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Abstract

Objectives:

Convolutional neural networks (CNNs) have established state-of-the-art performance in computer vision
tasks such as object detection and segmentation. One of the major remaining challenges concerns their
ability to capture consistent spatial and anatomically plausible attributes in medical image segmenta-
tion. To address this issue, many works advocate to integrate prior information at the level of the loss
function. However, prior-based losses often suffer from local solutions and training instability. The Co-
ordConv layers are extensions of convolutional neural network wherein convolution is conditioned on
spatial coordinates. The objective of this paper is to investigate CoordConv as a proficient substitute to
convolutional layers for medical image segmentation tasks when trained under prior-based losses.
Methods:

This work introduces CoordConv-Unet which is a novel structure that can be used to accommodate
training under anatomical prior losses. The proposed architecture demonstrates a dual role relative to
prior constrained CNN learning: it either demonstrates a regularizing role that stabilizes learning while
maintaining system performance, or improves system performance by allowing the learning to be more
stable and to evade local minima.

Results:

To validate the performance of the proposed model, experiments are conducted on two well-known public
datasets from the Decathlon challenge: a mono-modal MRI dataset dedicated to segmentation of the left
atrium, and a CT image dataset whose objective is to segment the spleen, an organ characterized with
varying size and mild convexity issues.

Conclusion:

Results show that, despite the inadequacy of CoordConv when trained with the regular dice baseline
loss, the proposed CoordConv-Unet structure can improve significantly model performance when trained
under anatomically constrained prior losses.

Keywords: Medical Image Segmentation, Fully Convolutional Networks, Prior-based Losses,
CoordConv, MRI, CT

1. Introduction diagnostic procedures, assisting early disease de-
tection or surgical planning.

Medical image segmentation is the process of

classifying each pixel within an image into an in-
stance corresponding to an anatomical object of
interest. Generally, medical images are largely
versatile in nature, depending on the acquisi-
tion process and the type of object to be seg-
mented. They can be acquired with magnetic
resonance imaging (MRI), computed tomography
(CT), nuclear medicine functional imaging, ultra-
sound imaging, fundus photography, to name a
few. Hence, they vary in characteristics and na-
ture and are broad with regards to the anatomical
object of interest. As such, guaranteeing high per-
formance within medical image segmentation can
be considered very challenging when compared to
other types of images or segmentation tasks. Re-
gardless, segmentation within the medical domain
is considered a key step in performing non-invasive
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Early attempts to automate or semi-automate
the process of medical image segmentation started
with optimization-based approaches. Such meth-
ods generally involve optimization of an energy
functional, where the image can be considered
continuous [1] or discrete (eg. a graph [2, 3]).
In order to counter-react noise and low contrast,
works have aimed to perform optimization pro-
cesses in such a way that the automated predic-
tions conform with particular rules relative to the
anatomical object characteristics [4]. This infor-
mation may include the object appearance, size,
smoothness or compactness [5, 6, 7]. These rules
and characteristics are known as prior knowledge
of the datasets. Anatomical priors refer to medical
knowledge and domain expertise that capture spa-
tial as well as topological guidelines and character-
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istics with respect to the understudied anatomical
objects.

In the recent era, deep learning has registered
a pivotal milestone in many fields including pat-
tern recognition, object detection, natural lan-
guage processing, with medical image segmenta-
tion being no exception to the rule. Convolutional
neural networks (CNNs), a class of deep learning
models, have been known to register considerable
results due to their generalization ability and pow-
erful predictive notions. Due to the fact that not
only what is inside the image is to be specified, but
also where, semantic segmentation through CNNs
must consider a trade-off between contextual and
spatial understanding.

First CNN architectures known for their suc-
cess in image segmentation are the fully convo-
lutional neural networks (FCNs) [8]. FCNs are
structures derived from typical deep classification
models such as VGG16, AlexNet or GoogLeNet by
removing the corresponding classification layers,
replacing their fully connected layers with con-
volutional ones and adding an upsampling layer
that is dedicated to transforming coarse outputs
into dense predictions. FCNs are very well-known
in the medical [9, 10] and non-medical [11] fields
as they have paved the way for encoder-decoder
networks for segmentation problems.

