N
N

N

HAL

open science

Graph kernels based on linear patterns: Theoretical and
experimental comparisons

Linlin Jia, Benoit Gaiizere, Paul Honeine

» To cite this version:

Linlin Jia, Benoit Galizére, Paul Honeine.

10.1016/j.eswa.2021.116095 . hal-03410508

Graph kernels based on linear patterns: Theoret-
ical and experimental comparisons. FExpert Systems with Applications, 2022, 189, pp.116095.

HAL Id: hal-03410508
https://normandie-univ.hal.science/hal-03410508

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://normandie-univ.hal.science/hal-03410508
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S0957417421014299
Manuscript_727adaf75a5ea21be0c10eccf91{8863

Graph kernels based on linear patterns: theoretical and experimental

comparisons

Linlin Jia®*, Benoit Galizére* and Paul Honeine

b

ALITIS, Institut National des Sciences Appliquées Rouen Normandie, 685 Avenue de I’ Université, 76800 Saint-Etienne-du-Ruuvmy, France

bLITIS, Université de Rouen Normandie, Avenue de I’Université, 76800 Saint-Etienne-du-Rouvray, France

ARTICLE INFO

Keywords:

Graph kernels
Walks

Paths

Kernel methods
Graph representation

ABSTRACT

Graph kernels are powerful tools to bridge the gap between machine learning and data encoded as
graphs. Most graph kernels are based on the decomposition of graphs into a set of patterns. The sim-
ilarity between two graphs is then deduced to the similarity between corresponding patterns. Kernels
based on linear patterns constitute a good trade-off between accuracy and computational complexity.
In this work, we propose a thorough investigation and comparison of graph kernels based on different
linear patterns, namely walks and paths. First, all these kernels are explored in detail, including their
mathematical foundations, structures of patterns and computational complexity. After that, exper-
iments are performed on various benchmark datasets exhibiting different types of graphs, including
labeled and unlabeled graphs, graphs with different numbers of vertices, graphs with different average
vertex degrees, linear and non-linear graphs. Finally, for regression and classification tasks, accuracy
and computational complexity of these kernels are compared and analyzed, in the light of baseline
kernels based on non-linear patterns. Suggestions are proposed to choose kernels according to the
types of graph datasets. This work leads to a clear comparison of strengths and weaknesses of these
kernels. An open-source Python library containing an implementation of all discussed kernels is pub-
licly available on GitHub to the community, thus allowing to promote and facilitate the use of graph

kernels in machine learning problems.

1. Introduction

Machine learning algorithms have been conventionally
defined on vector spaces, allowing to take advantage of the
easiness in linear algebra operations. However, it is chal-
lenging to vectorize many data types due to their complex
structures. Graphs are able to model a wide range of real-
world data, by encoding elements as well as the relation-
ship between them. Due to these properties, graph repre-
sentation has broad applications in wide domains, such as
2D and 3D image analysis, document processing, bioinfor-
matics, chemoinformatics, web data mining, etc., where it
models structures such as molecules, social networks, and
state transition (Conte, Foggia, Sansone and Vento, 2004).

It is natural to raise the problem of applying machine
learning methods for graph data, in order to unleash the
power of these two powerful tools. To achieve this goal, it
is essential to represent the graph structure in forms that are
able to be accepted by most popular machine learning meth-
ods, without losing considerable information while encoding
the graphs. When machine learning algorithms rely on (dis-)
similarity measures between data, the problem boils down to
measuring the similarity between graphs. Graph similarity
measures can be roughly grouped in two major categories:
exact similarity and inexact similarity (Conte et al., 2004).
The former requires a strict correspondence between the
two graphs being matched or between their subparts, such
as graph isomorphism and subgraph isomorphism (Kobler,
Schoning and Toran, 2012). Unfortunately, the exact simi-

*Corresponding author
5 linlin.jia@insa-rouen.fr (L. Jia); benoit.gauzere@insa-rouen.fr
(B. Gaiizere); paul.honeine@univ-rouen. fr (P. Honeine)
ORCID(S): 0000-0002-3834-1498 (L. Jia)

X
n
® Gl Ene
. M
P ®
° Ke
G el Snel

E(G,G") = (Px(G), Du(C"))

Figure 1: lllustrative comparison between graph embedding
and kernels, for two arbitrary graphs G and G’. Through graph
embedding, the two graphs are represented by two vectors, X
and X'. By kernels, the two graphs are implicitly embedded
by a function ®@,,(-) into a Hilbert space H, yielding ®@,,(G)
and ®@,,(G"); moreover, their inner product (®,,(G), ®;,(G")) is
easily computed using a kernel function k(G,G").

larity cannot be computed in polynomial time by these meth-
ods; hence it is not practical for real-world data.

Inexact similarity measures are commonly applied for
graphs, in which category graph embedding and graph ker-
nels lie. These strategies consist in embedding the graphs
into a space where computations can be easily carried out,
such as combining embedded graphs or performing a classi-
fication or regression task.

Graph embedding explicitly computes vectors that en-
code some information of the graphs; while kernels allow
an implicit embedding by representing graphs in a possibly
infinite-dimension feature space which relaxes the limita-
tions on the encoded information. The two strategies are il-
lustrated in Figure 1. Indeed, as generalizations of the scalar
inner product, kernels are natural similarity measures be-

Linlin Jia et al.: Preprint submitted to Elsevier

Page 1 of 16

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license

https://creativecommons.org/licenses/by-nc/4.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0957417421014299
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0957417421014299

Graph kernels based on linear patterns

‘\:/0 t
G1 Gz GS

Figure 2: Different types of graph patterns. G,, G,, G; are
examples of linear patterns, non-linear (acyclic) patterns and
cyclic patterns, respectively.

tween data, expressed as inner products between elements
in some feature space. By employing the kernel trick, one
can evaluate the inner products in the feature space with-
out explicitly describing each representation in that space.
Kernels have been widely applied in machine learning, with
well-known popular methods, such as Support Vector Ma-
chines. Therefore, defining kernels between graphs is a pow-
erful design to bridge the gap between machine learning and
data encoded as graphs.

When comparing graphs and analyzing their properties,
the similarity principle has been widely investigated (John-
son and Maggiora, 1990). It states that molecules having
more common substructures turn to have more similar prop-
erties. This principle can be generalized to other fields where
data is modeled as graphs. It provides a theoretical support
to construct graph kernels by studying graphs’ substructures,
which are also referred to as patterns. There are three major
types of patterns, as illustrated by G, G, and G5 in Figure 2.
The most fundamental patterns are linear patterns, which
are composed of sequences of vertices connected by edges.
However, when a substructure contains vertices that have
more than two neighbors, linear patterns are insufficient to
completely describe the structure. This is where non-linear
patterns become useful, with either non-linear (acyclic) pat-
terns or cyclic patterns, which contain cycles.

Despite that non-linear patterns may encode more com-
plex structural information than linear ones, the latter are of
great interest. Linear patterns require lower computational
complexity than non-linear patterns in some occasions. Nev-
ertheless, non-linear patterns normally include or imply the
linear ones. For example, the treelet pattern is non-linear as
a whole, while treelets whose maximal size is less than 4
are linear (Gaiizere, Brun and Villemin, 2012). Moreover,
it could be intractable to compute non-linear or cyclic based
kernels on large graphs. Therefore in this article, we focus
on studying and comparing graph kernels based on different
linear patterns.

A linear pattern is defined as a walk or a path. A walk is
an alternating sequence of vertices and connecting edges; A
path is a walk without repeated vertices. Kernels based on
walks proposed include the common walk kernel (Girtner,
Flach and Wrobel, 2003), the marginalized kernel (Kashima,
Tsuda and Inokuchi, 2003) and the generalized random walk
kernel Vishwanathan, Schraudolph, Kondor and Borgwardt
(2010). Meanwhile, the shortest path kernel (Borgwardt and
Kriegel, 2005), the structural shortest path kernel (Suard,
Rakotomamonjy and Bensrhair, 2007) and the path kernel up
to length A (Ralaivola, Swamidass, Saigo and Baldi, 2005)

are constructed based on paths, which are relieved from arti-
facts brought by walks due to tottering and halting (see Sec-
tion 3.1.4). More recently, many developments have been
carried out to enhance these graph kernels (Aziz, Wilson and
Hancock, 2013; Xu, Wang, Alvarez, Cavazos and Zhang,
2014; Sugiyama and Borgwardt, 2015).

The main contributions of this article are studying graph
kernels based on linear patterns, with an emphasis on the
aforementioned kernels, and comparing them theoretically
and experimentally. Among them, the generalized random
walk kernel is split into four different kernels due to the com-
puting methods they use. Considering the theoretical as-
pects, we examine their mathematical expressions with con-
nections between them, and their computational complexi-
ties, as well as the strengths and weaknesses of each kernel.
In the exhaustive experimental analysis conducted in this
paper, each kernel is applied on various datasets exhibiting
different types of graphs, and a thorough performance anal-
ysis is made considering both accuracy and computational
time. This rigorous examination allows to provide sugges-
tions to choose kernels according to the type of graph data
at hand. Finally, all the implementations are publicly avail-
able as an open-source Python library on GitHub!. In this li-
brary, every kernel is able to tackle different types of graphs,
and several computation methods are provided for kernels.
Moreover, we propose several advanced methods to reduce
the computational complexity of the implemented graph ker-
nels, by both accelerating computation and reducing storage
requirements.

The paper is organized as follows: Section 2 introduces
preliminaries for graph and kernels in machine learning.
Section 3 presents detailed discussions on each graph ker-
nel. Experiments and analyses are performed in Section 4.
Finally, Section 5 concludes this work.

2. Preliminaries

2.1. Basic concepts of graph theory

In the following, we define notations that will be used in
this paper. For more details, we refer interested readers to
(West et al., 2001). First, we clarify definitions of different
types of graphs. Figure 3 shows types of graphs mentioned
below. Let | - | denote the cardinality of a set, namely the
number of its elements. The indicator function1, : X —
{0, 1} is defined as 1 4(x) = 1 if x € A, and 0 otherwise.

A graph G is defined by an ordered pair of disjoint sets
(V, E) such that V' corresponds to a finite set of vertices and
E C V' XV corresponds to a set of edges. u is adjacent to v if
(u,v) € E. We denote the number of graph vertices as n, i.e.,
n = |V'|, and the number of graph edges as m, i.e., m = | E|.
A labeled graph G is a graph that has additionally a set of la-
bels L along with a labeling function £ that assigns a label to
each edge and/or vertex. In edge-labeled graphs, the labeling
functionZ, : E — L assigns labels to edges only; in vertex-
labeled graphs, the labeling function £, : V' — L assigns
labels to vertices only; in fully-labeled graphs, the labeling

IThe GitHub link is https://github.com/jajupmochi/py-graph.

Linlin Jia et al.: Preprint submitted to Elsevier

Page 2 of 16

Graph kernels based on linear patterns

‘ét‘:;
unlabeled graph vertex-labeled graph edge-labeled graph

undirected graph directed graph

Figure 3: The different types of graphs. In vertex- and edge-
labeled graphs, vertices and edges with different labels are dis-
tinguished by color in the figure.

function £y : V' U E — L assigns labels to both vertices
and edges. Unlabeled graphs have no such labeling function.
Labels can be either symbolic or non-symbolic, for vertices
and/or edges. A symbolic label is a discrete symbol, such as
the type of atoms or chemical bonds; a non-symbolic label is
a continuous value. Due to this difference, symbolic labels
are considered equal as long as they are the same and unequal
otherwise (namely the Kronecker delta function; see below),
while non-symbolic labels are compared by continuous mea-
sures, for instance, the Gaussian kernel (see below). Both
symbolic and non-symbolic labels can be one-dimensional
or multi-dimensional vectors. A label is also referred to as
an attribute.

