the WL
kernel (Figure 6(c)).

Figure 6(d) compares the average of computation
plexity and classification accuracies over all classi
datasets of each kernel. Note that for datasets Let
and Enzymes, kernels that cannot tackle non-symbol
are omitted. We provide general conclusions on thes
kernel. From a global viewpoint, all kernels provide
accuracy on all datasets. We can see that the marg
kernel has the worse accuracy, with some regular co
tional time. The structural shortest path kernel prov
best accuracy in general, the price to pay being its co
tional complexity. The Sylvester equation kernel, th
tral decomposition kernel and the path kernel up to
ℎ have good compromise between time complexity
et al.: Preprint submitted to Elsevier Page 11 of 16
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Table 4
Results of all graph kernels for classification tasks (accuracy in percentage)

Kernels Train Perf Valid Perf Test Perf Parameters tgm ta
Common walk 98.26±0.34 90.62±2.28 93.00±8.16 method: exp, �: 6, C: 3.16e+2 10.48"/6.47"±4.07" 1185.
Marginalized 97.29±1.12 88.37±3.20 85.62±12.25 iter: 7, pq: 0.5, C: 1e+7 4.24"/4.85"±2.26" 5609
Sylvester equation 90.72±1.40 87.09±2.67 84.52±13.23 �: 0.1, C: 1e+7 0.37"/0.34"±0.03" 21.0
Conjugate gradient 98.15±0.47 86.41±3.71 88.57±10.93 �: 0.1, C: 3.16e+6 0.86"/0.77"±0.04" 73.9
Fixed-point iterations 82.44±1.30 78.27±3.00 73.71±11.86 �: 1e-3, C: 1e+10 1.05"/0.94"±0.15" 21.9
Spectral decomposition 79.50±1.78 79.33±1.92 77.67±15.93 �: 1e-7, C: 3.16e+9 0.34"/1.38"±1.06" 55.2
Shortest path 97.43±0.76 88.51±2.10 87.81±7.38 C: 3.16e+3 1.79" 3.8
Structural SP 96.70±0.76 90.79±2.44 91.62±9.16 C: 1e+3 7.63" 9.6
Path up to length ℎ 98.20±1.00 91.11±2.59 85.43±12.60 ℎ: 9, k_func: MinMax, C: 10 1.03"/0.72"±0.22" 52.2
Treelet 97.71±0.62 90.92±2.49 91.19±9.74 kernel: poly, d: 4, c: 1e+7, C: 1e+2 0.48"/0.52"±0.05" 1091
WL subtree 95.90±0.84 90.70±2.00 93.05±8.66 height: 6, C: 10 0.43"/0.56"±0.36" 29.8

Common walk 76.26±1.31 72.44±2.24 71.80±11.81 method: geo, 
: 0.11, C: 3.16e+4 11.59"/36.39"±23.57" 1574
Marginalized 63.37±2.20 63.52±2.18 57.67±18.51 iter: 4, pq: 0.4, C: 1e-5 7.88"/11.27"±5.42" 827.
Sylvester equation 74.47±1.30 71.88±2.51 71.50±12.36 �: 0.1, C: 1e+4 0.37"/0.38"±0.05" 43.1
Conjugate gradient 75.62±2.08 71.69±2.49 73.93±13.89 �: 0.1, C: 3.16e+4 1.57"/1.37"±0.12" 68.1
Fixed-point iterations 63.29±1.80 63.39±1.93 58.33±15.10 �: 1e-4, C: 1e-8 2.46"/1.79"±0.44" 30.3
Spectral decomposition 73.54±1.61 71.09±3.29 70.73±12.70 �: 0.1, C: 3.16e+5 0.45"/2.33"±1.91" 78.0
Shortest path 79.53±1.26 76.66±2.55 69.40±11.57 C: 3.16e+2 2.30" 329.
Structural SP 77.39±1.85 74.22±2.50 74.50±13.39 C: 3.16e+2 20.91" 776.
Path up to length ℎ 76.33±1.61 72.51±2.34 75.27±13.72 ℎ: 1, k_func: MinMax, C: 10 0.53"/0.53"±0.04" 49.2
Treelet 82.89±1.64 70.66±3.23 66.30±12.68 kernel: gaussian, C: 1e+3 0.58"/0.58"±0.04" 8419
WL subtree 100.00±0.00 77.86±2.62 75.93±10.83 height: 14, C: 1e+2 1.86"/0.94"±0.66" 37.3
Common walk 91.88±0.98 88.09±1.31 85.96±7.92 method: geo, 
: 0.02, C: 1e+4 9.86"/19.02"±8.71" 2945
Marginalized 86.07±0.91 78.84±1.52 76.11±7.90 iter: 7, pq: 0.8, C: 1e+6 19.72"/23.04"±11.57" 72207
Sylvester equation 84.89±1.24 83.58±1.90 82.77±7.23 �: 0.1, C: 3.16e+3 0.51"/0.50"±0.03" 56.5
Conjugate gradient 92.19±0.76 87.14±1.60 86.18±5.83 �: 1e-3 C: 3.16e+6 2.84"/2.73"±0.09" 74.3
Fixed-point iterations 92.31±0.73 87.34±1.51 86.58±6.66 �: 1e-3, C: 1e+6 4.25"/3.35"±0.62" 45.3
Spectral decomposition 83.71±0.90 83.41±1.14 84.05±7.85 �: 1e-7, C: 3.16e+8 0.92"/5.94"±5.14" 159.
Shortest path 98.23±0.40 84.39±2.35 81.84±6.63 C: 1e+3 4.89" 7.5
Structural SP 100.00±0.00 84.66±1.57 86.26±5.14 C: 3.16e+9 68.85" 71.1
Path up to length ℎ 96.06±0.55 89.89±1.29 88.47±5.84 ℎ: 2, k_func: MinMax, C: 1e+8 0.52"/0.86"±0.35" 51.1
Treelet 98.88±0.25 90.33±1.45 90.79±4.62 kernel: poly, d: 3, c: 1e+8, C: 3.16e+1 0.55"/0.57"±0.04" 152.
WL subtree 92.72±0.72 87.24±1.36 87.18±5.69 height: 1, C: 3.16e+4 0.33"/1.56"±1.07" 41.2