Many works within the field advocate to go
deeper with FCN layers in order to increase the
depth and precision of the learnt contextual fea-
tures [12, 13]. However, increasing model’s pre-
diction ability by adding additional layers is not
an easy task. Thus, as one goes deeper within the
layers, insight on location features are hence lost.
As aresult, deep FCNs often fail to consider global
and spatial information and are prone to produc-
ing fuzzy coarse-grained predictions [14]. More-
over, deepening the convolutional network will of-
ten increase the model’s complexity, thus subject-
ing the training to additional challenges such as
vanishing gradients. As a result, deep FCN may
suffer from performance saturation or degradation
while training.

One powerful architecture known for the ability
to preserve semantic information while achieving
promising segmentation performance is the well-
known U-Net [15]. U-Net is a symmetrical en-
coder/decoder structure composed of a contract-
ing path of stacked convolutional and max pool-
ing layers representing the encoder branch and
a corresponding expanding path composed of de-
convolutional layers representing the decoder. U-
Net is able to achieve a trade-off between extract-
ing contextual features from the encoder convo-
lutions on one hand and semantic features from
the decoder convolutions on the other hand by
concatenating their respective feature maps from
different levels of the corresponding symmetric en-
coder and decoder layers via skip-connections. In
this way, U-Net combines low-level detail and con-

textual information with high-level semantic and
location attributes, thus achieving a trade-off be-
tween the two. Several variants of U-Net consist in
changing the backbone model used for encoding,
e.g. VGG and DenseNet, and/or replacing de-
convolution layers with super-resolution ones for
more concise localization ability [16, 17, 18].

There is no doubt that, thanks to the com-
plex and powerful architectures such as U-Net and
its variants, the segmentation performance has
reached a serious breakthrough. Even so, mul-
tiple challenges still remain within medical imag-
ing. Thus, these deep networks often require large
amounts of annotated training data, which is not
easy to obtain given the medical field. Rather,
unannotated or partially labeled data are more
easily available or less computationally expensive.
Moreover, even with sufficient data, automated
systems generally and CNNs particularly still lack
the anatomical plausibility that a medical expert
has.

Prior to deep learning, prior information such as
shape and the topology of organs have often been
investigated within variational approaches in or-
der to increase the anatomical correctness of auto-
mated segmentation. Recent advances in the do-
main have attempted integrating these prior onto
CNN training in order to overcome the problem of
lack of data and to evade production of anatomi-
cally aberrant errors. For example, the method of
[19] constrains segmentations produced by a reg-
ular U-Net to conform with particular upper and
lower bound sizes of the heart within a cardiac
dataset. Another example is in [20] where con-
nected component numbers were preserved by in-
troducing bounding box prior at the level of the
skip connections. These bounding boxes allow the
network to learn focused features concerning small
components of the heart that are dissolved within
the deep layers of a normal U-Net baseline net-
work. Nevertheless, prior constraint neural net-
works still face difficulties regarding which infor-
mation to model, how they are modeled and inte-
grated into the deep neural networks.

Integration of the prior onto CNN learning can
be conducted at the level of the network structure,
hereby the name structural constraints [20, 21]
or at the level of the loss function [22, 23] or a
combination of both [24, 25]. Structure prior con-
sists in designing parts of the network in order
to take into consideration these external specifi-
cations [20, 26, 27, 21, 25]. Imposing constraint
via loss functions, on the other hand, consists of
formalizing the prior as an additional term in the
loss function. The loss term computes the error
demonstrating the degree of violation of the prior
constraint. Given the state of the art, prior-based
losses have been widely adopted as means of en-
hancing consistency and plausibility of segments
produced by powerful neural network architec-
tures within fully supervised learning [28, 29, 30].



On the other hand, they could be used to coun-
teract the problem of lack of complete data anno-
tations [19].

The types of prior knowledge cover a breadth of
notions in the literature [4]. Aside from the low-
level prior which includes ground-truth transfor-
mation such as distance maps [22, 30] or Laplacian
filters [31], high-level prior integrate actual expert
knowledge into the learning system. This type of
prior can include the size of the organ [19], its
compactness [32], its topological structure [33] or
its convexity [34] among others. High-level prior
losses is currently a growing trend that has cap-
tured the attention of many researchers within the
field since they offer a versatile way to integrate
external knowledge in a generic manner and can
be plugged into any backbone.