Two similarity measures are used between labeled ver-
tices and edges: Kronecker delta function for symbolic la-
bels and Gaussian kernel for non-symbolic labels. The Kro-
necker delta function between two labels £; and Z; is defined
as k(¢;,¢;) = 1if £; = £}, and 0 otherwise. For the sake
of conciseness, it is denoted as the delta function 6, ‘) The
Gaussian kernel between labels ; and Z; of L is deﬁned as

14,117

k(Z;, ;) = exp 5

> , where 6 is the tunable band-

width parameter.

A directed graph is a graph whose edges are directed
from one vertex to another, where the edge set E consists
of ordered pairs of vertices (u, v). An ordered pair (i, v) is
said to be an edge directed from u to v, namely an edge be-
ginning at ¥ and ending at v. In contrast, a graph where the
edges are bidirectional is called an undirected graph, i.e., if
(u,v) € E, then (v,u) € E.

Graph substructures, such as walks, paths and cycles, al-
low to describe graphs, thus providing elegant ways to con-
struct graph kernels. The concepts of the adjacency matrix,
neighbors and degrees of vertices are fundamental for build-
ing these kernels. Ina graph G = (V, E), aneighbor of a ver-
tex v € V is a vertex u that meets the condition (u,v) € E.
If G is undirected, the degree of a vertex v € V' is the num-
ber of these neighbors, namely |{u € V' | (u,v) € E}|;if G
is directed, then [{u~ € V' | (u~,v) € E}| is called the inde-
gree of vertex v, |[{ut € V' | (v,u™) € E}| is the outdegree
of v, and the degree of v is the sum of its indegree and out-
degree. The degree of the graph, denoted by d, is the largest

vertex degree of all its vertices. The adjacency matrix of an
n-vertex graph G = (V, E) is an n X n matrix A(G) = la;;]1,
where a;; = 15((v;,v;)), namely a;; = 1if (v;,0;) € E
and 0 otherwise. For a graph G = (V E), a walk of length
h is a sequence of vertices W = (v, v,,...,U,,) Where
(v;,0;41) € Eforanyi € {1,2,..., h}. The length of a walk
W is defined as its number of edges A. If each vertex appears
only once in W, then W is a path. A walk with v; = v, is
called a cycle. Note that when & = 0, a walk or path is a sin-
gle vertex without edges. The (contiguous) label sequence of
alength h walk/path W of a fully-labeled graph is defined as
s = (@, (), C,((v1,0)), £ (02), €, (U2, U3)), ..., €y (Vpp1))-
For a vertex-labeled or edge-labeled graph, the label se-
quence of W is constructed by removing all edge labels
?((v;, Uj)) or vertex labels Z,(v;) in s, respectively.

2.2. Kernel methods

In this section, formal definitions of a kernel and Gram
matrix are first introduced. Then the kernel trick is presented
to show its ability of evaluating inner products in some fea-
ture space. To this end, two classical kernel based machine
learning methods are presented next, kernel ridge regres-
sion and support vector machines for classification, and ap-
plied in this paper to assess the relevance of graphs. For
more details on kernel methods, we refer interested read-
ers to (Shawe-Taylor and Cristianini, 2004; Scholkopf and
Smola, 2002). Let & denotes the input space.

Definition 1 (positive semi-definite kernel). A positive
semi-definite kernel defined on X is a symmetric bilin-

ear function k . X* — R that fulfills the condition
o 2;':1 ¢ic;k(x;,x;) 2 0, for all xy,...,x, € X and
cl,....c, ER.

Positive semi-definite kernels have some general prop-
erties. Of particular interest, the products and sums,
weighted with non-negative coefficients, of a set of positive
semi-definite kernels are also positive semi-definite kernels.
Moreover, any limit lim,_, ., k,, of a sequence of positive
semi-definite kernels k,, is also a positive semi-definite ker-
nel (Scholkopf and Smola, 2002). These properties are use-
ful for constructing graph kernels The first one is applied for
all six graph kernels discussed in this paper, and the second
one for the common walk kernel and the generalized random
walk kernel.

Mercer’s theorem states that any positive semi-definite
kernel corresponds to an inner product in some Hilbert space
(Mercer, 1909), namely for all (x;, x j) e X%

k(xp,x)) = (D (x), Py (x)) (1)

where @, : X — H is an embedding function. The positive
semi-definiteness of the kernel is a sufficient condition to
the existence of this function. For the sake of conciseness,
positive semi-definite kernels are simply denoted as kernels
in this paper.

Kernel based methods in machine learning take advan-
tage of Mercer’s theorem, in order to transform conventional

Linlin Jia et al.: Preprint submitted to Elsevier

Page 3 of 16

linear models into non-linear ones, by replacing classical in-
ner products between data with a non-linear kernel. Let X =
{x1,%,,...,x5} be the finite dataset of N samples avail-
able for training the machine learning method, with associ-
ated data labels {y,y,,...,yy} where y; € {—1,+1} for
binary classification and y; € R for regression (extensions
to multiclass classification and vector output is straightfor-
ward (Honeine, Noumir and Richard, 2013)). It turns out
that one does not need access to the raw data X, but only the
evaluation of the kernel on all pairs of the data, namely the
Gram matrix K is sufficient. A Gram matrix K associated
to a kernel k for a training set X is an N X N matrix defined
as K, ; = k(x,»,xj), for all (x;, x;) € X2,

Kernel-based machine learning relies on regularized cost
functions, namely arg min, ¢y Zﬁl cpw(x)) + Allwll?,
for some cost function ¢ and positive regularization param-
eter 4. The generalized representer theorem (Scholkopf,
Herbrich and Smola, 2001) states that the optimal solu-
tion has the form w(x) = Zl/\il w; k(x;, x), where k is
the kernel inducing the Hilbert space 7{. The coefficients
;’s are obtained using the Gram matrix. For example,
the kernel ridge regression corresponds to the square loss
ey w(x) = (v — w(x;))?, which leads to [@; ... wxN]T
= (K + AI)"'[y; ... yy1" (Murphy, 2012). Support Vec-
tor Machines (SVM) for classification considers the hinge
loss c(y;, w(x;)) = max(0, 1 — y;w(x;)), and the optimal co-
efficients are efficiently obtained by quadratic programming
algorithms (Boser, Guyon and Vapnik, 1992).

Kernel-based methods provide an elegant and powerful
framework in machine learning for any input space, without
the need to exhibit the data or optimize in that space, as long
as one can define a kernel on it. Besides conventional ker-
nels such as the Gaussian kernel for vector spaces, kernels
can be engineered by combining other valid kernels, using
additive or multiplicative rules. Of particular interest in ker-
nel engineering are R-convolution kernels (Haussler, 1999),
which provide the foundation of kernels based on bags of
patterns and can be regarded as the cornerstones to engineer
graph kernels using graph patterns.

2.3. Pattern-based kernels

R-convolution kernels propose a way to mea-
sure similarity between two objects by measuring
the similarities between their substructures (Haus-
sler, 1999). Suppose each sample x; € & has a
composite structure, namely described by its “parts”
(Xi1> X5 - » X;p) € X XX, X -+ X X, for some positive in-
teger D. Since multiple decompositions could exist, let R(x)
denotes all possible decompositions of x, namely R(x) =
{x € X X Xy X - X Xy | x is a decomposition ofx}.
For each decomposition space &X,;, let k; be a kernel
defined on this space to measure the similarity on the

d-th part. Then, a generalized convolution kernel, called
R-convolution kernel, between any two samples x; and x;

from X is defined as:

D

kopxpy= Y [[kaioxa @
(Xi15---X;p)ER(x;) d=1
(le,‘..,ij)eR(xj)

By simply changing the decomposition, many differ-
ent kernels can be obtained from the R-convolution kernel.
When it comes to graphs, it is natural to decompose them
into smaller substructures, such as paths, walks, trees and cy-
cles, and build graph kernels based on similarities between
those components, as it is more easy to compare them. The
kernels differ mainly in the ways of composition and the sim-
ilarity measures used to compare the substructures.

3. Graph Kernels Based on Linear Patterns

The fundamental class of graph kernels based on bags
of patterns are based on walks and paths as elementary de-
compositions. This section studies their mathematical rep-
resentations and compares their computational complexities.
Table 1 provides an insight into the characteristics of theses
kernels.

3.1. Graph kernels based on walks
Depending on how walks are generated, several graph
kernels have been proposed.

3.1.1. Common walk kernel

The common walk kernel is based on the simple idea
to compare all possible walks starting from all vertices in
two graphs (Gértner et al., 2003). Despite that sometimes
it is referred to as the random walk kernel (Vishwanathan
et al., 2010; Borgwardt and Kriegel, 2005), there is actually
no stochastic process applied.

In (Girtner et al., 2003), the fully-labeled direct product
graph is employed to reduce the computational complexity
within kernels based on contiguous label sequences, which
can deal with labels on vertices and/or edges. The direct
product graph is then defined as following:

Definition 2 (direct product graph). The direct product
graph of two graphs G| = (V},E|) and G, = (V5, E,) ,
denoted Gy = G X G,, is defined by

V(G X G,) = {(vl, 0) €V X Vs | £,0) = fv(vz)}
) E (G, X Gy) ={((u1,u2),(ul, 0y) € VHG, X Gy) |
(ul, Ul) (S El A (llz, Uz) S E2 A fe(ul, Ul)

=7, (uy, vy) }

3)

where 7 () and Z,(-) are the labeling functions defined in
Section 2.1. In other words, vertices with the same labels
from graphs G| and G, are compounded to new vertices of
graph G, and an edge between two vertices in graph G

Linlin Jia et al.: Preprint submitted to Elsevier

Page 4 of 16

Graph kernels based on linear patterns

Table 1
Characteristics of graph kernels based on linear patterns, and two on non-linear patterns
Substructures Labeling Computational o
K boli boli Directed Edge Complexity Explicit Weighting
ernels linear non-linear cyclic symbolic non-symuoofic Weighted (Gram Matrix) Representation
vertices edges vertices edges

Common walk v X X v v X X v X O(N?n°) X a priori

Marginalized v X X v v X X v X O(N?rn*) X X

Sylvester equation v X X X X X X v v O(N?n?) X a priori

Conjugate gradient v X X v v v v v v O(N?rn*) X a priori

Fixed-point iterations v X X v v v v v v O(N?rn*) X a priori

Spectral decomposition 4 X X X X X X 4 v O(N?n® + Nn®) X a priori

Shortest path v X X v X v X v v O(N?n*) X X

Structural shortest path v X X v v v v v X O(hN?*n* + N2nm)) X X

Path kernel up to length h v X X 4 v X X v X O(N2h?n2d*) v v/

Treelet v v X 4 v X X 4 X O(N>nd?) v v

Weisfeiler-Lehman (WL) subtree v v X v/ X X X v X O(Nhm + N?hn) v X
The “Computational complexity” column is a rough estimation for computing the Gram matrix. The “Explici ion” col indi hether the embedding of graphs in the
representation space can be by a vector licitly; |n other words, wheth:r the patterns of graph kernell can be explicitly presented (see (Kriege, Neumann Kersting and Mutzel,
2014) for more detail lysis). The “W. " col | the substructures can be weighted i |n order to obtain a similarity d to the probl at hand,
where “a priori” indicates that the weights are set while constructing kernels. For example, weight 1), in (4) is set to 7/ when constructing the kernel by ic series (see Section 3.1.1).

kernel k. (G, G,) = (®(G,), D(G,)), with

|V><| oo
k(G1,Gy) = D | D ApAl|)
i,j=1 Lh=1 ij

Gy =G xGy

if the limit exists, where A, is the adjacency matrix of the di-
Figure 4: Direct product of fully-labeled graphs rect product graph G. As each component [A,];; indicates
whether an edge exists between vertex v; and v;, [AZ],» ; is
the number of all possible walks of length h from vertex v;

exists if and only if edges exist between their correspond- o v;.

ing vertices in graphs G| and G, while these two edges

have the same label. Figure 4 illustrates the direct prod- In practice, this limit cannot be computed directly. How-
uct Gy x G, of two fully-labeled graphs G, and G,, where ~ ever for A, that satisfies certain properties and certain
{,, |1 = 1,2,...} denotes the set of vertex labels and choices of 4, closed-forms can be constructed for com-

{f |i=1,2,...} the set of edge labels. This definitionis putation. Two examples are given he.re (chirtner et al.,
a generahzatlon of the directed product of unlabeled graphs, 2003‘)5 The first one employs expongntzlal ser1e330f3square
which considers that all vertices and edges have the same la- matrices ef4x = I + A /1! + p AL /2! + PPAS /3! +

bels, and is shown by Figure 2 in (Vishwanathan etal., 2010). ... Computing it normally requires the diagonalization of
Ay as T-'DT, where D is a diagonal matrix, and weight
A bijection exists between every walk in the direct prod- Ay = P"/h! where f is a constant. In this way,

uct graph and one walk in each of its corresponding graphs, k. (G|, G,) = Zl‘;le [T71ePPT];;, where efP can be calcu-
so that labels of all vertices and edges on these walks match lated component-’wise in linear time. Diagonalizing matrix
by order. Consequently, it is equivalent to performawalk on A has roughly a cubic computational complexity. The sec-
a direct product graph and on its two corresponding graphs ond example applies geometric series of matrices. Let the
simultaneously, which makes it possible to compute the ker- weights be 4, = y", where y < 1/ min{A*(G), A~(G)} and
nel between two graphs by ﬁndlng out all walks in their direct A+(G)’ A‘(G) are the maximal Outdegree and indegree of
product graph. The direct product kernel is then designed graph G, respectively. Then the geometric series of a matrix
this way. is defined as I + y' A' + y2A2 + ... The limit of this series
can be computed by inverting the matrix I — y A, which is
roughly of cubic computational complexity.

