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Abstract 11 

Agricultural use of organochlorine pesticides (OCPs) increased during the twentieth century 12 

but many of them have been progressively banned several decades after their introduction. 13 

Nevertheless, these lipophilic chemical compounds may persist in soils and sediments. From 14 

sediment deposits, it is possible to reconstruct the chronology of OCP releases in relation to 15 

former applications through time. Nevertheless, long-term fate of OCPs i.e. source, transfer, 16 

and storage through the watershed, is also related to the OCPs-sediment characteristics 17 

interactions, and our study showed the significant links between OCPs and labile or refractory 18 

organic matter. From sediment cores collected in a mainly agricultural watershed, the Eure 19 

River watershed (France), aldrin and lindane widespread applications during the 1950s–1970s 20 

have been recorded. While lindane applications declined after that date, according to the 21 

temporal trend of the stable isomer of hexachlorocyclohexane (β-HCH), α-, and γ-HCH have 22 

been recorded at significant levels in the 2000s, suggesting first local post-ban applications. 23 

Nevertheless, the relationships between these OCPs and labile organic matter resulted in an 24 
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overestimation of the post-ban releases. Also, the detection of stable metabolites of 25 

dichlorodiphenyltrichloroethane (DDT) (i.e. 4,4’-DDE) and heptachlor (i.e. heptachlor 26 

epoxide) several decades after their ban, revealed the role of old deep soils erosion in the 27 

chronology of OCP releases and thus the reemergence of stable transformation products from 28 

historical OCPs. 29 

 30 

1. Introduction 31 

 32 

Organochlorine pesticides (OCPs) are part of persistent organic pollutants (POPs) and are 33 

ubiquitous contaminants in the environment, released by human activities. These synthetic 34 

compounds mainly used in agriculture have significant half-lives in air, soils, sediments, and 35 

biota, and have a variety of toxic effects on living organisms including humans (Willett et al., 36 

1998; Jones and de Voogt, 1999; Hidayati et al., 2021). OCPs are relatively lipophilic and 37 

show an affinity for fine particles and organic matter (OM) in soils, suspended particulate 38 

matter (SPM) in rivers, and sediments (Warren et al., 2003; Thevenon et al., 2013; Li et al., 39 

2015; Varnosfaderany et al., 2020). Therefore, it is accepted that fluvial or estuarine 40 

sediments can be considered as the main sink for OCPs, and their temporal trends can be 41 

reconstructed by their analysis from sediment cores in combination with fine-scale analysis of 42 

the sedimentological characteristics of sediment deposits (Van Metre et al., 1997; Li et al., 43 

2015; Liber et al., 2019; Varnosfaderany et al., 2020). Nevertheless, studies of past and 44 

current sources, transport and fate of OCPs in watershed using sediment cores have been 45 

mainly carried out in Asia or USA, while there is a lack of OCPs-associated sediments studies 46 

over time in Europe (Bigus et al., 2014).  47 

There are numerous pesticides release points (e.g. production area, industrial, or urban 48 

applications) but agricultural practice is known as the main source in the environment (e.g. 49 
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Désert et al., 2018). France is a historically agricultural country that is currently the leading 50 

European country in terms of i. utilised agricultural area (23.98 M ha), with cereals, oilseed, 51 

and sugar beet being the main crops, ii. production (18.3% of European production), and is 52 

only ranked ninth in Europe in terms of pesticide use; however, their use does not seem to be 53 

decreasing, and was estimated to 4.1 t of active component per 1000 ha in 2014 (Hossard et 54 

al., 2017). Although many pesticides including some OCPs were banned in France during the 55 

twentieth century, their persistence in the environment means that they can still be detected in 56 

soils, sometimes many years after they were banned, while soil erosion can lead to the 57 

contamination of rivers (Villanneau et al., 2009; Schreiner et al., 2016). The Seine River 58 

watershed (95000 km²) contains large urban areas (e.g. Paris Megacity) but also a significant 59 

amount of agricultural land that accounts for more than 60% of the total watershed area. 60 

Among the Seine River tributaries, the Eure River is the main tributary of the Seine estuary 61 

and drains a watershed of which 70 % of the soil area is used for crops. Moreover, the Eure 62 