The CoordConv layers, recently introduced in
[35], are extensions of convolutions that allow con-
volution filter to take into account the spatial co-
ordinates of the pixels. The goal of CoordConv
is to learn a mapping between coordinates in the
Cartesian space and coordinates in the one-hot
pixel space. CoordConv has shown promising po-
tential for object localization [35, 36], and has
rightfully raised interest for image segmentation
[37, 38]. However, the CoordConv’s added value
has not been yet assessed in image segmentation
generally and in prior guided segmentation par-
ticularly.

This paper investigates CoordConv as a profi-
cient substitute to convolutional layers in U-Net
models for medical image segmentation. We ex-
plore the effect of CoordConv on model perfor-
mance and rate of convergence when learning is
conducted under anatomical prior-based losses,
particularly the size loss proposed by [19] and
the skeleton loss proposed by [33]. We propose
a new U-Net variant based on the CoordConv
layer, the CoordConv-Unet, and demonstrate its
role in enhancing stability and performance of the
above losses. Finally, we expose the dual role of
CoordConv-Unet as a regularizer with the abil-
ity to stabilize network training under prior-based
losses on one hand, and the ability to increase sys-
tem performance significantly by evading local so-
lutions on the other.

The use of CoordConv with UNet has been
used in the papers of [39] and [40]. However, in
this work, we investigate the significance of U-
Net/CoordConv combinations when trained un-
der prior-based losses which according to our
knowledge has not been investigated prior to this
paper. The significance of CoordConv is investi-
gated on two datasets: a cardiac dataset which
consists of MR images covering the entire atrium.
The understudied organ within this dataset is
characterized with multi-connected components
and large size variability. The spleen dataset is
a CT image dataset where the spleen is character-
ized by a largely varying size and shape convexity

issues at boundary level. The contributions of the
paper are summarized as follows:

e We investigate the significance of Coord-
Conv solution given organ segmentation un-
der prior-based loss training.

e We propose a mnovel architecture, the
CoordConv-Unet as a proficient substitute to
U-Net given prior constrained problems.

e We shed light on the dual role that
CoordConv-Unet has in increasing and sta-
bilizing system performance.

The rest of the paper is organized as follows.
Section 2 provides a brief overview of the state of
the art regarding incorporating constraints onto
deep learning networks. Section 3 elaborates on
the proposed CoordConv-Unet model as well as
the multiple frameworks and paradigms explored.
Section 4 presents the datasets and experimen-
tal settings. Section 5 evaluates the significance
of the proposed CoordConv-Unet relative to the
proposed datasets. Finally, Section 6 concludes
with future works and perspectives.

2. Related works on Constrained Convolu-
tional Neural Networks

Prior knowledge can be integrated into the CNN
learning in the form of structural constraints or at
the level of the loss function.

2.1. Structural Prior Constraint

Among structural constraint methods, integra-
tion of prior can be done either externally in con-
junction with the segmentation network [29, 41,
14, 42, 43] or at the intermediate level [20, 27, 29].

In [41], the authors propose a cascade of sev-
eral deep CNN architectures that consider multi-
scale patches in order to incorporate anatomical
location in their decision making process. Thus,
spatial location of patches extracted from the im-
age into a CNN model is injected posterior to the
convolutional layers. Similar to [41], authors of
[29] demonstrate two collaborative architectures
in order to iteratively refine the posterior proba-
bility and provide information about neighboring
organs. In this work, anatomical constraints are
obtained from an auxiliary network that are later
used by the segmentation network (U-Net) in or-
der to refine ill-defined organ boundaries. Sim-
ilarly, the SR-UNet in [14] jointly adds an ex-
ternal network to the segmentation one in order
to take into consideration the incomplete, over-
or under-segmented shape masks provided by the
U-Net. However, unlike [29] that fine-tunes ill-
defined segmentations by U-Net using the con-
straints obtained from the external network, [14]
maps the segmentations to conform to a manifold
of permissible training shapes.



Instead of integrating prior via external net-
works, BB-UNet as proposed by [20] aims at in-
tegrating location prior represented by bound-
ing boxes onto a U-Net at the level of the skip
connections in order to capture focused features
and preserve connected components properties
that are lost in deep layers given normal U-Net
functioning. Whereas BB-UNet imposes exter-
nal constraints at the level of the skip connection,
Attention-UNet [21] do so by extracting these con-
straints from the bottle-neck layers of the baseline
U-Net.