The common walk kernel constructs an infinite sequence
feature space consisting of all possible walk sequences in
graphs whose lengths are theoretically up to infinity. When
the kernel is represented by exponential or geometric series,
closed-forms are available to compute it in O(n%). However,
these closed-forms require that the coefficient A, has forms
chosen specially to converge, which not only is inflexible,
but also causes the halting problem, excessively restraining
the effect of long walk sequences on the kernel (see Sec-
tion 3.1.4). Moreover, it is still time consuming in practice

Definition 3 (common walk kernel). For a graph G, let
D(G) = (dDS] (@), dDSZ(G), ...) be a map to label sequence
feature space expanded by basis ®g(G), where S =
(81,89, ...) is the set of all possible label sequences of
walks, and ® (G) the feature corresponding to label se-
quence s. For each possible sequence s of length h, ® (G) =
\//1_,,|VVS|, where |Wy| is the number of walks that corre-
spond to the label sequence s in G, and A, € R is some
fixed weight for length h. Then we have the direct product

Linlin Jia et al.: Preprint submitted to Elsevier Page 5 of 16

Graph kernels based on linear patterns

for large-scale graphs and is more likely to induce unneces-
sary artifacts into the kernel due to trivial walks, which are
irrelevant to the task and therefore decrease the accuracy.

3.1.2. Marginalized kernel

The marginalized kernel relies on walks generated using
marginal distributions on some hidden variables (Kashima
et al., 2003), which is constructed as:

KG,Gy=) Jeyy (w1, w02)
w1 EW(G)) w, W (Gy))

- pg,(Wpg, (W),

where W (G) is the set of all walks in graph G, ky, is a
joint kernel between two walks, usually defined as a delta
function of label sequences of the two measured walks.
pg(w) is the probability of traversing walk w in G. If

w = (v, Uy, ..., Uy), then
h
pew) = po@) [] (v lv,-Dpg(wp). 6)
i=2

where p,(v) is the initial probability distribution, indicates
the probability that walk w starts from vertex v; p,(v;|v;_1) is
the transition probability on vertex v;_, describes the prob-
ability of choosing v; as the next vertex of v;_;; the termi-
nation probability p,(v,) gives the probability that walk w
stops on vertex v,. The latter two probability satisfy the re-
lation ij 1 PV o)+ p,(v;) = 1. Without any prior knowl-
edge, p, is set to be uniform over all vertices of graph G,
p;(v;|v;_1) to be uniform over all neighbors of vertex v;_;,
and p, to be a constant.

Kashima et al. (2003) proposed an efficient method to
compute this kernel as

kGG =) s(vy,0}) lim Ry (vy, v)).

vy

/ — / / / /
Where s(vy, v)) = po(.Ul)pO'(Ul)k.U(Ul’UI.) and Ry(vy,v))
is updated recursively in r iterations with Rh(ul,u’l) =
STCITUAREE S Y ZU;E‘,, 1(v;, V), 01, V)R, (03, V),
where

ri(vy, U/l) =4q(vy, Ull) = Ry (v, U/l),
q(vy, V) = py(vp)py(v})
1(v;, U}, 01, U, _y) = py(0; 0,1V Dk (v, 07)

’
ke(eUf—l i eu[’,_l u;)

By applying this method, the computational complexity of
marginalized kernel is the same as solving a linear system
with n? equations and n? unknown variables, which boils
down to O(rn).

3.1.3. Generalized random walk kernel

The generalized random walk kernel, as a unified frame-
work for random walk kernels, was proposed by Vish-
wanathan et al. (2010). Based on the idea of performing

random walks on a pair of graphs and then counting the num-
ber of matching walks, both the common walk kernel and the
marginalized kernel are special cases of this kernel. Besides,
it is proven in the same paper that certain rational kernels
(Cortes, Haffner and Mohri, 2004) also boils down to this
kernel when specialized to graphs.

Similar to the marginalized kernel, the generalized ran-
dom walk kernel introduces randomness with the construc-
tion of graphs’ subpatterns, namely random walks. First,
an initial probability distribution over vertices is given, de-
noted p,, which determines the probability that walks start
on each vertex, same as initial probability distribution py
of marginalized kernels. Then, a random walk generates
a sequence of vertices v; , Viys Vigs oo according to a con-
ditional probability p(iy,; | i) = A; , ;. where A is the
normalized adjacency matrix of the graph. This probabil-
ity plays a similar role as the transition probability p, of
the marginalized kernel, which chooses v; ~as the next
vertex of v; being proportional to the weight of the edge
Vi, ;) namely py(igpy i) = w;, /2 w;.j € N(iy),
where N (i,) is the set of neighbors of the vertex i,. The edge
weight here is a special label which represents the transition
probability from one vertex to another rather than a prop-
erty of the edge itself. Finally, like termination probability
p, of marginalized kernels, a stopping probability distribu-
tion ¢ = (qi] iy -), n, € V is associated with a graph
G = (V,E) over all its vertices, which models the phe-
nomenon where a random walk stops at vertex n; . Both
the initial probability and the stopping probability are prac-
tically set as uniform distribution.

Like the common walk kernel, defining the generalized
random walk kernel takes advantage of the direct product.
However, when performing the transformation, graphs are
considered unlabeled, which is a special case of Definition 2.
It is worth noting that the direct product graph of unlabeled
graphs often has much more edges than the labeled one. The
generalized random walk kernel between two graphs G| and
G, is defined in (Vishwanathan et al., 2010) as

kG, Gy) = f(h)a, Wpy. (7)
h=0

In this expression, f(h) is the weight chosen a priori for ran-
dom walks of length h; p, = py ® py, and g, = q; ® ¢, are
the initial probability distribution and the stopping probabil-
ity distribution on G, respectively, where operator @ de-
notes the Kronecker product and W, € R"™" is the weight
matrix.

Assuming the initial and the stopping probability distri-
butions to be uniform and setting W, as the unnormalized
adjacency matrix of Gy, (7) can be transformed to the com-
mon walk kernel. Meanwhile, applying f(h) = 1 and W,
as a specific form, the marginalized kernel can be recovered
from (7).

The complexity of direct computation is O(N 2n®). Four
methods are presented to accelerate the computation (Vish-
wanathan et al., 2010):

Linlin Jia et al.: Preprint submitted to Elsevier

Page 6 of 16

Graph kernels based on linear patterns

The Sylvester equation method is based on the gener-
alized Sylvester equation M = 2,11 S;MT, + M,,. For
graphs with symbolic edge labels, when f(h) = A, the ker-
nel in (7) can be computed by ql vec(M), with vec(-) the
column-stacking operator and M the solution of the general-
ized Sylvester equation M = Z?zl AAM! A1T+M0, where
d is the number of different edge labels, vec(M,) = py
and A is the normalized adjacency matrix of graph G fil-
tered by the i-th edge label 'Z, of G; namely, ‘A;, = A,
if £,(v;,v) = '¢,, and zero otherwise. When d = 1, this
equation can be computed in cubic time; while its computa-
tional complexity remains unknown when d > 1.

This method does not directly compute weight matrices
of direct product graphs. Benefiting from the Kronecker
product, only (normalized) adjacency matrices of original
graphs are required, which have size of n? and can be pre-
computed for each graph. Besides, computing ql vec(M)
requires O(N2n?) time. Thus for N unlabeled graphs, the
complexity of computing the corresponding Gram matrix is
O(N?n?), which is reduced compared to the direct compu-
tation.

However, it has a strong drawback: libraries currently
available to solve the generalized Sylvester equation, such
as dlyap solver in MATLAB and control. dlyap function in
Python Control Systems Library (Murray et al., 2018), can
only take d as 1, which means the solver is limited to edge-
unlabeled graphs.

The second method is the conjugate gradient method,
which solves the linear system (I — AW,)x = p, for x,
using a conjugate gradient solver, and then computes qI X.
This procedure can be done in O(rn*) for r iterations.

The third method, fixed-point iterations, rewrites (I —
AW)x = py as x = p, + AW, x, and computes x by finding
a fixed point of the equation by iterating x,, | = p,+ AW, x;.
The worst-case computational complexity is @(rn*) for r it-
erations.

The spectral decomposition method applies the Wy, =
P, D, P I decomposition, where the columns of P, are its
eigenvectors, and D, is a diagonal matrix of corresponding
eigenvalues. This method can be performed in O(N2n* +
Nn3) for N graphs.

The generalized random walk kernel provides a quite
flexible framework for walk based kernels (see (7)). How-
ever, the problems lie in the methods to compute the kernel
as introduced above. Despite of the improvement on com-
putational complexity, the shortcomings of these methods
are obvious. First, some methods can only be applied for
special types of graphs. By definition, the Sylvester equa-
tion method can only be applied for graphs unlabeled or with
symbolic edge labels (through possibly edge-weighted). The
symbolic vertex labels of two vertices on an edge can be
added to the edge label of that edge. However, due to the
lack of solvers, no label can be dealt with in practice. The
spectral decomposition method, on the other hand, can only
tackle unlabeled graphs. Secondly, each method is desig-
nated for a special case of the generalized random walk ker-

Figure 5: A tottering example: walk (v, v,, vs, v,) has tottering
between vertices v, and vs, i.e., (vy, Us, U,).

nel. The Sylvester equation method, the conjugate gradient
method and the fixed-point iterations are specified for the ge-
ometric kernel only, namely, f(h) set to A" in (7). The spec-
tral decomposition method works on any f () that makes
(7) converge, but is only efficient for unlabeled graphs.

For conciseness in this paper, the generalized random
walk kernel computed by the Sylvester equation, the conju-
gate gradient, the fixed-point iterations and the spectral de-
composition are denoted as the Sylvester equation kernel,
the conjugate gradient kernel, the fixed-point kernel and the
spectral decomposition kernel, respectively. In our imple-
mentation, uniform distributions are applied by default for
both starting and stopping probabilities (i.e., py and g), as
recommended in (Vishwanathan et al., 2010). Users are able
to introduce prior knowledge with edge weights.