River watershed is partially located in the “Beauce Region” an emblematic national 63 

agricultural region (~ 5740 km²) known as the breadbasket of France.  64 

Although studies have examined the current transfer of pesticides within the tributaries of 65 

the Seine River (Blanchoud et al., 2004, 2007) and the contamination of aquatic species by 66 

OCPs in the Seine River and Seine estuary (Blanchard et al., 1997; Lesueur et al., 2015), no 67 

studies have examined the temporal trends in OCPs from riverine sediments and in particular 68 

those from the Eure River watershed. Therefore, this study aims to reconstruct the chronology 69 

of OCP releases in this watershed. Sediment cores were collected in the lower reaches of the 70 

watershed in order to be representative of the whole watershed. In addition, we paid attention 71 

on the poorly studied interactions between OCPs and sediment characteristics. Yet, this focus 72 

is considered to be essential to well interpret the temporal distribution of OCPs since i. the 73 

affinity of POPs for particles and particulate OM can exhibit significant differences regarding 74 
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the considered contaminant (Warren et al., 2003; Poot et al., 2014), and ii. the deposition of 75 

POPs in aquatic environment can be affected by OM fractions as the algae-derived OM 76 

(Taylor et al., 1991; Berrojalbiz et al., 2011; Duan and Ran, 2015). 77 

 78 

2. Materials and Methods  79 

 80 

2.1. Core sites in the Eure River watershed  81 

 82 

The Eure River has a mean flow of 22.13 ± 6.69 m
3
 s

-1
 and is the main tributary of the Seine 83 

estuary (the estuarine part of the Seine River is delimited by the Poses Dam). The Eure River 84 

watershed (6017 km²), located in the northern part of the “Beauce Region” is mainly 85 

composed of agricultural lands, and cropping systems are diverse including oilseed rape, fibre 86 

flax, potatoes, protein peas, cereals (soft and durum wheat, barley, and corn) and sugar beet 87 

(Fig. 1A). The Martot Pond is located less than 1 km from the river outlet, has an area of ~ 7 88 

ha, and is affected by the waters of the Seine estuary during tidal flows. Before October 2017, 89 

this tidal impact was limited to periods with high tidal coefficients (e.g. > 70) as the Martot 90 

Dam located downstream of the pond, removed since October 2017, prevented tidal flows. 91 

The sediment cores were collected in January 2015 (MAR15-01) and February 2016 92 

(MAR16-02) using a UWITEC® gravity corer and 90-mm-diameter PVC pipes, and the 93 

water-sediment interface was preserved during coring (Fig. 1B). The characteristics of the 94 

sediment cores are shown in Table 1. 95 

 96 
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 97 

Fig. 1. A. Land use in the Eure River watershed; and B. Sediment core locations in the Martot Pond. 98 

 99 

Table 1. Sediment cores collected in the Martot Pond (WGS 84). 100 

Core ID IGSN Longitude (X) Latitude (Y) Core Length (cm) 

MAR15-01 IEM2C0001 1°03'1.68" E 49°17'49.68" N 138 

MAR16-02 IEM2C0008 1°03'2.60" E 49°17'49.30" N 129 

 101 

2.2. Grain size, total organic carbon, and Rock-Eval 6 analysis 102 
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 103 

Grain size distribution was measured using laser diffraction (LS 13320 Particle Size 104 

Analyser Beckman Coulter™) in the 0.04–2000 μm range, in the MAR15-01 core at a 1-cm 105 

resolution. 106 

Total organic content (TOC, %) was measured in the MAR15-01 core at 1-cm interval, 107 

using Rock-Eval 6 (RE6) pyrolysis ("Turbo" model RE6 pyrolyzer; Institut des Sciences de la 108 

Terre d'Orléans (ISTO), University of Orléans). TOC is composed of the pyrolysable organic 109 

carbon content (PC = ((S1+S2)×0.083)+(S3×12/440)+(S3CO× 12/280), %), and residual 110 

organic carbon content (RC = (S4CO×12/280) + (S4CO2×12/440), %), which corresponds to 111 

refractory organic carbon (Corg) (Lafargue et al., 1998):  S1 (free hydrocarbons (HC), in mg 112 