2.2. Loss prior constraints

Incorporating prior at the level of the loss
function offers a versatile way to constraint neu-
ral network predictions while preserving compu-
tational complexity and generality. Prior inte-
grated can be low-level, which resembles reformu-
lated ground-truth representation such as: dis-
tance maps [22, 30|, Laplacian filters [31] or in-
ternal layer feature maps [44]. Prior could also
be high-level representing actual external medical
information such as the shape of the organ, com-
pactness [32] or size [19] and are optimized directly
based on ground-truth prior tags.

Low-level Prior knowledge. Both works of
[30] and [22] exploit distance maps to improve
boundary consistency. Whereas [22] do so by
the extraction of shape bio-markers and allow the
network to differentiate between hard-to-segment
boundaries of different anatomical classes, [30]
aims to fine-tune probability outputs by these dis-
tance maps in order to overcome the problem of
class imbalance between empty/full images with
high boundary precision. In the same context,
[31] demonstrates a shape aware loss function that
constraints predictions to conform to permissible
manifold in vertebrae segmentation. In order to
do so, the method takes into consideration the av-
erage point to curve Euclidean distance factor be-
tween predicted and the ground-truth contours.
Moreover, authors of [45] exploit Laplacian filters
in order to develop a boundary enhanced loss term
that invokes the network to generate strong re-
sponses around boundary areas while producing a
zero response in pixels that are at the periphery.
Afar from boundary criteria, [44] is able to close
small gaps in neuronal membranes and alleviate
topology mistakes by leveraging the topological
information or shape descriptors present within
the internal layers of VGG16 networks when in-
troduced to both label and predicted segments.
All the above-mentioned approaches enhance seg-
mentation consistency by reformulating and re-
fining transformations of posterior probabilities.
However, they do not optimize the prior attribute
directly between ground-truth and predicted seg-
ments. As a result, there is no guarantee that the
ground-truth prior specification will be met.

High-Level Prior Loss. In [19] and [46],
organ size is taken into consideration where the
size prior is directly optimized relative to known
ground-truth size bounds. Whereas [19] integrates
the prior via an additional penalty loss term and
computes the errors relative to approximate up-
per and lower bounds, [46] relates to the discrete
nature of size prior and optimizes the network via
discrete based optimization techniques. Another
type of prior is topology which is concerned with
the properties of spatial objects by abstracting
their connectivity, while ignoring their detailed
form [47]. Both works of [23] and [48] use no-
tions of persistent homologies, which is a method
for capturing topological structures via a series of
thresholding on prediction maps in order to evade
prohibited broken vessels and connections. Skele-
tonization is yet another way to represent topolog-
ical properties of objects and is exploited in [33]
in order to conduct vessels and neuron segmenta-
tions. Other properties, such as compactness [32],
star-shape [34], inter-region relations [49], are also
investigated as means of improving segmentation
consistency via prior-based losses.

2.3. Combined Structural and Loss Constraints

In many works, authors introduce interchange-
ably both structural and loss constraints. In [14],
a non-linear shape regularization model is trained
jointly along U-Net. The main function of their
adjoint network is to learn projections of arbitrary
shapes onto a manifold space. The method then
incorporates a loss function that updates the seg-
mentation network (U-Net) parameters based on
the regularized predicted segments, the rough pre-
dicted segments as well as the ground-truth labels.
The authors of [50] adopt a similar regularization
approach to that in [14]. However, they target the
decoder layer with their U-Net-like structure and
train the up-sampling layers through super res-
olution ground-truth maps. On the other hand,
authors of [24] introduce a boundary enhanced
loss function similar to that of [22] and [31]. In-
stead of weighting by the errors through distance
maps, [24] adds an extra decoder branch to the U-
Net network in order to predict hard to segment
boundaries. In the same manner, the method in
[61] integrates center of mass and contour prior
into the loss function which was obtained from
an encoder/decoder structure trained end-to-end
along the segmentation network.

3. Proposed CoordConv-Unet Architec-
ture

In this section, we present the CoordConv layer
and its implementation within the segmentation
framework. We further elaborate on the proposed
CoordConv-Unet model, the corresponding build-
ing blocks, as well as the different integration
strategies.
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Figure 1: Proposed CoordConv-Unet model. In the top panel, the CoordConv layer consists in concatenating the x-layer
and y-layer to the convolutional layer. CoordConv-Unet consists of replacing the first convolutional layer of each stage with

the CoordConv layer.