In contrast with the classic walk patterns, a series of
graph kernels have been proposed based on quantum walks.
Bai, Rossi, Torsello and Hancock (2015) and Rossi, Torsello
and Hancock (2013) have introduced a quantum graph
kernel using the quantum Jensen-Shannon divergence and
continunous-time quantum walks. Bai, Rossi, Cui, Zhang,
Ren, Bai and Hancock (2017) and Bai, Rossi, Cui, Cheng
and Hancock (2019) have extended this kernel to discrete-
time quantum walks and for complete weighted graphs,
while Minello, Rossi and Torsello (2019) have considered
both directed and undirected graphs and integrated node-
level topological information while constructing the kernel.
The quantum walk kernels are based on the computation of
the mutual information between a pair of graphs and their
composite graph such as quantum Jensen-Shannon diver-
gence, rather than the similarities between isomorphic sub-
patterns as R-convolution kernels. Due to this reason, we do
not examine quantum walk kernels in this paper.

3.1.4. Problems raised by walks

There are two problems that may lead to worse perfor-
mance of kernels based on walks: tottering and halting. We
discuss these problems in this section.

Tottering. When constructing a walk in a graph, two con-
nected vertices on this walk may appear multiple times as the
transition scheme allows transiting back. This phenomenon,
called tottering, brings tottering artifacts into the walk. As
Figure 5 shows, a tottering brings unnecessary structure to
the pattern and may worsen the performance of graph ker-
nels.

Mahé, Ueda, Akutsu, Perret and Vert (2004) propose a
technique to avoid this problem for the marginalized kernel.
It first transforms each graph G = (V, E) to G' = (V', E’),

Linlin Jia et al.: Preprint submitted to Elsevier

Page 7 of 16

Graph kernels based on linear patterns

with
V' =VUE
E ={(U,(v,t)) | ve V,(U,t)eE} ®

U {((u, 0),@.0) | @), (0.1 € Eu t}

and labels its vertices and edges as follows: For a vertex
o'e V', if v € V, the label £ (V') = £,(V); if V' =
(u,v) € E, then the label Z/(v') = £,(v). For an edge
e = (u’l, U’2) € E’, where U’l € VUE and 0’2 € E, the
label Z/(e’) = fe(v’z). Then it computes the marginalized
kernel between transformed graphs. This extension is able
to remove tottering from walks for the marginalized kernel,
hence enhances the performance of the kernel. However,
this improvement is only minor according to the experiments
(Mahé et al., 2004). Meanwhile, it may significantly enlarge
the size of graphs, bringing computational complexity prob-
lems. For a graph with n vertices, m edges and average ver-
tex degree d, the transformed graph may at most have n + m
vertices and nd + m?* edges, hence the worse case computa-
tional complexity of the kernel is O((n + m)?), which is not
practical for graphs with high average vertex degree. For all
these reasons, experiments conducted in Section 4 evaluate
the conventional marginalized kernel with tottering.

Halting. Besides tottering, a problem called halting may
occur for common walk kernels (Sugiyama and Borgwardt,
2015) where, walk patterns with longer lengths contribute
less to the kernel values. It is as if the common walk halts
after several steps of computation. For example, as shown
in Section 3.1.1, the geometric common walk kernel applies
geometric series as weights for walks with different lengths,
namely 4, = yh, for y < 1. When y is small and 4 is big, 4
becomes significantly small; when y is small enough, walks
of length 1 dominate the other walks in the final results, thus
the kernel is degenerated to the comparison of single vertices
and edges, and most of the structure information is lost.

To overcome these issues, several graph kernels based
on paths have been proposed.

3.2. Graph kernels based on paths
3.2.1. Shortest path kernel

The shortest path kernel is built on the comparison of
shortest paths between any pair of vertices in two graphs
(Borgwardt and Kriegel, 2005). The first step to compute
this kernel is to transform the original graphs into shortest-
paths graphs by Floyd-Warshall’s algorithm (Floyd, 1962).
A shortest-paths graph contains the same set of vertices as
the original graph, while there is an edge between all ver-
tices which is labeled by the shortest distance between these
two vertices. Then the shortest path kernel is defined on the
Floyd-transformed graphs as follows:

Definition 4 (shortest path kernel). Let S| = (V}, E|) and
S, = (V,, E,) be the Floyd-transformed graphs of two
graphs G| and G,, respectively. The shortest path graph

kernel between graphs G| and G, is defined as
k(GG =) Y kylepe), ©)

e|EE; ey€E,
where k,, is a positive semi-definite kernel on length I walks.

The basic definition of k (e, e;) is the product of ker-
nels on vertices and edges encountered along the walk. The
kernel for symbolic vertex labels is usually the delta function
of labels of two compared vertices, while the kernel for non-
symbolic vertex attributes is not given for general cases. In
this paper, we consider the basic definition where the labels
of the compared edges are defined by the weighted lengths
of their corresponding shortest paths. Nevertheless, more
information can be added for more thorough studies (Borg-
wardt and Kriegel, 2005).

The Floyd-Warshall’s algorithm, required in the short-
est path kernel to perform the Floyd-transformation, can be
done in O(»n3). For a connected graph G with n vertices,
its shortest-paths graph S contains n> edges. Assuming
that vertex kernels and edge kernels are computed in O(1),
then pairwise comparison of all edges in two shortest-paths
graphs requires a computational complexity of @(n*), which
is also the complexity to compute the shortest path kernel.

Compared to walks based kernels, the shortest path ker-
nel have some advantages: It avoids tottering while remains
simple both conceptually and practically. However, this
comes with a cost. Its major shortcomings include:

1) It simplifies the graph structure by Floyd transforma-
tion and only considers information concerning shortest dis-
tances. Only attributes of start and end vertices of shortest
paths are considered, while intermediate vertices and edges
are ignored.

2) It cannot deal with graphs whose edges bear attributes
other than distances. Symbolic edge labels are omitted as
well. The loss of structure information may crucially de-
crease the performance accuracy (Borgwardt and Kriegel,
2005).

3) Although non-symbolic vertex attributes are implied,
the kernel for them is not given explicitly for general cases,
and it is not clear how to bind it with the kernel for symbolic
vertex labels. This issue has not been studied properly in
literature nor solved by any Python or C++ implementation
in general case.

To tackle the last issue, our implementation provides a
flexible scheme, where the vertex kernel can be customized
by users. In experiments, we introduce a kernel for vertices
which is a product of two kernels: the delta function for sym-
bolic vertex labels and the Gaussian kernel for non-symbolic
vertex attributes.

3.2.2. Structural shortest path kernel

The structural shortest path kernel is an extension of the
shortest path kernel, as well as a special case of the kernel
on bags of paths (Suard et al., 2007). This kernel takes into
consideration vertices and edges on shortest paths, instead
of the shortest distance between two vertices. As a result,
edge weights cannot be taken into account.

Linlin Jia et al.: Preprint submitted to Elsevier

Page 8 of 16

To construct this kernel, all shortest paths between all
vertices in each graph are obtained, where the Dijkstra’s al-
gorithm is used (Dijkstra, 1959). Then, the kernel function
on any two shortest paths p and p’ of two graphs is defined
as:

kp(P, P/) = ku(fu(vl)7 l’ﬂy(U,l))
| J 2O AN A AN RCRCHRACHE
i=2
(10)

where v; and U;, fori = 1,2,...,n, are vertices on paths
pand p’, Z,(-) and Z,(-) are label functions of vertices and
edges, and functions k, and k, are kernels on labels of ver-
tices and edges, respectively. In general, these two kernel
functions are simply defined as the delta function for sym-
bolic labels and the Gaussian kernel for non-symbolic labels,
which will be multiplied if both symbolic and non-symbolic
labels exist.

The structural shortest path kernel can then be derived
from k,, given in (10). Here we use the simple and straight-
forward mean average kernel:

km(Gl,Gz)=inL > Y kpnp) (11)

M2 pep, PiEP,

where P; and P, are respectively the shortest path sets of
graphs G| and G,. Other approaches can also be applied,
such as the max matching kernel and the path level-set based
kernel (Suard et al., 2007).

Given graphs with n vertices and m edges, the compu-
tational complexity of repeated Dijkstra’s algorithm using
Fibonacci heaps is O(n? logn + nm) (Bajema and Merlin,
1987). The complexity to match all paths in two graphs
is O(hn*), where h is the average length of shortest paths.
Hence the complexity of the kernel computation is O(hn* +
nm).

Compared to the shortest path kernel, the structural
shortest path kernel involves more structural information.
However, since both kernels adopt only the shortest paths,
structures of other paths are still hidden. The path kernel
allows to overcome this issue.

3.2.3. Path kernel up to length h

The path kernel compares all possible paths rather than
the shortest ones (Ralaivola et al., 2005). The simple path
kernel between graphs G and G, is defined as

kpp(Gy, Gy) = $,(G)P,(Gy), (12)
PEP(G)UP(Gy)

where P(G) is the set of all paths in graph G, and qﬁp(G)
denotes the feature map of path p for graph G. Two defini-
tions of ¢,(G) are provided, the binary feature map, where
¢,(G) = 1p(p), and the counting feature map, defined as
#,(G)={p|p € PG}

Based on the definitions of ¢,(G), different types of path
kernels can be constructed. The Tanimoto kernel, based on

the binary feature map, is defined as

k(G Gy)
kph(Gl, G+ kph(Gz, G,) — kph(G] , Gz)’

k;h(Gl, G,) =

where k ph (G, Gy) is the kernel defined as (12) correspond-
ing to the binary feature map. When ¢,(G) takes the form
of the counting feature map, then the MiniMax kernel can
be constructed as

2 0eP(G,)uP(Gy) MIN(P,(G1), ,(Gr)
ZpeP(Gl)uP(Gz) max(¢,(G), ¢,(G,)) '

K" (Gy.Gy) =

These two kernels are related to the Tanimoto similarity
measure in the chemistry literature, and provide normaliza-
tion for the path kernel. While the MiniMax kernel consid-
ers the frequency of each path rather than just its appearance,
it measures more precisely the similarity between graphs of
different sizes.

Similar to walks in the common walk kernel, the number
of paths in a graph can be infinite. However, unlike the com-
mon walk kernel, no closed-form solution has been raised
up for this phenomenon in the path kernel. The Depth-first
search scheme is then applied to find all paths, which limits
the maximum length of paths to the depth 4. Our implemen-
tation applies a trie data structure to store paths in graphs,
which saves tremendous memory compared to direct saving,
especially when label set is small (Fredkin, 1960). Thus, the
path kernel between two graphs is computed in O(h2n%d?").

The path kernel up to length 4 encodes information of
all paths no longer than £ in a graph, which is more expres-
sive than other kernels based on paths. Yet the limitation of
paths’ maximum length may be a significant drawback, espe-
cially for the running time and memory usage in large-scale
graphs.

In order to analyze and compare the performance of
the aforementioned graph kernels, we implemented them in
Python. Several methods are applied to accelerate the com-
putation of the kernels in the implementation.

4. Experiments and Results

In this section, we first introduce several benchmark
datasets corresponding to different types of graphs. These
types include labeled and unlabeled graphs, with symbolic
and non-symbolic attributes, different average vertex num-
bers, different average vertex degrees, linear, non-linear and
cyclic patterns. Then we introduce the computational set-
tings. Finally, we perform each graph kernel on each dataset
and analyze the accuracy and computational complexity ac-
cording to the types of graphs, offer advice to choose graph
kernels based on the type of datasets and discuss which ones
work on particular graphs.

4.1. Datasets and settings
We examine 11 well-known benchmark datasets for
both regression and classification tasks. Alkane (Cherqaoui

Linlin Jia et al.: Preprint submitted to Elsevier

Page 9 of 16

Graph kernels based on linear patterns

Table 2

Structures and properties of real-world graph datasets.