Common walk 39.40±0.34 36.53±0.72 36.16±2.94 method: geo, 
: 0.11, C: 3.16e+6 95.77"/102.20"±6.58" 37741
Marginalized 7.70±0.10 5.59±0.60 5.20±0.82 iter: 4, pq: 0.8, C: 1e+10 75.03"/120.94"±60.63" 21605
Sylvester equation 39.14±0.31 36.26±0.65 37.27±1.93 �: 0.1, C: 1e+6 13.76"/13.63"±0.50" 29832
Conjugate gradient 98.32±0.11 92.73±0.32 93.12±1.28 �: 0.1, C: 1e+2 100.80"/92.35"±4.09" 3281
Fixed-point iterations 97.02±0.14 91.45±0.37 91.30±1.56 �: 1e-4, C: 1e+5 78.45"/70.97"±7.07" 2481
Spectral decomposition 38.44±0.41 36.10±1.10 36.38±2.61 �: 0.1, C: 3.16e+6 56.87"/60.19"±3.24" 27308
Shortest path 98.96±0.07 93.87±0.29 93.72±1.12 C: 10 36.98" 255.
Structural SP 99.10±0.08 94.84±0.23 94.88±1.24 C: 10 41.92" 257.
Path up to length ℎ 49.62±0.29 45.73±0.71 43.83±2.31 ℎ: 9, k_func: MinMax, C: 1e+7 11.98"/12.08"±0.20" 4707

Common walk 71.86±0.94 42.01±1.44 42.81±4.66 method: geo, 
: 0.03, C: 1e+5 907.43"/7960.34"±3246.14" 51092
Marginalized 68.52±0.78 45.72±1.51 45.92±4.79 iter: 19, pq: 0.1, C: 1e+4 2426.77"/1513.51"±743.16" 96652
Sylvester equation 27.53±0.61 22.83±1.19 23.24±4.42 �: 0.01, C: 3.16e+6 5.19"/5.20"±0.05" 1019
Conjugate gradient 100.00±0.00 61.97±1.33 60.89±5.62 �: 1e-5, C: 1e+6 416.47"/418.57"±4.48" 4309
Fixed-point iterations 100.00±0.00 61.35±0.98 63.11±3.83 �: 1e-4, C: 1e+5 741.70"/610.72"±102.94" 4978
Spectral decomposition 27.09±0.72 23.15±1.59 23.68±3.87 �: 0.1, C: 1e+8 4939.35"/2493.84"±2486.74" 57494
Shortest path 100.00±0.00 68.86±1.91 70.09±4.20 C: 1e+6 704.54" 717.
Path up to length ℎ 100.00±0.00 57.53±1.53 57.49±5.19 ℎ: 10, k_func: MinMax, C: 3.16e+2 911.77"/142.91"±279.98" 3123
Treelet 99.02±0.14 51.17±1.53 52.23±3.94 kernel: poly, d: 2, c: 1e+10, C: 3.16e+2 120.15"/121.08"±0.71" 16576
WL subtree 100.00±0.00 51.81±1.28 50.76±5.98 height: 4, C: 3.16e+2 19.88"/25.70"±17.76" 433.
Shortest path 99.91±0.02 99.13±0.11 99.26±0.55 C: 10 892.26" 994.
Structural SP 99.80±0.03 98.90±0.10 98.84±0.63 C: 3.16 8021.98" 8125
Path up to length ℎ 99.70±0.04 99.64±0.07 99.65±0.40 ℎ: 1, k_func: MinMax, C: 3.16 5.09"/38.60"±28.42" 2826
Treelet 99.92±0.03 99.54±0.08 99.54±0.36 kernel: poly, d: 1 c: 1e+3, C: 3.16e+2 8.27"/7.46"±0.49" 5692
WL subtree 99.97±0.02 98.74±0.09 98.63±0.67 height: 10, C: 10 325.07"/164.66"±105.33" 2657