3.1. CoordConv Component

The CoordConv layer is a simple extension of
the standard convolutional layer wherein convolu-
tion is condition by spatial coordinates. The goal
is to establish mappings between the Cartesian
space and the pixel space, by enabling the filters to
know where pixels are located. In a general sense,
convolutions are mainly characterized by three
specific characteristics: few training parameters,
fast optimization via modern GPUs, and trans-
lational invariance. However, given many tasks,
there is a controversy with regards to whether
translational invariance will truly help model per-
formance or not. CoordConv allows the network
to keep or drop the property of translational in-
variance according to what is needed in the task at
hand. In doing so, CoordConv ensures the best of
both convolutional and spatial features. The im-
plementation of CoordConv is done by concate-
nating two additional x and y channels to the
input channel as shown in Figure 1(top figure).
In such a way, CoordConv allows the learning of
a function characterized by a certain degree of

translational dependence, if the weights connect-
ing the coordinate layers of the CoordConv with
the convolutional are non-zero or could mimic a
regular convolutional layer if they were set to zero.
In the proposed experiments, CoordConv is im-
plemented via a PyTorch library ! where a linear
scaling is applied in order to bound the values of
the coordinate layers between -1 and 1.

3.2. CoordConv-Unet

In the proposed architecture, we extend upon
U-Net by replacing convolutional blocks with the
CoordConv ones. In such a way, we allow the
network to take into consideration spatial and
geometric aspects while training. As previously
stated, U-Net is a symmetric encoder/decoder
structure with equivalent distribution of convolu-
tional and de-convolutional blocks connected via
skip connections. Each convolutional block is
composed of two consecutive ensembles of convo-
lutional layers and batch normalization, whereas

Thttps://github.com/walsvid /CoordConv



the decoder block adds a bilinear upsampling layer
to the previous ensemble. Our main contribution
targets the first convolutional layer of the convolu-
tional blocks consisting the U-Net model. Thus,
instead of directly convoluting the input of the
convolution layer with that of the one before it,
rather coordinates for each feature are taken into
consideration. The proposed network is repre-
sented in Figure 1(bottom figure).

3.8. Computational complexity

Given a U-Net, parameters generally involve the
number of learnable quantities or weights connect-
ing a convolutional layer with the corresponding
precedent or following layer. In order to quan-
tify the computational overhead induced by the
CoordConv component, we will adopt the follow-
ing mathematical notations. Let m represent the
width of convolutional filter and #n its height. Let d
be the number of filters in the preceding layer and
k the number of filters in the current one. Then,
the number of parameters involving the conven-
tional convolutional layer is hence computed ac-
cording to (mnd + 1)k, where 1 represents the
bias term for each filter. Given CoordConv com-
ponent, since 2 additional channels are added at
the level precedent to the convolutional layer, the
number of filters in the preceding layer is hence
d+2, thus resulting in a new number of parameters
of (mn(d +2) + 1)k. In such a way, each convolu-
tional layer adds to the computational complexity
2mnk operations.

8.4. Integration Strategies

We have investigated various integration strate-
gies of the CoordConv block onto the U-Net archi-
tecture. The first setting is one that mimics the
state of the art, where the x and y channels are
added only to the first convolutional layer. We
call this model CoordConv(+1). The proposed
CoordConv-Unet consists of replacing the first
convolutional layer of each convolutional block
within the encoding path with the CoordConv
layer. We call the proposed method CoordConv-
Unet.

8.4.1. Loss functions

The CoordConv-Unet is trained with two prior-
based losses: the size loss [19] and the skeleton loss
[33].

The size loss is a penalty loss function that in-
tegrates size information by computing the mean
squared error between the grouping of pixel prob-
abilities indicating predicted organ size and a pre-
defined upper or lower bound indicating ground-
truth size. The significance of the loss lies in its
ability to impose some constraint on the size of
the predicted segments.

The clDice loss exploits the topological no-
tion of skeletonization in order to reveal subtle

Figure 2: Atrium dataset from Decathlon challenge with
multiple components of variable size that are in close prox-
imity of each other

topological properties, such as the shape and con-
nected components of anatomical objects within
the dataset. Skeletonization is the process of ob-
taining compact representations of images and ob-
jects while still preserving topological properties.
The aim of the skeletonization is to extract a
region-based shape feature representing the gen-
eral form of an object.