Substructures Numbers of Labels al
Datasets linear non-linear cyclic symholic non-symbolic Directed N 4 n d Numassers Tasks
vertices edges vertices edges
Alkane v v X X X X X X 150 8.87 7.87 1.75 - R
Acyclic v v X 3 X X X X 183 8.15 7.15 1.47 - R
MAO v v v 3 4 X X X 68 18.38 19.63 2.13 2 C
PAH v v v X X X X X 94 20.70 2443 236 2 C
Mutag v v v 7 11 X X X 188 17.93 19.79 2.19 2 C
Letter-med v v v X X 2 X X 2250 4.67 3.21 1.35 15 C
Enzymes v v v 3 X 18 X X 600 32.63 62.14 3.86 6 C
AIDS v v v 38 3 4 X X 2000 15.69 16.20 2.01 2 C
NCI1 v v v 37 X X X X 4110 29.87 3230 216 2 C
NCI109 v v v 38 X X X X 4127 29.68 3213 215 2 C
D&D v v v 82 X X X X 1178 284.32 715.66 4.98 2 C

bers of symbolic and bolic vertex and edge labels, with x for no label;

“Substructures” are the sub-patterns that graphs contain; “Numbers of labels” include
“Dii {" exhibits whether di graphs are included; N is the
d is the average vertex degree; tasks are either regression ("R") or classifi

and Villemin, 1994), Acyclic (Cherqaoui, Villemin, Mes-
bah, Cense and Kvasnicka, 1994), PAH (Brun, 2018), Mu-
tag (Debnath, Lopez de Compadre, Debnath, Shusterman
and Hansch, 1991), AIDS (Riesen and Bunke, 2008), NCI1
and NCI109 (Wale, Watson and Karypis, 2008) are chemi-
cal compounds; MAO (Brun, 2018), Enzymes (Schomburg,
Chang, Ebeling, Gremse, Heldt, Huhn and Schomburg,
2004; Borgwardt, Ong, Schonauer, Vishwanathan, Smola
and Kriegel, 2005) and D&D (Dobson and Doig, 2003) are
enzymes and proteins; Letter-med (Riesen and Bunke, 2008)
involves graphs of distorted letter drawings. See (Kersting,
Kriege, Morris, Mutzel and Neumann, 2016) for more de-
tails. These datasets are chosen as they come from different
fields, such as bioinformatics and handwriting recognition,
and have different properties that allow to provide an exten-
sive analysis of graph kernels. Table 2 outlines the proper-
ties of these datasets.

The criteria used for prediction are SVM for classifi-
cation and kernel ridge regression for regression. A two-
layer nested cross validation (CV) method is applied to se-
lect and evaluate models as follows. In the outer CV, the
whole dataset is first randomly split into 10 folds, nine of
which serve for model validation and one for an unbiased
estimate of the accuracy. Then, in the inner CV, the vali-
dation set is split into 10 folds, nine of which are used for
training, and the remaining split is used for evaluating the
tuning of the hyper-parameters. This procedure is repeated
30 times, a.k.a. 30 trials, and the final results correspond to
the average over these trials.

The machine used to execute the experiments is a clus-
ter with 28 CPU cores of Intel(R) Xeon(R) E5-2680 v4
@ 2.40GHz, 252GB memory, and 64-bit operating system
CentOS Linux release 7.3.1611. All results were run with
Python 3.5.2.

4.2. Performance analysis

Tables 3 and 4 gather the performances of all these ker-
nels on all datasets for regression and classification tasks,
respectively. It can be seen that, generally speaking, graph

y
of graphs; 7 is the average number of graph vertices; /i is the average number of edges;

kernels based on paths have better accuracy than those based
on walks for both regression and classification tasks, proving
that the application of walk patterns are constrained by their
common shortcomings, such as tottering and halting. More-
over, due to their mathematical structures, the common walk
kernel and the marginalized kernel are two of the slowest to
compute. For relatively large datasets, such as Enzymes, the
average time to compute Gram matrices for these two ker-
nels are more than 60 times of that of the fastest kernels.
For even larger datasets, such as NCII, NCI109 and D&D,
these two kernels are ignored in our experiments due to their
expensive time complexity. As aresult, these two kernels are
not recommended to be applied in real tasks, but better con-
sidered baselines to test the performance of new constructed
kernels.

Among other kernels based on walks, the Sylvester equa-
tion kernel and the spectral decomposition kernel cannot
tackle any labeling information. On unlabeled graphs, such
as Alkane and PAH, accuracies that they provide are note-
worthy; however under other circumstances, the conjugate
gradient kernel and the fixed-point kernel may offer better
accuracies. The latter two kernels are able to tackle sym-
bolic and non-symbolic labels on both vertices and edges,
therefore are among the best kernels based on walks with
respect to accuracy on all considered datasets. Their accura-
cies are sometimes competitive with those of kernels based
on paths, such as on Mutag and Letter-med datasets.

Among kernels based on paths, the shortest path kernel
and the structural shortest path kernel provide the ability to
tackle symbolic and non-symbolic labels. The latter takes
more structure information into consideration than the for-
mer one, thus yields higher accuracy on most datasets while
requiring much more computational resources. The path
kernel up to length £ is capable of tackling symbolic labels
only, where it offers the best accuracy in most cases. More
importantly, due to its relatively low computational com-
plexity, it is possible to apply this kernel to large datasets,
such as D&D, whose average number of vertices is 284.32.

Tables 3 and 4 exhibit additionally performance of

Linlin Jia et al.: Preprint submitted to Elsevier

Page 10 of 16

Graph kernels based on linear patterns

Table 3
Results of all graph kernels on datasets for regression tasks

Datasets Kernels Train Perf Valid Perf Test Perf Parameters Tem ta ‘
Common walk 6.76+0.72 10.79+2.08 15.52+15.10 method: geo, y: 0.06, a: 1le-10 2.24"/3.04"+0.83" 184.17" 1
Marginalized 41.82+2.41 42.38+2.16 43.75+18.88 iter: 16, p,: 0.1, a: le-10 4.68"/3.25"+1.48" 330.01" 2
Sylvester equation 6.89+0.35 12.60+1.28 8.97+8.84 4: 0.01, a: 3.16e-9 0.37"/0.38"+0.02" 20.11" 3
Conjugate gradient 7.17+0.48 12.37+1.56 11.13+11.10 A: 0.1, a: 1e-8 0.76"/0.66"+0.04" 26.19" 4
Fixed-point iterations 14.66+0.38 17.35+0.91 12.78+2.33 A 1le-3, a: 1e-8 0.64"/0.60"+0.06" 20.28" 5
Alkane Spectral decomposition 10.62+0.36 13.33+1.13 12.95+6.74 A: 0.1, a: 1le-10 0.59"/0.65"+0.08" 43.84" 6
Shortest path 7.87+0.16 8.76+0.22 7.81+1.51 a: le-8 0.75" 3.23" 7
Structural SP 7.89+0.17 11.04+0.30 8.65+1.55 a: 0.1 1.05" 3.20" 8
Path up to length h 0.52+0.03 6.96+1.04 9.00+12.87 h: 9, k_func: MinMax, a: 3.16e-3 0.48"/0.51"+0.04" 52.20" 9
Treelet 1.10+0.04 2.57+0.21 2.53+1.32 kernel: gaussian, y: le-6, a: 1le-10 0.48"/0.50"+0.04" 212.68" | 10
WL subtree 5.22+0.11 21.99+4.36 26.42+41.59 height: 2, a: 3.16e-4 0.38'"/1.45"+0.89" 53.65" 11
Common walk 7.60+0.22 12.77+1.00 12.93+3.91 method: geo, y: 0.04, a: 1le-8 1.84"/2.27"+£0.47" 177.87" | 12
Marginalized 11.17+0.42 17.77+1.50 18.77+3.75 iter: 19, p,: 0.3, a: le-5 6.66"/4.16"+1.93" 400.54" | 13
Sylvester equation 30.75+0.50 31.83+0.49 32.50+4.30 4: 0.01, a: 3.16e-10 0.41"/0.66"+0.83" 24.71" 14
Conjugate gradient 9.07+0.31 12.81+0.81 13.15+3.64 4: 0.01, a: 3.16e-9 0.95"/0.92"+0.12" 31.89" | 15
Fixed-point iterations 11.30+0.72 13.06+0.97 14.20+5.93 A: le-3, a: 3.16e-9 0.87"/0.77"+0.11" 23.28" 16
Acyclic Spectral decomposition 30.97+0.48 31.90+0.60 33.05+4.34 A: 0.1, a: 1e-9 0.96"/0.79"+0.11" 50.60" 17
Shortest path 6.28+0.21 9.77+0.68 9.03+2.36 a: le-3 0.84" 3.15" 18
Structural SP 3.78+0.13 12.62+1.12 13.10+4.78 a: le-3 1.73" 443" 19
Path up to length h 1.89+0.14 6.83+0.43 6.66+1.63 h: 2, k_func: MinMax, a: 3.16e-3 0.50"/0.50"+0.04" 55.38" | 20
Treelet 3.38+0.16 6.16+0.39 5.99+1.45 kernel: poly, d: 1, ¢: 1le+3, a: 1e-3 0.51"/0.49"+0.02" 274.67" | 21
WL subtree 13.19+0.63 16.88+1.02 19.80+6.12 height: 1, a: 3.16e-10 0.37"/2.18"+1.32" 78.12" 22
“Parameters’ indi the hyper-p: s values sel d by CV, with grid search values of « and C being [1e-10, 1e-9.5,, 1e10]. Ranges of all the parameters can be found in the
demos of our Python library. 1), is the time to compute Gram matrix/matrices in seconds. Note for kernels which need to tune hyper-p that are required to compute Gram
matrices, multiple Gram matrices are computed, and average time and its fid are obtained over the hyper-parameter grids, which are shown after the label “/". The

time shown before “/" is the one spent on building the Gram matrix corresponding to the best test performance. Once hyper-parameters are fixed, learning is only performed on a single
Gram matrix. 1, exhibits the total time consumed to compute Gram matrix/matrices as well as to perform model selection for each kernel. For regression tasks (Acyclic and Alkane in this
Table), the performances are given in terms of errors of boiling points. The last column is the row number.

two well-known graph kernels based on non-linear pat-
terns, namely the treelet kernel (Gaiizere, Grenier, Brun
and Villemin, 2015) (see also (Bougleux, Dupé, Brun and
Mokhtari, 2012; Gaiizere et al., 2012)) and the Weisfeiler-
Lehman (WL) subtree kernel (Shervashidze, Schweitzer,
Leeuwen, Mehlhorn and Borgwardt, 2011) (see also (Mor-
ris, Kersting and Mutzel, 2017)). Several graph kernels
based on linear patterns, especially paths, provide compet-
itive or even higher accuracies than these two kernels. On
MAO dataset, the common walk kernel achieves 93% accu-
racy (Table 4, Line 1), which is comparable to the accuracy
of the WL subtree kernel (93.05%, Table 4, Line 11) and is
higher than that of the treelet kernel (91.19%, Table 4, Line
10). The shortest path kernel achieves the highest accuracy
on dataset Enzymes (70.09%, Table 4, Line 49), which is
about 20% higher than the treelet kernel and the WL subtree
kernel (Table 4, Lines 51 and 52). The structural shortest
path kernel has the equivalent accuracy as the WL subtree
kernel on PAH (Table 4, Lines 19 and 22). The path kernel
up to length A achieves equivalent or higher accuracy with
runtime comparable to or lower than kernels based on non-
linear patterns, on the datasets Acyclic, PAH, Mutag, En-
zymes, as well as larger datasets such as AIDS, NCI1, NCI109
and D&D. On the AIDS dataset, all exhibited kernels have
comparable accuracies (Table 4, Lines 53 to 57).

The treelet kernel and the WL subtree kernel are not
able to tackle non-symbolic labels. More recent work is
able to tackle this problem (see (Morris, Kriege, Kersting
and Mutzel, 2016) for instance), which may affect the per-
formance of these kernels on datasets such as Letter-med,
Enzymes and AIDS. However, on other datasets that do not
contain non-symbolic labels, the performance will remain

the same, and the aforementioned analyses still stand.