HC g
-1

 sample); S2 (HC released during the pyrolysis step, in mg HC g
-1

 sample); S3 (mg 113 

CO2 g
-1

 sample), and S3CO (mg CO g
-1

 sample), both originating from functional groups 114 

bearing oxygen releasing respectively CO2 and CO during the pyrolysis step (Sanei et al., 115 

2005; Duan and Ran, 2015); S4CO (CO released during the oxidation step, in mg CO g
-1

 116 

sample), and S4CO2 (CO2 released during the oxidation step, mg CO2 g
-1

 sample). The 117 

combination of TOC with these RE6 parameters allowed to calculate some parameters: the 118 

hydrogen index (HI = (S2×100)/TOC; mg HC g
-1

 TOC) as an indicator of the hydrogen 119 

richness of the sample, and the oxygen index (OI = (S3×100)/TOC; mg CO2 g
-1

 TOC) as an 120 

indicator of the degree of the OM oxidation, were determined to evaluate the quality of the 121 

OM.  122 

 123 

2.3. XRF core scanning 124 

 125 

X-Ray fluorescence spectrometry (XRF) was used to semi-quantitatively determine major 126 

and trace elements in sediment deposits (Richter et al., 2006). They were measured using an 127 
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Avaatech XRF core scanner (EDYTEM, University of Savoie Mont Blanc). Measurements 128 

were realised every 5 mm for the MAR15-01 cores and every 2 mm for the MAR16-02 cores. 129 

 130 

2.4. Particulate OCP extraction and analyses  131 

 132 

Toluene (HiPerSolv Chromanorm and HPLC Grade) and acetone (AnalaR Normapur® and 133 

HPLC Grade) were supplied by VWR and Fischer Scientific. Atrazine-d5 (internal standard, 134 

IS), fluoranthene-d10, benzo[a]pyrene-d12, and 7-methylbenzo[a]pyrene (surrogate standards, 135 

SS) were provided by Sigma-Aldrich. A solution of organochlorine pesticides (EPA CLP 136 

Organochlorine Pesticides Mix at 200 μg mL
-1

 in hexane:toluene 1:1 (v:v), provided by 137 

Sigma-Aldrich) was prepared in toluene (100 mg L
-1

). 138 

The analysis of particulate OCPs from the sediment core was performed using microwave-139 

assisted extraction (MAE) (MarsX, CEM Corporation, US). For this, subsampling of the 140 

MAR16-02 core was performed (sampling interval = 1 cm) without the sediment in contact 141 

with the PVC pipe, and approximately 2 g (in duplicate) of freeze-dried, crushed, and 142 

homogenised sediment from the cut fractions of the sediment core (was spiked with 15 μL of 143 

the solution containing the SS (100 mg L
-1

). Samples were then introduced into Teflon 144 

reactors with 20 mL of a 1:1 (v:v) toluene:acetone mixture for extraction at 130 °C for 30 min 145 

(1,200 W). The extracts were then filtered through a 0.2-μm (Phenomenex) PTFE filter. 146 

Following the addition of 60 μL of solvent keeper (octanol), evaporation was carried out 147 

using a vacuum centrifugal pre-concentrator (MiVac, Genevac, UK) after which 1,440 μL of 148 

toluene was added. 149 

Following MAE, 10 μL of IS (100 mg L
-1

 in toluene) was added to 990 μL of the extracted 150 

solutions, and 1 μL was injected (splitless mode, 285 °C) into the gas chromatograph (7890B, 151 

Agilent, US) coupled to a mass spectrometer (MS; 7000C). Separation was performed in a 152 
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capillary column (HP-5MS, Agilent, size = 60 m × 0.25 mm; film thickness = 0.25 μm) with a 153 

helium flow rate of 1.4 mL min
-1

. The oven temperature was programmed at 60 °C (1.3 min) 154 

rising to 190 °C (40 °C min
-1

), 240 °C (4 °C min
-1

), and 305 °C (6 °C min
-1

) for 12 min. The 155 

MS detector was operated at 70 eV and quantification was performed in selected ion 156 

monitoring (SIM) mode. 157 

The following OCPs were analysed: desethylatrazine and atrazine, hexachlorocychlohexane 158 