Figure 3: Spleen dataset from Decathlon challenge show-
ing organ or large size variability and convexity issues at
boundary level

Table 1: Dataset Description: Patient Dist.: Patient dis-
tribution. Org. Size: percentage of pixels occupied by the
anatomical object relative to the entire image. Mod.: num-
ber of dataset modality. Con. Comp: number of connected
components.

IPatient  Dist. Org. Size Class | Mod. | Con.

Train  Test | (% of image) Comp

Atrium 16 4 <142 1 1 0~4
Spleen 32 9 < 4.36 1 1 0~1

3.5. Comparison to the state of the art

The CoordConv concept in essence is not a
new topic proposed in the paper. Introduced by
[35], the CoordConv layer was initially designed to
investigated supervised Coordinate classification,
object detection, supervised coordinate regres-
sion, and generative adversarial modeling. The
method in [35] raises questions with regards to Co-
ordConv’s ability to make the training more stable
given the coordinate classification task. However,
implementations in [35] did not address the seg-
mentation problem, which is quite important in
current research. To add to this, the method in-
cludes adding the CoordConv layer solely at the
primary convolution of the entire architecture

Since segmentation is a classification problem
done at pixel-level, investigating the efficiency of
CoordConv in aiding prior-constrained medical



segmentation is an interesting research direction
to be explored. In this context, works within the
state-of-the-art most relevant to our method are
[39] and [40]. In [39], the authors investigate the
role of CoordConv in conducting 3D segmenta-
tion of pulmonary lobes via a V-Net. Instead
of replacing the encoder layers of the network as
our proposed CoordConv-Unet model, authors of
[39], perform this interchange at the level of the
up-sampling layers. Thus, the method first ex-
ploits a 2D automated lung segmentation model
followed by the CoordConv embedded V-Net ar-
chitecture. On the other hand, authors of [40] pro-
pose a 3-stage framework in order conduct brain
mid-line delineation. Within the segmentation
step, they introduce CoordConv component at the
input level of the network at the intermediate seg-
mentation step, midway between alignment (first
step) and delineation (third step).

Whereas [40] integrates CoordConv solely at
the input level (as is originally implemented in
[35]), our proposed CoordConv-Unet in this paper
interchanges the first convolution of each stage of
the U-Net architecture with that of the Coord-
Conv layer. Moreover, we do not conduct pre-
or post processing steps as in [40]. Unlike [39],
where CoordConv component is incorporated at
the level of the upsampling layers, the proposed
method do so at the encoder convolution level.

4. Experimental Setting

4.1. Datasets

Experiments are conducted on two well-known
public datasets from the Decathlon challenge for
medical image segmentation 2. Namely, a cardiac
dataset and a spleen dataset. In Table 1, a brief
summary of data characteristics is specified.

Atrium dataset is a mono-modal MRI car-
diac dataset dedicated to segmentation of the left
atrium. The heart as shown in Figure 2 is a multi-
connected component object with up to 4 elements
of varying sizes and lying in close proximity to
each other. The dataset is also characterized by a
huge class imbalance with respect to background
and foreground pixel distribution.

Spleen dataset is a CT dataset as presented
in Figure 3. The objective is to segment a sin-
gle organ (the spleen), characterized with largely
varying size and mild convexity issues at bound-
ary levels.

For pre-processing, we have resized the images
to a size of 256 X 256 and normalized them to
a pixel value between 0 and 1. Deploying the
framework presented by [30], we have kept neg-
ative samples for training. Negative samples are
empty images, meaning that the organ of interest
is not present. The datasets were split into train

?http://medicaldecathlon. com/

and validation based on an 80 % , 20 % partition
respectively. Cross-validation was done on three
folds of the data based on three Monte-Carlo sim-
ulations [52].

4.2. Model architecture and training

To insure reproducibility, we deploy a well-
known experimental framework presented by [30].
The U-Net [15], of which we integrate the Coord-
Conv layers onto, is a 3-stage U-Net composed of
convolutional and de-convolutional blocks, bottle-
neck and skip connections. Each stage within the
encoder is composed of convolutional blocks con-
taining an ensemble of convolutional and batch
normalization layers. On the other hand, each
stage within the decoder path is composed of 2
consecutive convolutional blocks followed by an
upsampling layer. The bottleneck is constituted
of 2 convolutional blocks separated by a residual
block [17].