According to average graph vertex numbers 7, datasets
of classification tasks in Table 2 can be classified into
small graphs (including Letter-med), big graphs (including
D&D) and medium graphs (including all the rests). Fig-
ures 6(a)(b)(c) exhibit the time complexity and classification
accuracies of all kernels on these datasets. For small datasets
(Letter-med), the kernels based on shortest paths, the conju-
gate gradient kernel and the the fixed-point kernel achieve
the best compromise between computational complexity and
accuracy. Kernels based on non-linear patterns are omitted
as they are not suitable for Letter-med dataset (Figure 6(a)).
As sizes of graphs grow, kernels based on walks, paths and
non-linear patterns may all have good trade-offs between
computational complexity and accuracy for certain datasets
(Figure 6(b)). Accuracies of the latter two groups of ker-
nels are higher in general. On the big dataset D&D, the path
kernel up to length A performs better than the WL subtree
kernel (Figure 6(c)).

Figure 6(d) compares the average of computational com-
plexity and classification accuracies over all classification
datasets of each kernel. Note that for datasets Letter-med
and Enzymes, kernels that cannot tackle non-symbolic labels
are omitted. We provide general conclusions on these graph
kernel. From a global viewpoint, all kernels provide a good
accuracy on all datasets. We can see that the marginalized
kernel has the worse accuracy, with some regular computa-
tional time. The structural shortest path kernel provides the
best accuracy in general, the price to pay being its computa-
tional complexity. The Sylvester equation kernel, the spec-
tral decomposition kernel and the path kernel up to length
h have good compromise between time complexity and ac-

Linlin Jia et al.: Preprint submitted to Elsevier

Page 11 of 16

Graph kernels based on linear patterns

Table 4
Results of all graph kernels for classification tasks (accuracy in percentage)

Datasets ~ Kernels Train Perf Valid Perf Test Perf Parameters tom tal
Common walk 98.26+0.34 90.62+2.28 93.00+8.16 method: exp, f: 6, C: 3.16e+2 10.48"/6.47"+4.07" 1185.16" 1
Marginalized 97.29+1.12 88.37+3.20 85.62+12.25 iter: 7, p,: 0.5, C: le+7 4.24"/4.85"+2.26" 5609.37" 2
Sylvester equation 90.72+1.40 87.09+2.67 84.52+13.23 4: 0.1, C: le+7 0.37"/0.34"+0.03" 21.07" 3
Conjugate gradient 98.15+0.47 86.41+3.71 88.57+10.93 A: 0.1, C: 3.16e+6 0.86"/0.77"+0.04" 73.95" 4
Fixed-point iterations 82.44+1.30 78.27+3.00 73.71+11.86 A le-3, C: 1le+10 1.05"/0.94"+0.15" 21.99" 5
MAO Spectral decomposition ~ 79.50+1.78 79.33+1.92 77.67+15.93 4: 1le-7, C: 3.16e+9 0.34"/1.38"+1.06" 55.28" 6
Shortest path 97.43+0.76 88.51+2.10 87.81+7.38 C: 3.16e+3 1.79" 3.82" 7
Structural SP 96.70+0.76 90.79+2.44 91.62+9.16 C: le+3 7.63" 9.60" 8
Path up to length A 98.20+1.00 91.11+2.59 85.43+12.60 h: 9, k_func: MinMax, C: 10 1.03"/0.72"+0.22" 52.21" 9
Treelet 97.71+0.62 90.92+2.49 91.19+9.74 kernel: poly, d: 4, c: 1le+7, C: le+2 0.48"/0.52"+0.05" 1091.97" 10
WL subtree 95.90+0.84 90.70+2.00 93.05+8.66 height: 6, C: 10 0.43"/0.56"+0.36" 29.82" 11
Common walk 76.26+1.31 72.44+2.24 71.80+11.81 method: geo, y: 0.11, C: 3.16e+4 11.59"/36.39"+23.57" 1574.13" 12
Marginalized 63.37+2.20 63.52+2.18 57.67+18.51 iter: 4, p,: 0.4, C: 1e-5 7.88"/11.27"+5.42" 827.50" 13
Sylvester equation 74.47+1.30 71.88+2.51 71.50+12.36 4: 0.1, C: le+4 0.37''/0.38"+0.05" 43.13" 14
Conjugate gradient 75.62+2.08 71.69+2.49 73.93+13.89 A: 0.1, C: 3.16e+4 1.57"/1.37"+0.12" 68.17" 15
Fixed-point iterations 63.29+1.80 63.39+1.93 58.33+15.10 A le-4, C: 1e-8 2.46"/1.79"+0.44" 30.33" 16
PAH Spectral decomposition 73.54+1.61 71.09+3.29 70.73+12.70 4: 0.1, C: 3.16e+5 0.45"/2.33"+1.91" 78.05" 17
Shortest path 79.53+1.26 76.66+2.55 69.40+11.57 C: 3.16e+2 2.30" 329.48" 18
Structural SP 77.39+1.85 74.22+2.50 74.50+13.39 C: 3.16e+2 20.91" 776.99" 19
Path up to length h 76.33+1.61 72.51+2.34 75.27+13.72 h: 1, k_func: MinMax, C: 10 0.53"/0.53"+0.04" 49.26" 20
Treelet 82.89+1.64 70.66+3.23 66.30+12.68 kernel: gaussian, C: le+3 0.58"/0.58"+0.04" 8419.49" 21
WL subtree 100.00+0.00 77.86+2.62 75.93+10.83 height: 14, C: le+2 1.86"/0.94"+0.66" 37.39" 22
Common walk 91.88+0.98 88.09+1.31 85.96+7.92 method: geo, y: 0.02, C: le+4 9.86"/19.02"+8.71" 2945.88" 23
Marginalized 86.07+0.91 78.84+1.52 76.11+7.90 iter: 7, p,: 0.8, C: le+6 19.72"/23.04"+11.57" 72207.27" 24
Sylvester equation 84.89+1.24 83.58+1.90 82.77+7.23 4: 0.1, C: 3.16e+3 0.51"/0.50"+0.03" 56.55" 25
Conjugate gradient 92.19+0.76 87.14+1.60 86.18+5.83 A: 1e-3 C: 3.16e+6 2.84"/2.73"+0.09" 74.39" 26
Fixed-point iterations 92.31+0.73 87.34+1.51 86.58+6.66 A 1le-3, C: le+6 4.25"/3.35"+0.62" 45.36" 27
Mutag Spectral decomposition 83.71+0.90 83.41+1.14 84.05+7.85 A: 1le-7, C: 3.16e+8 0.92"/5.94"+5.14" 159.06" 28
Shortest path 98.23+0.40 84.39+2.35 81.84+6.63 C: le+3 4.89" 7.58" 29
Structural SP 100.00+0.00 84.66+1.57 86.26+5.14 C: 3.16e+9 68.85" 71.18" 30
Path up to length h 96.06+0.55 89.89+1.29 88.47+5.84 h: 2, k_func: MinMax, C: le+8 0.52"/0.86"+0.35" 51.17" 31
Treelet 98.88+0.25 90.33+1.45 90.79+4.62 kernel: poly, d: 3, c: 1le+8, C: 3.16e+1 0.55"/0.57"+0.04" 152.88" 32
WL subtree 92.72+0.72 87.24+1.36 87.18+5.69 height: 1, C: 3.16e+4 0.33"/1.56"+1.07" 41.27" 33
Common walk 39.40+0.34 36.53+0.72 36.16+2.94 method: geo, y: 0.11, C: 3.16e+6 95.77"/102.20"+6.58" 377412.73" | 34
Marginalized 7.70+0.10 5.59+0.60 5.20+0.82 iter: 4, p,: 0.8, C: le+10 75.03"/120.94"+60.63" 216051.89" | 35
Sylvester equation 39.14+0.31 36.26+0.65 37.27+1.93 4: 0.1, C: le+6 13.76"/13.63"+0.50" 29832.59" | 36
Conjugate gradient 98.32+0.11 92.73+0.32 93.12+1.28 A: 0.1, C: le42 100.80"/92.35"+4.09" 3281.90" 37
Letter-med Fixed-point iterations 97.02+0.14 91.45+0.37 91.30+1.56 A: le-4, C: le+5 78.45"/70.97"+7.07" 2481.78" 38
Spectral decomposition 38.44+0.41 36.10+1.10 36.38+2.61 4: 0.1, C: 3.16e+6 56.87"/60.19"+3.24" 27308.51" | 39
Shortest path 98.96+0.07 93.87+0.29 93.72+1.12 C: 10 36.98" 255.48" 40
Structural SP 99.10+0.08 94.84+0.23 94.88+1.24 C: 10 41.92" 257.96" 41
Path up to length h 49.62+0.29 45.73+0.71 43.83+2.31 h: 9, k_func: MinMax, C: le+7 11.98"/12.08"+0.20" 4707.17" 42
Common walk 71.86+0.94 42.01+1.44 42.81+4.66 method: geo, y: 0.03, C: le+5 907.43"/7960.34"+3246.14" 510920.78" | 43
Marginalized 68.52+0.78 45.72+1.51 45.92+4.79 iter: 19, p,: 0.1, C: le+4 2426.77"/1513.51"+743.16" 96652.44" 44
Sylvester equation 27.53+0.61 22.83+1.19 23.24+4.42 4: 0.01, C: 3.16e+6 5.19"/5.20"+0.05" 1019.81" 45
Conjugate gradient 100.00+0.00 61.97+1.33 60.89+5.62 A: le-5, C: 1le+6 416.47"/418.57"+4.48" 4309.13" 46
Enzymes Fixed-point iterations 100.00+0.00 61.35+0.98 63.11+3.83 A: le-4, C: le+5 741.70"/610.72"+£102.94" 4978.36" 47
Spectral decomposition 27.09+0.72 23.15+1.59 23.68+3.87 4: 0.1, C: le+8 4939.35"/2493.84"+2486.74" 57494.36" | 48
Shortest path 100.00+0.00 68.86+1.91 70.09+4.20 C: le+6 704.54" 717.35" 49
Path up to length h 100.00+0.00 57.53+1.53 57.49+5.19 h: 10, k_func: MinMax, C: 3.16e+2 911.77"/142.91"+279.98" 3123.30" 50
Treelet 99.02+0.14 51.17+1.53 52.23+3.94 kernel: poly, d: 2, ¢: 1e+10, C: 3.16e+2 120.15"/121.08"+0.71" 16576.86" | 51
WL subtree 100.00+0.00 51.81+1.28 50.76+5.98 height: 4, C: 3.16e+2 19.88"/25.70"+17.76" 433.76" 52
Shortest path 99.91+0.02 99.13+0.11 99.26+0.55 C: 10 892.26" 994.27" 53
Structural SP 99.80+0.03 98.90+0.10 98.84+0.63 C: 3.16 8021.98" 8125.28" 54
AIDS Path up to length h 99.70+0.04 99.64+0.07 99.65+0.40 h: 1, k_func: MinMax, C: 3.16 5.09'"/38.60"+28.42" 2826.33" 55
Treelet 99.92+0.03 99.54+0.08 99.54+0.36 kernel: poly, d: 1 ¢: 1le+3, C: 3.16e+2 8.27"/7.46"+0.49" 5692.29" 56
WL subtree 99.97+0.02 98.74+0.09 98.63+0.67 height: 10, C: 10 325.07"/164.66"+105.33" 2657.85" 57
Structural SP 92.75+0.13 80.13+3.86 79.88+1.71 C: 3.16e+2 132848.44" 135483.96" | 58
NCil Path up to length h 97.86+0.09 84.22+0.37 84.84+1.79 h: 10, k_func: MinMax, C: 3.16 305.64"/108.88"+90.97" 16933.64" | 59
Treelet 64.96+0.38 64.76+0.39 64.84+2.16 kernel: gaussian, y: 1le-3, C: 3.16e-2 30.14"/29.95"+0.27" 7062.45" 60
WL subtree 99.59+0.04 85.12+0.38 84.63+1.58 height: 8, C: 10 1705.20"/1039.54"£722.29" 17484.36" | 61
Structural SP 89.16+0.21 78.89+0.40 79.04+1.80 C: 10 134539.59" 141844.22" | 62
NCI109 Path up to length h 97.97+0.08 83.77+0.26 83.94+1.40 h: 10, k_func: MinMax, C: 3.16 311.85"/111.22"+92.84" 17261.64" | 63
Treelet 64.37+0.23 64.31+0.23 63.46+2.06 kernel: gaussian, y: 1le-3, C: le-2 30.19"/29.86"+0.25" 7064.00" 64
WL subtree 99.41+0.05 85.14+0.30 85.47+1.58 height: 7, C: 10 1441.58/1018.67"+709.73" 17308.16" 65
D&D Path up to length i 100.00+0.00 80.92+0.58 81.40+3.68 h: 2, k_func: MinMax, C: le+2 192.11""/472.38"+638.44" 1560.70" 66
WL subtree 100.00+£0.00 79.36+0.52 77.30+3.76 height: 6, C: le+3 1062.89"/886.16"+83.81" 10143.36" | 67

Same legends as Table 3. For the large-scale datasets, graph kernels are neglected if their time or memory consumption are much higher than other kernels.

curacy. Kernels based on non-linear patterns are among the
best trade-offs; meanwhile, the Sylvester kernel, the conju-
gate gradient kernel, the shortest path kernel, and the path
kernel up to length A achieve competitive or better trade-
offs. Based on this analysis, before choosing a graph kernel,
one can have a rough expectation of its performances.