(HCHs; α, β, γ, and δ), dichlorodiphenyltrichloroethane (DDTs; 4,4'-DDT, 4,4'-DDE, and 159 

4,4'-DDD), chlordanes (CHLs; α and γ), heptachlors (heptachlor, heptachlor epoxide B-160 

isomer), drins (aldrin, dieldrin, endrin, endrin aldehyde, and endrin ketone), endosulfans 161 

(endosulfan I α, endosulfan II β, and endosulfan sulfate), and methoxychlor. The detection 162 

limits for these compounds were 0.0472; 0.0223; 0.0376; 0.0365; 0.0423; 0.057; 0.1375; 163 

0.0226; 0.0258; 0.0497; 0.0237; 0.0757; 0.0274; 0.0358; 0.0343; 0.0496; 0.0486; 0.0442; 164 

0.0497; 0.0293; 0.1039; and 0.1397 mg kg
-1

, respectively. The extraction method was 165 

validated using a certificate reference material (CRM; CNS391, Sigma-Aldrich). The OCPs 166 

presented in this study – i.e. HCHs (α, β, γ), DDTs (4,4'-DDE, and 4,4'-DDD), heptachlor 167 

epoxide B-isomer, and drins (aldrin, dieldrin) – are the compounds for which the analysis of 168 

the CRM are included in the prediction intervals for each compounds.  169 

 170 

2.5. Core dating 171 

 172 

Activities of radioelements with short periods were analysed to date recent sediment 173 

deposits within sediment cores and estimate a sedimentation rate. The sedimentation rate was 174 

determined from the activity of 
210

Pb in excess (
210

Pbex), by subtracting 
226

Ra from the 175 

210
Pbtotal (Goldberg, 1963). Artificial radioelements as 

137
Cs and 

241
Am were used to confirm 176 

the age model established from the 
210

Pbex results. Peaks were observed in 1963 and in 1986 177 
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corresponding to the maximum fallout from atmospheric nuclear weapon testing, and the 178 

Chernobyl nuclear power plant accident respectively (Robbins and Edgington, 1975; Appleby 179 

et al., 1991). The activities of radioelements were determined using gamma spectrometry with 180 

a germanium spectrometer in ultra-low background noise settings at the Laboratoire 181 

Souterrain de Modane. The age model was computed with serac R package 182 

(https://github.com/rosalieb/serac; Bruel and Sabatier, (2020)). The MAR15-01 core was 183 

sampled at intervals of 2, 4, and 6 cm from 0 to 80 cm. 184 

 185 

3. Results 186 

 187 

3.1. Chronological framework  188 

 189 

Measurement of short-lived radionuclides in sediment cores is required to estimate a 190 

sediment accumulation rate and build an age model (Appleby and Oldfield, 1978). 191 

Concerning the MAR15-01 core, the activity of 
210

Pbex has decreased almost constantly with 192 

depth in the sedimentary unit 1 (U1) (Fig. 2A), and the use of the Constant Flux, Constant 193 

Sedimentation Rate (CFCS) model (Goldberg, 1963; Krishnaswamy et al., 1971) indicated a 194 

sediment accumulation rate of 12.73 ± 2.20 mm y
−1

. 
137

Cs activity has been identified for the 195 

first time at 71 cm depth, corresponding to 1955 (Pennington et al., 1973), and showed a peak 196 

at 60 cm depth which, associated with the peak of 
241

Am activity at 58 cm depth, corresponds 197 

to the maximum fallout from atmospheric nuclear weapon testing in 1963 (Robbins and 198 

Edgington, 1975; Appleby et al., 1991). At 40 cm depth, another peak of 
137

Cs activity is 199 

recorded and is linked to the Chernobyl accident in 1986 (Fig. 2A). The mean sediment 200 

accumulation rate and the artificial radionuclides trends were consistent with each other and 201 

provided a robust depth-associated age relationship within the sediment deposit. According to 202 
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previous works carried out on these sediment deposits, U1 was i. the result of constant inputs 203 

from the Eure River watershed since the 1940s (and called Eure Unit hereinafter) and ii. not 204 

disturb by changes in hydrological conditions (e.g. floods) and erosion processes through 205 

time, while U2 came from inputs of the Seine River but could not be dated (Gardes et al., 206 