Since prior losses essentially suffer from train-
ing instability and local solutions [30], we have
trained both size loss [19] and clDice loss [33] in
conjunction with the Dice baseline loss weighted
by a hyper-parameter a, where @ is dynamically
updated through training according to the follow-
ing equation

L=(1-a)Lpice+ a.Lprior

Thus, starting from a value of @ = 0.01, « is in-
creased by a value of 0.01 at each training epoch.

Models were evaluated using the Dice index and
Hausdorff distance. Training was conducted via
the Adam optimizer with a batch size of 8 over
200 epochs. The learning rate was set to 5 x 1074
and halved each 20 epochs if the validation per-
formance did not improve.

5. Investigation of CoordConv-Unet per-
formance relative to the Datasets

In this section, we present results for the
CoordConv-Unet model when trained on the
atrium and the spleen datasets via just the Dice
loss, the Size loss [19] and the clDice loss [33]. We
note that the Atrium is characterized by multi-
connected small components that are very close
to each other, whereas the spleen is a complex-
shape organ of non-convex curves and edges. Re-
sults obtained on Dice accuracy and Hausdorff dis-
tance are compared in reference to the regular U-
Net baseline trained under the considered losses
as well as the CoordConv(+1), which represents
the addition of the CoordConv layer solely at the
input stage as originally designed by [35].

5.1. Results on the Spleen dataset

Results on Dice accuracy and Hausdorff met-
ric for the spleen as shown in Table 2 and Ta-
ble 3 indicate the significance of CoordConv layers



Table 2: Dice accuracy results on the spleen dataset

U-Net CoordConv(+1) CoordConv-Unet
Dice Loss 78.58+5.46 64.65+5.7 65.48+8.48
Size Loss 86.44+15.87 94.86+1.72 94.96+1.59
clDice loss  87.15+13.61 87.04+9.98 94.54+1.06

Table 3: Hausdorff distance results on the spleen dataset

U-Net CoordConv(+1) CoordConv-Unet
Dice Loss 1.30 £ 0.24 1.89+0.26 1.71+0.32
Size Loss 1.02 = 0.56 0.76+0.13 0.76+0.12
clDice loss  1.07 +£0.53 1.11+0.31 0.85+0.07

when training via prior-based losses. Thus, Co-
ordConv(+1) and CoordConv-Unet increase (case
of size loss) or maintain (case of CoordConv(+1)
with clDice loss) system performance relative to
the regular U-Net baseline. CoordConv-Unet in-
creases the Dice accuracy by over 8% from the reg-
ular U-Net baseline under the prior losses. This
added value of CoordConv is further verified by
the error computed on Hausdorff distance. Thus,
the CoordConv-Unet results in a 28% decrease
in the Hausdorff metric (from 1.02¢00.76) under
size loss and a 20% decrease in Hausdorff dis-
tance (from 1.07700.85) under clDice loss relative
to the U-Net and CoordConv-Unet respectively.
This mainly indicates the ability of CoordConv-
Unet to learn curvature features relative to the
inter-distance position of the pixels relative to the
spleen.

5.2. Results on the Atrium dataset

For the Atrium, we benchmark the results in
Table 4 and Table 5. A closer look at the tables,
one can realize the significance of the clDice loss
generally against the size as well as the Dice base-
line loss. We predict that, since the clDice is gen-
erally based on the skeleton concept, the clDice
was hence able to distinguish between the differ-
ent boundaries of the connected components rela-
tive to the heart. Moreover, training CoordConv-
Unet under the clDice loss has increased model
performance by about 3% on atrium dataset from
baseline training. This indicates the proper role
of CoordConv-Unet in increasing system perfor-
mance under topological losses. This is also
verified by the Hausdorff distance metric where
CoordConv-Unet under clDice scored second best
relative to the other frameworks.

Comparing relative to the size loss, CoordConv-
Unet maintains system performance considerably
over all its paradigms. From here, we can re-
alize the dual role that the CoordConv plays in
enabling learning of spatial dependent attributes

when needed (case of the clDice) or mimicking
typical convolutional functioning. Given the lat-
ter, one would anticipate that the behavior of the
CoordConv would be typical to that of a regular
convolution. However, a closer look at the evolu-
tion of the Dice accuracy over the number of train-
ing epochs given folds where CoordConv solution
equates that of a regular U-Net from Figure 4,
one would realize yet another significant advan-
tage of using CoordConv-Unet in place of regular
U-Net. Thus, CoordConv-Unet insures model sta-
bility and convergence by evading the undershoot
evident when training with regular U-Net.