Structural SP 92.75±0.13 80.13±3.86 79.88±1.71 C: 3.16e+2 132848.44" 13548
Path up to length ℎ 97.86±0.09 84.22±0.37 84.84±1.79 ℎ: 10, k_func: MinMax, C: 3.16 305.64"/108.88"±90.97" 16933
Treelet 64.96±0.38 64.76±0.39 64.84±2.16 kernel: gaussian, 
: 1e-3, C: 3.16e-2 30.14"/29.95"±0.27" 7062
WL subtree 99.59±0.04 85.12±0.38 84.63±1.58 height: 8, C: 10 1705.20"/1039.54"±722.29" 17484

Structural SP 89.16±0.21 78.89±0.40 79.04±1.80 C: 10 134539.59" 14184
Path up to length ℎ 97.97±0.08 83.77±0.26 83.94±1.40 ℎ: 10, k_func: MinMax, C: 3.16 311.85"/111.22"±92.84" 17261
Treelet 64.37±0.23 64.31±0.23 63.46±2.06 kernel: gaussian, 
: 1e-3, C: 1e-2 30.19"/29.86"±0.25" 7064
WL subtree 99.41±0.05 85.14±0.30 85.47±1.58 height: 7, C: 10 1441.58/1018.67"±709.73" 17308

Path up to length ℎ 100.00±0.00 80.92±0.58 81.40±3.68 ℎ: 2, k_func: MinMax, C: 1e+2 192.11"/472.38"±638.44" 1560
WL subtree 100.00±0.00 79.36±0.52 77.30±3.76 height: 6, C: 1e+3 1062.89"/886.16"±83.81" 10143

egends as Table 3. For the large-scale datasets, graph kernels are neglected if their time or memory consumption are much higher than other kernels.

ernels based on non-linear patterns are among the
e-offs; meanwhile, the Sylvester kernel, the conju-
ient kernel, the shortest path kernel, and the path
p to length ℎ achieve competitive or better trade-
ed on this analysis, before choosing a graph kernel,

We then further analyze these kernels based on d
types and characteristics of datasets.
4.2.1. Labeled and unlabeled graphs

To study the influence of labeling on perform
graph kernels, we examine 3 datasets that have simil
have a rough expectation of its performances.
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g. n̄, m̄ and d in Table 2), except for labeling: PAH
led, MAO has 3 symbolic vertex labels and 4 sym-
ge labels, and Mutag has 7 symbolic vertex labels
ymbolic edge labels.
re 7 exhibits the accuracy of each kernel and the av-
e to compute each kernel between a pair of graphs.
ee that for almost all kernels, the classification ac-
n dataset PAH are significantly lower and the con-
ntervals around them are wider than the other two
as PAH contains no labeling information. On each
ccuracies of kernels based on walks, paths and non-
tterns are competitive. Meanwhile, the second fig-
bits the influence of graph structures on time com-
Take the common walk kernel for instance, whose
plexity is in (n6), the runtime on MUTAG is the
and on PAH is the longest due to the different av-
mber of graph vertices of each graph. The runtime
dataset are also consistent with computational com-
f each kernels in Table 1. The Sylvester equation
d the path kernel up to length ℎ have competitive
th kernels based on non-linear patterns with equiv-
uracies.
raphs with symbolic and non-symbolic labels
symbolic labels are able to introduce continuous at-
to graphs. Among all graph kernels, the shortest
el is able to tackle symbolic and non-symbolic ver-
s, whereas the conjugate gradient kernel, the fixed-
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point kernel and the structural shortest path kernel c
with both non-symbolic labels of vertices and edge
available datasets, Letter-med and Enzymes conta
symbolic vertex labels. We compute accuracy and tim
plexity of each kernel aforementioned on these 2 d
then we remove the non-symbolic labels from the
and compute the performance again.