2020a), and will not be discussed hereinafter. 207 

This age model was applied to the MAR16-02 core used for OCPs analyses. The plot of the 208 

Fe/Ti ratio from both cores displayed several concordances (Fig. 2) which confirmed the 209 

correlation between these two cores and the mean sediment accumulation rate of 11.3 mm y
-1

 210 

previously established with other ratios (Gardes et al., 2020b).  211 

 212 

 213 

Fig. 2. Chronological correlation established from A. 210Pbex activity (SAR: sediment accumulation rate),137Cs and 241Am 214 
activities (FF 1955: first identification of 137Cs in 1955; NWT 1963: maximum fallout from atmospheric nuclear weapon 215 
testing in 1963; C1986: Chernobyl accident in 1986), age model built, and Fe/Ca from the MAR15-01 core; and B. Fe/Ca 216 
from the MAR16-02 core.  217 

 218 

3.2. Chronology of organochlorines pesticides releases  219 

 220 

HCHs (i.e. the total concentrations of α-, β-, and γ-HCH) ranged from 0.09 mg kg
-1

 to 1.19 221 

mg kg
-1

 (mean value: 0.38 ± 0.15 mg kg
-1

). α-HCH was the less represented isomer (range: 222 
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<LOD–0.12 mg kg
-1

; mean value = 0.03 ± 0.01 mg kg
-1

), while γ-HCH was the most 223 

represented isomer (range: 0.06–1.00 mg kg
-1

; mean value = 0.25 ± 0.02 mg kg
-1

). They both 224 

showed a small increase towards the surface of the sediment deposits with a significant peak 225 

around 2005 (Fig. 3). β-HCH was recorded (range: <LOD–0.25 mg kg
-1

; mean value = 0.10 ± 226 

0.01 mg kg
-1

) at significant concentrations during the period 1955–1975, and showed a 227 

downward trend in the recent sediment deposits (Fig. 3). The concentrations measured are 228 

higher than the maximum recorded between 1985–1995 in sediment cores from the Rhône 229 

River, France (Liber et al., 2019), but comparable with those recorded in 1950s in sediment 230 

cores from salt marshes of the Mersey estuary, UK except for γ-HCH (Fox et al., 2001), or in 231 

sediment cores from floodplains of the Elbe River, Germany and dating from ~ 1964 (Götz et 232 

al., 2007).  233 

In the MAR16-02 core, DDT could not be detected but its stable metabolite 4,4'-DDE was 234 

only seen in the early 1960s (~ 0.04 mg kg
-1

), and during the period 1990–2007 (<LOD–0.09 235 

mg kg
-1

). 4,4'-DDD was also detected in only two fractions in the early 1960s (~ 0.08 mg kg
-

236 

1
), and in ~ 1996 (0.003 mg kg

-1
) (Fig. 3). These concentrations are higher than the maximum 237 

measured in 1964 in a sediment core collected in Lake Brêt, Switzerland (Thevenon et al., 238 

2013), but are in the same order of magnitude or lower than those obtained in 1985–1995 in 239 

sediment cores from the Rhône River, France (Liber et al., 2019), in ~ 1964 in sediment cores 240 

from the Elbe River, Germany (Götz et al., 2007), in the mid-1960s in sediment cores from 241 

salt marshes of the Mersey estuary, UK (Fox et al., 2001). 242 

Aldrin (<LOD–0.60 mg kg
-1

, mean value = 0.07 ± 0.01 mg kg
-1

) was recorded at significant 243 

concentrations during the period 1950s–1970s (Fig. 3). Dieldrin was only detected in the late 244 

1950s (dieldrin = 0.13 ± 0.19 mg kg
-1

), during the period 1992–1994 (dieldrin = 0.21 and 0.11 245 

± 0.15 mg kg
-1

), in the early and late 2000s (dieldrin = 0.03 ± 0.05; 0.01 ± 0.01 and 0.01 ± 246 