We then further analyze these kernels based on different
types and characteristics of datasets.

4.2.1. Labeled and unlabeled graphs
To study the influence of labeling on performance of
graph kernels, we examine 3 datasets that have similar prop-

Linlin Jia et al.: Preprint submitted to Elsevier

Page 12 of 16

Graph kernels based on linear patterns

(a) Small graphs (b) Medium graphs

10° 5 106 5
+ +
» >
10° 4 105 4 ¥
Y < '* » x
< ¢ A 4 -
104 4 10* 4 x g
X 5y X
v *-Y*r‘ i
10 4 10% 4 e
A <
'2 hd ay <f<
£ 2 < o
107 4 102 4 4 <
@
2 .
810! u y u + 10! T T
a 0 25 50 75 100 0 25 75 100
) (c) Big graphs (d) Average performance
5106 4 9 grap 10° 4 gep
e
o
©10° § +
o 10° 4
g
10% 4 R .
10% 4 v =
S N a X
103 4 X
hd
103 4
102 4 < .
10t T T T 102 T T T 1
0 25 50 75 100 70 75 80 85 90
accuracy(%)
e common walk v fixed-point » path up to length h
marginalized ¥ spectral decomposition + treelet
» Sylvester equation ~ shortest path X WL subtree
A conjugate gradient < structural SP

Figure 6: Comparison of computational complexity versus ac-
curacies of all graph kernels on small (a), medium (b) and big
(c) datasets, as well as the average performance of each kernel
over all datasets (d). Markers correspond to different kernels;
Colors blue, green and red depict graph kernels based on walks,
paths and non-linear patterns, respectively.

erties (e.g. i1, m and d in Table 2), except for labeling: PAH
is unlabeled, MAO has 3 symbolic vertex labels and 4 sym-
bolic edge labels, and Mutag has 7 symbolic vertex labels
and 11 symbolic edge labels.

Figure 7 exhibits the accuracy of each kernel and the av-
erage time to compute each kernel between a pair of graphs.
We can see that for almost all kernels, the classification ac-
curacy on dataset PAH are significantly lower and the con-
fidence intervals around them are wider than the other two
datasets, as PAH contains no labeling information. On each
dataset, accuracies of kernels based on walks, paths and non-
linear patterns are competitive. Meanwhile, the second fig-
ure exhibits the influence of graph structures on time com-
plexity. Take the common walk kernel for instance, whose
time complexity is in O(n®), the runtime on MUTAG is the
shortest and on PAH is the longest due to the different av-
erage number of graph vertices of each graph. The runtime
for each dataset are also consistent with computational com-
plexity of each kernels in Table 1. The Sylvester equation
kernel and the path kernel up to length 4 have competitive
speed with kernels based on non-linear patterns with equiv-
alent accuracies.

4.2.2. Graphs with symbolic and non-symbolic labels
Non-symbolic labels are able to introduce continuous at-
tributes to graphs. Among all graph kernels, the shortest
path kernel is able to tackle symbolic and non-symbolic ver-
tex labels, whereas the conjugate gradient kernel, the fixed-

Accuracy

100

0 ‘“ "‘ |||

accuracy(%)
o o]
o o

N
o

N
o

PAH MAO MUTAG
Runtime
1072
0
2
Q
o
o
k)
= 1073
©
o
o
ﬂJ
o
a
[
£ 10 I I
=
=
5
) I
Ll |
PAH MAO MUTAG

datasets
common walk fixed-point iterations
marginalized spectral decomposition
Sylvester equation I shortest path
conjugate gradient ~ WM structrual sp

path up to length h
BN treelet
WL subtree

Figure 7: Comparison of accuracy and runtime of all kernels on
unlabeled (PAH) and labeled datasets (MAO, Mutag). Accuracy
is the mean value on 30 trials (pillars), with confidence interval
around it (error bars).

point kernel and the structural shortest path kernel can deal
with both non-symbolic labels of vertices and edges. From
available datasets, Letter-med and Enzymes contain non-
symbolic vertex labels. We compute accuracy and time com-
plexity of each kernel aforementioned on these 2 datasets,
then we remove the non-symbolic labels from the datasets
and compute the performance again.

Figure 8 shows that, with non-symbolic labels, classifi-
cation accuracy of all kernels exceeds 90% on dataset Letter-
med, and more than 60% on dataset Enzymes; these accura-
cies drop to about 35% when non-symbolic labels are re-
moved, which are still better than random assignments be-
cause of the large numbers of competing classes (15 and 6,
respectively). It reveals how these graph kernels can take
advantage of non-symbolic labels, which carry out essential
information of dataset structures. This consequence is cor-
roborated by the results revealed in Table 4 where graph ker-
nels that cannot tackle non-symbolic labels work poorly on
Letter-med and Enzymes, such as the common walk kernel
and the marginalized kernel.

As a result, non-symbolic labels should always be well
examined before designing graph kernels. When only lin-
ear patterns are included, the shortest path kernel, the conju-
gate gradient kernel, the fixed-point kernel and the structural
shortest path kernel would be the first to consider.

We then split datasets of classification tasks in Table 2
into 2 groups: graphs containing non-symbolic labels (in-
cluding Letter-med, Enzymes, AIDS) and those with only
symbolic labels (including all the rests). Figure 9 exhibits

Linlin Jia et al.: Preprint submitted to Elsevier

Page 13 of 16

100

80

accuracy(%)

all labels

._.
2
L

,_.
2
&

Runtime(s) per pair of graphs
= =
=) =)
b L

all labels

EEE conjugate gradient, Letter-med
B fixed-point iterations, Letter-med

shortest path, Letter-med
structrual sp, Letter-med

Accuracy

Runtime

labels
|
|

Graph kernels based on linear patterns

4l
60
40
1
|
20 I
0

symbolic labels only

symbolic labels only

conjugate gradient, Enzymes
fixed-point iterations, Enzymes
shortest path, Enzymes
structrual sp, Enzymes

Figure 8: Comparison of accuracy and runtime of graph kernels
on datasets with and without non-symbolic labels. The last
pillar was removed due to its high computational time.

Contain non-symbolic labels

Symbolic labels only

0 106 5
A
£ : > > + . +
§ 105 4 . <& 105 4 ¥
4 4 4 * A 4)-+
8 10% 5 % X 104 o
S X %
0 . A VoNR A
§10° 4 x 102 4 ,(*-:
5 ~ . < < 4+ <*
E 102 5 + < 102 5 .
= .
S10t10t ; . . |
0 25 50 75 100 0 25 50 75 100
accuracy(%)
¢ common walk fixed-point » path up to length h
spectral decomposition + treelet

» Sylvester equation X WL subtree

A conjugate gradient

shortest path

v
4 marginalized ¥
A
< structural SP

Figure 9: Comparison of computational complexity versus ac-
curacies of all graph kernels on graphs with and without non-
symbolic labels. Markers correspond to different kernels; Col-
ors blue, green and red depict graph kernels based on walks,
paths and non-linear patterns, respectively.

the time complexity and classification accuracies of all ker-
nels on each type of datasets. On datasets that contain non-
symbolic labels, the conjugate gradient kernel, the fixed-
point kernel, the shortest path kernel and the structural short-
est path kernel yield higher accuracy, except on AIDS, where
all kernels achieve high accuracy. On datasets without non-
symbolic labels, performance of each kernel varies with re-
spect to datasets. No kernel dominates all others on all
datasets. Other properties of datasets should be taken into
consideration under this circumstance.

0.0150 (a) PAH (b) MUTAG
.015
0.0125 10-2
0.0100
0.0075 /
0
£ 0.0050 10-3 /// -
©
—
i
Is}
=
‘g 18 20 22 125 150 175 20.0 225
5 average vertex number average vertex number
a (c) Enzymes (d) Enzymes - average vertex degree
3§ 10! \—/
v
€
s 10 10°
2 -1
10 10
o = — - _
= ___1::
10-3 / 103
Wt
20 30 40 50 3.25 3.50 3.75 4.00 4.25 4.50

average vertex number average vertex degree

—— common walk
marginalized
—— Sylvester equation

—— conjugate gradient
—— fixed-point iterations
—— Spectral decomposition

shortest path
—=— structural sp
path up to length h

Figure 10: Comparison of runtime of each kernel on datasets
with different average vertex numbers and average vertex de-
grees.

4.2.3. Graphs with different average vertex numbers

The average vertex number of a graph dataset largely
influences the time complexity of computing graph ker-
nels. To examine it, we choose 3 datasets with relatively
wide range of vertex numbers, namely PAH, Mutag and En-
zymes, corresponding to unlabeled, symbolic labeled and
non-symbolic labeled graphs, respectively. For each dataset,
we order the graphs according to the vertex number, and then
split them into 5 subsets with different average vertex num-
bers.

Figure 10(a)(b)(c) show the evolution in the runtime to
compute Gram matrices with the growth of average vertex
numbers. The runtimes for the common walk kernel and the
structural shortest path kernel growth the fastest, the run-
times for the Sylvester equation kernel and the path kernel
up to length A remain relatively stable, while the increase
rates of runtimes for other kernels are in the middle. This
result is consistent with the time complexity of computing
the Gram matrix of each kernel, where average vertex num-
bers to different powers are involved (see Table 1). However,
the time complexity is affected by other factors, such as aver-
age vertex degrees, which causes fluctuations and decreases
to the runtime as the average vertex numbers growth. This
phenomenon is more observable for small datasets with a
more narrow range of vertex numbers, such as PAH shown
in Figure 10(a).

4.2.4. Graphs with different average vertex degrees

As vertex numbers, the vertex degrees play an important
role in time complexity of computing graph kernels. Large
vertex degrees indicate “dense” graphs where more edges
and connections exist, leading to a much larger number of
linear patterns inside graphs, such as walks and paths, and
more time to explore them. Applying the same method as

Linlin Jia et al.: Preprint submitted to Elsevier

Page 14 of 16

Graph kernels based on linear patterns

in Section 4.2.3, we choose a dataset with relatively wide
range of vertex degrees, Enzymes, order it based on the ver-
tex degree and split it into 5 subsets. Figure 10(d) reveals
the relationship between the runtime to compute the graph
kernel and the average vertex degree of each subset.

Table 1 displays that the time complexity of only two
kernels based on linear patterns is directly affected by the
average vertex degrees m: the structural shortest path kernel
and the path kernel up to length 4. As a result, Figure 10(d)
shows that the runtime for the path kernel up to length A
increases as the average vertex degree grows. Runtime for
most of the other kernels, however, is high for the first sub-
set (when m = 3.2), and stays stable after. Other than the
average vertex degree of each subset, this runtime is mainly
influenced by the average vertex number, which is much big-
ger for the first subset thans the others.