Figure 8 shows that, with non-symbolic labels,
cation accuracy of all kernels exceeds 90% on datase
med, and more than 60% on dataset Enzymes; these
cies drop to about 35% when non-symbolic labels
moved, which are still better than random assignm
cause of the large numbers of competing classes (1
respectively). It reveals how these graph kernels c
advantage of non-symbolic labels, which carry out e
information of dataset structures. This consequence
roborated by the results revealed in Table 4 where gr
nels that cannot tackle non-symbolic labels work po
Letter-med and Enzymes, such as the common walk
and the marginalized kernel.

As a result, non-symbolic labels should always
examined before designing graph kernels. When o
ear patterns are included, the shortest path kernel, th
gate gradient kernel, the fixed-point kernel and the st
shortest path kernel would be the first to consider.

We then split datasets of classification tasks in
into 2 groups: graphs containing non-symbolic lab
cluding Letter-med, Enzymes, AIDS) and those w

symbolic labels (including all the rests). Figure 9 exhibits
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4.2.3. Graphs with different average vertex num
The average vertex number of a graph dataset

influences the time complexity of computing gra
nels. To examine it, we choose 3 datasets with re
wide range of vertex numbers, namely PAH,Mutag
zymes, corresponding to unlabeled, symbolic labe
non-symbolic labeled graphs, respectively. For each
we order the graphs according to the vertex number, a
split them into 5 subsets with different average verte
bers.

Figure 10(a)(b)(c) show the evolution in the run
compute Gram matrices with the growth of averag
numbers. The runtimes for the common walk kernel
structural shortest path kernel growth the fastest, t
times for the Sylvester equation kernel and the path
up to length ℎ remain relatively stable, while the i
rates of runtimes for other kernels are in the middl
result is consistent with the time complexity of com
the Gram matrix of each kernel, where average verte
bers to different powers are involved (see Table 1). H
the time complexity is affected by other factors, such
age vertex degrees, which causes fluctuations and de
to the runtime as the average vertex numbers growt
phenomenon is more observable for small datasets
more narrow range of vertex numbers, such as PAH
in Figure 10(a).
4.2.4. Graphs with different average vertex degr

As vertex numbers, the vertex degrees play an im
role in time complexity of computing graph kernels
vertex degrees indicate “dense” graphs where mor
and connections exist, leading to a much larger nu
linear patterns inside graphs, such as walks and pa
more time to explore them. Applying the same me
et al.: Preprint submitted to Elsevier Page 14 of 16
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n 4.2.3, we choose a dataset with relatively wide
vertex degrees, Enzymes, order it based on the ver-
ee and split it into 5 subsets. Figure 10(d) reveals
ionship between the runtime to compute the graph
d the average vertex degree of each subset.
e 1 displays that the time complexity of only two
ased on linear patterns is directly affected by the
ertex degrees m: the structural shortest path kernel
ath kernel up to length ℎ. As a result, Figure 10(d)
at the runtime for the path kernel up to length ℎ
s as the average vertex degree grows. Runtime for
the other kernels, however, is high for the first sub-
n m = 3.2), and stays stable after. Other than the
vertex degree of each subset, this runtime is mainly
d by the average vertex number, which is much big-
e first subset thans the others.
e experiments once again reveal the fact that in prac-
h kernels based on linear patterns can achieve high
nce on graphs containing linear and non-linear sub-
s compared to graph kernels based on non-linear
even though these kernels are not build for the lat-
ture. In conclusion, these linear pattern kernels are
vestigating for any dataset.Structures and properties
ets should be carefully inspected for choosing the
raph kernels.

clusion
is paper, an extensive analysis of graph kernels
linear patterns was performed. Although graph
ased on linear patterns are designed for linear struc-
y were applied with success on datasets containing
ar structures. We examined the influence of several
uch as labeling, average vertex numbers and aver-
x degrees, on the performance of graph kernels.
omputational complexity – a major issue in design-
working with graph kernels – was extensively ad-
in this paper. The average vertex numbers and av-
rtex degrees restrict kernels’ scale abilities. Time
ity of all kernels are polynomial to the average ver-
ers, with the common walk kernel being the worst
thus it should be avoided for large-scale datasets.
vertex degrees had trivial influence on the time
ity, which remained low on all datasets.
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