0.02 mg kg
-1

). Heptachlor could not be detected but its stable metabolite heptachlor epoxide 247 
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(<LOD–0.23 mg kg
-1

, mean value = 0.008 ± 0.002 mg kg
-1

) was seen in ~ 1985; but mainly 248 

since the early 2000s (Fig. 3). 249 

 250 

 251 

Fig. 3. α-HCH; β-HCH; γ-HCH; 4,4’-DDE (green circles); 4,4’-DDD (red triangles); aldrin (blue circles); dieldrin (red 252 
diamonds); heptachlor epoxide (isomer B) in the MAR16-02 core (measurement in the upper part of the Seine Unit are 253 
represented by dotted lines and transparent figures). 254 

 255 

3.3. Relationships between organochlorines pesticides releases and sediment characteristics  256 

 257 
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The lack of significant correlation between the temporal trends of OCPs and grain size 258 

parameters (D50, clay, silt, and sand fractions; Fig. 4) suggests that the grain size distribution 259 

may not control the parent OCPs distribution in the sediment deposits. Only negative 260 

correlations between the clay fraction and some OCP metabolites such as 4,4'-DDE (R = -261 

0.62), and heptachlor epoxide (R = -0.74) were observed, and also a positive correlation 262 

between 4,4'-DDE and D50 (R = 0.40; p < 0.005). The affinity of OCPs to fine particles is 263 

complex, and literature showed that this organic compounds were preferentially adsorbed on 264 

fine fractions (Warren et al., 2003; Opel et al., 2011; Oliveira et al., 2016). Nevertheless, grain 265 

size distribution did not always control the OCPs distribution in sediment deposits as 266 

evidenced by previous studies (Salvadó et al., 2013; Qu et al., 2018). In the present case, this 267 

could be explained by the composition of the sediment deposit – i.e. mainly composed of the 268 

silt fraction (72 ± 9 %) – and the grain size distribution which did not show any significant 269 

variation, and was centred around a low median (D50 = 33.9 ± 7.8 μm) (Fig. 5). Nevertheless, 270 

the temporal trends of parent OCPs (and some metabolites) could be controlled by TOC 271 

content as shown by the significant positive correlations with α-HCH (R = 0.51), γ-HCH (R = 272 

0.63), heptachlor epoxide (R = 0.74), while β-HCH and Aldrin were negatively correlated 273 

with TOC (R = -0.77 for both of them) (Fig. 4). Thus, the temporal trends of OCPs may be 274 

impacted by sediment characteristics. In some studies, the clay content seemed to be the main 275 

parameter controlling the concentration of OCPs in sediment cores (Wang et al., 2013), but 276 

other studies presented OM as a key parameter (Opel et al., 2011; Li et al., 2015), especially if 277 

the TOC content is high –  e.g. if it exceeds 0.2% – in the sediment deposits (Oliveira et al., 278 

2016). In the Martot Pond, the TOC content (3.88 ± 1.49%) which slightly increased towards 279 

the surface, and reached a maximum in the 2000s (TOC = 8.26 ± 0.19%) (Fig. 5), impacted 280 

the temporal trends of OCPs. 281 
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α-, γ-HCH, and heptachlor epoxide showed a positive relationship with the PC/TOC ratio (R 282 

= 0.67, R = 0.63, R = 0.55, respectively), demonstrating that their distribution is linked to the 283 

proportion of labile Corg (Fig. 4). OCPs did not exhibit any affinity with the S1 fraction 284 

representing the most labile and volatile fraction of PC and may originates from algal-derived 285 

OM (Sanei et al., 2005; Sanei and Goodarzi, 2006; Duan and Ran, 2015). α-HCH, showed 286 

positive correlation with HI (Fig. 4) which was almost constant in the Eure Unit (279 ± 23 mg 287 