5.83. Analysis

Based on the results presented on both the
spleen and atrium datasets, one can gather that
CoordConv-Unet plays a dual role given prior con-
straint neural networks. Thus, CoordConv can
either maintain segmentation performance while
regularizing training and stabilizing evolution, or
it increases system performance by evading the
local solutions that prior losses suffer from.

Despite the significance of CoordConv-Unet as
shown by the above study, however, limitations
still persist with regards to CoordConv-Unet per-
formance. Thus, when tested against the Dice loss
baseline alone (first row of each table), the addi-
tion of the CoordConv components degrades the
system performance considerably. One could cast
the clarification of the phenomena to the complex-
ity /regularizing trade-off relative to CoordConv-
Unet. We have clarified earlier 2 main roles of
CoordConv:1) the role of stabilize the undershoot
evident when training against prior losses. 2)
the role of enhancing segmentation performance
by evading local solutions. Addressing the two
attributes relative the Dice baseline training, we
can gather the following: The undershoot revealed
in the plotted diagrams are a result of the inter-
change between the main pixel-wise Dice loss on
one hand and the anatomical prior loss on the



Table 4: Dice accuracy on the atrium dataset

U-Net CoordConv(+1) CoordConv-Unet
Dice Loss 83.67 + 3.66 82.10+£2.51 82.52 +2.33
Size Loss 84.59+2.62 84.63+1.67 84.48+1.5
clDice loss 83.85 + 2.56 85.35 + 1.65 86.15+1.39

Table 5: Hausdorff distance results on the atrium dataset

U-Net CoordConv(+1) CoordConv-Unet
Dice Loss  1.62+0.16 1.64+0.11 1.64+0.11
Size Loss 1.59+0.17 1.57+0.08 1.57+0.10
clDice loss 1.64 +0.16 1.60+0.14 1.59+0.14
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Figure 4: Evolution of the Dice accuracy in validation under Dice +clDice (LEFT), Dice +Size (RIGHT) for the atrium

dataset.

other in prior-constrained training problem. In
the Dice baseline, the undershoot is rather non-
existent; hence CoordConv cannot play the role
of the regularizer that evades training in stabil-
ity and ends up decreasing model performance by
adding complexity to the system. The second role
of CoordConv is that it increases model perfor-
mance under prior-based losses by evading local
solutions. As we have previously said, prior-based
losses are interestingly used because they inte-
grate expert knowledge onto the automatic train-
ing. However, designing these loss functions is
often tedious and subjected to various differentia-
bility and stability challenges. One of the rea-
sons for these issues is the discrete nature of these
prior information vs the continuous soft probabil-
ity output of the network. With CoordConv-Unet,
the network can act as a regular U-Net if needed,
i.e., if no stability problems persist or the net-
work could integrate spatial knowledge thus fulfill-
ing the true CoordConv concept. In regular Dice
baseline training, prior does not exist, hence, ad-
dressing stability is not an issue. From all of the
above, we can hence realize the insignificance of
using CoordConv component if there is no prior
constraint problem involved.

6. Conclusion

In this paper, we have proposed a new model,
the CoordConv-Unet model as a proficient substi-
tute to U-Net given prior-constraint tasks. We
have exposed the dual role of CoordConv-Unet
given these constrained tasks. Thus, CoordConv-
Unet can either improve performance by evading
stability problems, or can mimic a regular U-Net if
the translation invariance attribute is required. In
the later role, CoordConv-Unet still poses a fur-
ther significance that can help stabilize the net-
work performance under the prior-based losses.

Future work includes designing certain frame-
works that can impose whether the weights con-
necting the coordinate layers with the convolu-
tional ones to be trained or fixed so as to resolve
the problem faced when training CoordConv-Unet
under a regular unconstrained Dice loss. More-
over, efficiency of CoordConv-Unet given multi-
organ and lesion segmentation is also to be ex-
plored.
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Proposed CoordConv-Unet model. In the top panel, the CoordConv layer consists in concatenating the x-
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