These experiments once again reveal the fact that in prac-
tice, graph kernels based on linear patterns can achieve high
performance on graphs containing linear and non-linear sub-
structures compared to graph kernels based on non-linear
patterns, even though these kernels are not build for the lat-
ter structure. In conclusion, these linear pattern kernels are
worth investigating for any dataset.Structures and properties
of datasets should be carefully inspected for choosing the
proper graph kernels.

5. Conclusion

In this paper, an extensive analysis of graph kernels
based on linear patterns was performed. Although graph
kernels based on linear patterns are designed for linear struc-
tures, they were applied with success on datasets containing
non-linear structures. We examined the influence of several
factors, such as labeling, average vertex numbers and aver-
age vertex degrees, on the performance of graph kernels.

The computational complexity — a major issue in design-
ing and working with graph kernels — was extensively ad-
dressed in this paper. The average vertex numbers and av-
erage vertex degrees restrict kernels’ scale abilities. Time
complexity of all kernels are polynomial to the average ver-
tex numbers, with the common walk kernel being the worst
one, and thus it should be avoided for large-scale datasets.
Average vertex degrees had trivial influence on the time
complexity, which remained low on all datasets.

Acknowledgment

This research was supported by CSC (China Scholarship
Council) and the French national research agency (ANR) un-
der the grant APi (ANR-18-CE23-0014). The authors would
like to thank the CRIANN (Le Centre Régional Informatique
et d’Applications Numériques de Normandie) for providing
computational resources.

References

Aziz, F., Wilson, R.C., Hancock, E.R., 2013. Backtrackless walks on a
graph. IEEE Transactions on Neural Networks and Learning Systems
24, 977-989.

Bai, L., Rossi, L., Cui, L., Cheng, J., Hancock, E.R., 2019. A quantum-
inspired similarity measure for the analysis of complete weighted graphs.
IEEE transactions on cybernetics 50, 1264-1277.

Bai, L., Rossi, L., Cui, L., Zhang, Z., Ren, P., Bai, X., Hancock, E., 2017.
Quantum kernels for unattributed graphs using discrete-time quantum
walks. Pattern Recognition Letters 87, 96-103.

Bai, L., Rossi, L., Torsello, A., Hancock, E.R., 2015. A quantum jensen—
shannon graph kernel for unattributed graphs. Pattern Recognition 48,
344-355.

Bajema, K., Merlin, R., 1987. Raman scattering by acoustic phonons in
fibonacci gaas-aias superlattices. Physical Review B 36, 4555.

Borgwardt, K.M., Kriegel, H.P., 2005. Shortest-path kernels on graphs, in:
Data Mining, Fifth IEEE International Conference on, IEEE. pp. 8—pp.

Borgwardt, K.M., Ong, C.S., Schonauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P., 2005. Protein function prediction via graph kernels. Bioin-
formatics 21, i47-i56.

Boser, B.E., Guyon, .M., Vapnik, V.N., 1992. A training algorithm for
optimal margin classifiers, in: Proc. fifth annual workshop on Compu-
tational learning theory, ACM. pp. 144-152.

Bougleux, S., Dupé, F.X., Brun, L., Mokhtari, M., 2012. Shape sim-
ilarity based on a treelet kernel with edition, in: Gimel’farb, G.,
et al. (Eds.), Structural, Syntactic, and Statistical Pattern Recognition,
Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 199-207.

Brun, L., 2018. Greyc chemistry dataset. URL: https://brunle1l.users.
greyc. fr/CHEMISTRY/index.html. accessed October 30, 2018.

Cherqaoui, D., Villemin, D., 1994. Use of a neural network to determine
the boiling point of alkanes. Journal of the Chemical Society, Faraday
Transactions 90, 97-102.

Cherqaoui, D., Villemin, D., Mesbah, A., Cense, J.M., Kvasnicka, V., 1994.
Use of a neural network to determine the normal boiling points of acyclic
ethers, peroxides, acetals and their sulfur analogues. Journal of the
Chemical Society, Faraday Transactions 90, 2015-2019.

Conte, D., Foggia, P., Sansone, C., Vento, M., 2004. Thirty years of graph
matching in pattern recognition. International journal of pattern recog-
nition and artificial intelligence 18, 265-298.

Cortes, C., Haffner, P., Mohri, M., 2004. Rational kernels: Theory and
algorithms. Journal of Machine Learning Research 5, 1035-1062.

Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J.,
Hansch, C., 1991. Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. correlation with molecular orbital
energies and hydrophobicity. Journal of medicinal chemistry 34, 786—
797.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 269-271.

Dobson, P.D., Doig, A.J., 2003. Distinguishing enzyme structures from
non-enzymes without alignments. Journal of molecular biology 330,
771-783.

Floyd, R.W., 1962. Algorithm 97: shortest path. Communications of the
ACM 5, 345.

Fredkin, E., 1960. Trie memory. Communications of the ACM 3, 490-499.

Girtner, T., Flach, P., Wrobel, S., 2003. On graph kernels: Hardness results
and efficient alternatives. Learning Theory and Kernel Machines , 129—
143.

Gaiizere, B., Brun, L., Villemin, D., 2012. Two new graphs kernels in
chemoinformatics. Pattern Recognition Letters 33, 2038-2047.

Gaiizere, B., Grenier, P.A., Brun, L., Villemin, D., 2015. Treelet kernel
incorporating cyclic, stereo and inter pattern information in chemoinfor-
matics. Pattern Recognition 48, 356 — 367.

Haussler, D., 1999. Convolution kernels on discrete structures. Technical
Report. Technical report, Department of Computer Science, University
of California at Santa Cruz.

Honeine, P., Noumir, Z., Richard, C., 2013. Multiclass classification ma-
chines with the complexity of a single binary classifier. Signal Process-
ing 93, 1013 — 1026.

Johnson, M.A., Maggiora, G.M., 1990. Concepts and applications of
molecular similarity. Wiley.

Kashima, H., Tsuda, K., Inokuchi, A., 2003. Marginalized kernels between
labeled graphs, in: Proc. of the 20th international conference on machine

Linlin Jia et al.: Preprint submitted to Elsevier

Page 15 of 16

Graph kernels based on linear patterns

learning (ICML-03), pp. 321-328.

Kersting, K., Kriege, N.M., Morris, C., Mutzel, P., Neumann, M., 2016.
Benchmark data sets for graph kernels. URL: http://graphkernels.cs.
tu-dortmund.de.

Kobler, J., Schoning, U., Toran, J., 2012. The graph isomorphism problem:
its structural complexity. Springer Science & Business Media.

Kriege, N., Neumann, M., Kersting, K., Mutzel, P., 2014. Explicit versus
implicit graph feature maps: A computational phase transition for walk
kernels, in: 2014 IEEE International Conference on Data Mining, IEEE.
pp- 881-886.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.L., Vert, J.P., 2004. Extensions
of marginalized graph kernels, in: Proc. the twenty-first international
conference on Machine learning, ACM. p. 70.

Mercer, B., 1909. Xvi. functions of positive and negative type, and their
connection the theory of integral equations. Phil. Trans. R. Soc. Lond.
A 209, 415-446.

Minello, G., Rossi, L., Torsello, A., 2019. Can a quantum walk tell which
is which? a study of quantum walk-based graph similarity. Entropy 21,
328.

Morris, C., Kersting, K., Mutzel, P., 2017. Glocalized weisfeiler-lehman
graph kernels: Global-local feature maps of graphs, in: 2017 IEEE In-
ternational Conference on Data Mining (ICDM), pp. 327-336.

Morris, C., Kriege, N.M., Kersting, K., Mutzel, P., 2016. Faster kernels for
graphs with continuous attributes via hashing, in: Data Mining (ICDM),
2016 IEEE 16th International Conference on, IEEE. pp. 1095-1100.

Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. MIT
Press.

Murray, R.M., et al., 2018. Python Control Systems Library. URL: http:
//python-control.readthedocs.io/en/latest/index.html.

Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P., 2005. Graph kernels
for chemical informatics. Neural networks 18, 1093-1110.

Riesen, K., Bunke, H., 2008. Iam graph database repository for graph based
pattern recognition and machine learning, in: Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition and Struc-
tural and Syntactic Pattern Recognition, Springer. pp. 287-297.

Rossi, L., Torsello, A., Hancock, E.R., 2013. A continuous-time quan-
tum walk kernel for unattributed graphs, in: International Workshop on
Graph-Based Representations in Pattern Recognition, Springer. pp. 101-
110.

Scholkopf, B., Herbrich, R., Smola, A.J., 2001. A generalized representer
theorem, in: Proc. 14th Annual Conference on Computational Learn-
ing Theory and 5th European Conference on Computational Learning
Theory, Springer-Verlag, London, UK. pp. 416-426.

Scholkopf, B., Smola, A.J., 2002. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G.,
Schomburg, D., 2004. Brenda, the enzyme database: updates and major
new developments. Nucleic acids research 32, D431-D433.

Shawe-Taylor, J., Cristianini, N., 2004. Kernel methods for pattern analysis.
Cambridge university press.

Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borg-
wardt, K.M., 2011. Weisfeiler-lehman graph kernels. Journal of Ma-
chine Learning Research 12, 2539-2561.

Suard, F., Rakotomamonjy, A., Bensrhair, A., 2007. Kernel on bag of paths
for measuring similarity of shapes., in: ESANN, pp. 355-360.

Sugiyama, M., Borgwardt, K., 2015. Halting in random walk kernels, in:
Advances in neural information processing systems, pp. 1639-1647.

Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.,
2010. Graph kernels. Journal of Machine Learning Research 11, 1201-
1242.

Wale, N., Watson, I.A., Karypis, G., 2008. Comparison of descriptor spaces
for chemical compound retrieval and classification. Knowledge and In-
formation Systems 14, 347-375.

West, D.B., et al., 2001. Introduction to graph theory. volume 2. Prentice
hall Upper Saddle River.

Xu, L., Wang, W., Alvarez, M., Cavazos, J., Zhang, D., 2014. Paralleliza-
tion of shortest path graph kernels on multi-core cpus and gpus. Pro-
ceedings of the Programmability Issues for Heterogeneous Multicores

(MultiProg), Vienna, Austria .

Paul Honeine received the Dipl.-Ing. degree in mechanical engineering in
2002 and the M.Sc. degree in industrial control in 2003, both from the
Faculty of Engineering, the Lebanese University, Lebanon. In 2007, he
received the Ph.D. degree in Systems Optimisation and Security from the
University of Technology of Troyes, France, and was a Postdoctoral Re-
search associate with the Systems Modeling and Dependability Laboratory,
from 2007 to 2008. From September 2008 till August 2015, he was an as-
sistant Professor at the University of Technology of Troyes, France. Since
September 2015, he is full professor at the LITIS Lab of the University of
Rouen (Normandie Université), France. His research interests include non-
stationary signal analysis and classification, nonlinear and statistical signal
processing, sparse representations, machine learning. Of particular interest
are applications to (wireless) sensor networks, biomedical signal and image
processing, hyperspectral imagery and nonlinear adaptive system identifi-
cation.

Benoit Gaiizere received his PhD from GREYC laboratory in 2013. This
PhD was conducted under the supervision of Pr. Luc Brun and Pr. Didier
Villemin on the definition of graph kernels for chemoinformatics. Then he
spent one year as post doc in MIVIA research lab, University of Salerno,
working on knowledge based models for tracking tasks. Since September
2015, he is now associate professor in LITIS, Normandy University. His
current research domains consist in bridging the gap between graph based
pattern recognition and machine learning.

Linlin Jia received the B.E. degree in information engineering, in 2014, and
the MLE. degree in software engineering, in 2017, both from Xi’an Jiaotong
University, China. Since 2017, he has been a Ph.D. candidate in computer
science in Laboratoire d’Informatique, de Traitement de I’Information et
des Systemes (LITIS) in INSA Rouen Normandie, France, with a PH.D.
thesis “machine learning and patterns recognition in chemoinformatics.”,
focusing on graph kernels in machine learning and pre-image problems.

Linlin Jia et al.: Preprint submitted to Elsevier

Page 16 of 16