HC g
-1

 TOC) (Fig. 5). Thus, α-HCH presented an affinity for the S2 fraction (representing HI) 288 

and its temporal trend could be controlled by algal production as the S2 fraction could contain 289 

hydrogen-rich aliphatic biomacromolecules mainly derived from the cells walls of algal-290 

derived OM (Carrie et al., 2012; Duan and Ran, 2015). γ-HCH also showed positive 291 

correlation with HI but also with OI, and the S3CO/TOC ratio (Fig. 4) which both slightly 292 

increased towards the top of the Eure Unit (OI = 150 ± 17 mg O2 g
-1

 TOC; S3CO/TOC = 0.43 293 

± 0.03 mg CO g
-1

 TOC) (Fig. 5). As the S3 fraction (representing OI) is mainly composed by 294 

carbohydrates, lignins, and plant matters (as S3CO) (Carrie et al., 2012), γ-HCH showed 295 

affinities for both labile algal-derived OM and labile terrestrial OM. 296 

Conversely, β-HCH and aldrin showed a strong affinity for the RC/TOC (R = 0.70 and R = 297 

0.80, respectively) representing the proportion of refractory Corg (Fig. 4). The recorded 298 

RC/TOC ratio was constant (0.70 ± 0.02) and greater than the PC/TOC ratio, showing that the 299 

TOC was mainly composed by refractory Corg (Fig. 5). Thus, the temporal trends of β-HCH 300 

and aldrin are related to the inputs of refractory Corg which is the most stable fraction of OM 301 

(Sanei et al., 2005; Hetényi and Nyilas, 2014). As the proportion of labile Corg, the proportion 302 

of refractory Corg remained constant along the Eure Unit. It indicated that the TOC content 303 

increase in the recent sediment deposits did not originate from a change in the source of OM 304 

(Fig. 5), which was only weakly altered along U1 and had both an aquatic and terrestrial 305 

origin according to the HI/OI ratio indicator (Gardes et al., 2020a). Moreover, β-HCH and 306 
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aldrin were related to the S4CO2/TOC ratio (R = 0.75 and R = 0.85, respectively) which was 307 

almost constant (23.8 ± 0.8 mg CO2 g
-1

 TOC) as S4CO/TOC (1.15 ± 0.20 mg CO g
-1

 TOC) in 308 

the Eure Unit (Fig. 5).  309 

 310 

 311 

Fig. 4. Correlation matrix for OCP concentrations, grain size parameters, and RE 6 parameters (Spearman’s rank correlation, 312 
p < 0.001 for all circles represented). As OCP concentrations have been determined on the MAR16-02 core and sediment 313 
characteristics have been determined on MAR15-01 core, the measurements were averaged by half-decades to investigate the 314 
correlation between them. 315 

 316 

 317 

Fig. 5.  Grain size distribution (blue: clay; green: silt; red: sand) and D50 (solid line); TOC; S1/TOC; HI; OI; S3CO/TOC; 318 
S4CO/TOC; S4CO2/TOC; PC/TOC; RC/TOC in the Eure Unit of the MAR15-01 core. 319 

 320 

4. Discussion  321 

 322 

4.1. Historical applications of aldrin and lindane 323 

 324 
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Aldrin and dieldrin are synthetic OCPs used to control soil-dwelling insects (Hendy and 325 

Peake, 1996), and dieldrin is also the main persistent degradation product of aldrin. Their 326 

presence in the aquatic system is due to surface runoff from treated land surfaces, or from 327 

surfaces they were deposited after volatilization and aerial transport (Sakan et al., 2017). 328 

Although aldrin is poorly soluble in water, it is rarely detected in soils or sediments because 329 

of its rapid degradation (by oxidation) into dieldrin (Hendy and Peake, 1996; Qu et al., 2018). 330 

Dieldrin tends to bond to SPM and to accumulate in sediments because of its hydrophobicity 331 

and its affinity for organic materials (Sakan et al., 2017). Thus, the prevalence  of aldrin 332 

combined with the low detection of dieldrin in the lower reaches of the Eure River watershed 333 

could indicate its rapid adsorption onto fine fraction with refractory Corg in soils after its 334 

application, its transfer through erosion of agricultural areas, then sedimentation and storage 335 

under anaerobic conditions, limiting its degradation (Hendy and Peake, 1996; Qu et al., 2018). 336 

Hence, the temporal trend of aldrin  could be explained by the widespread use of this OCP 337 

during the 1950s–1960s, followed by a decline in applications since 1960s because of its 338 

toxicity and persistence in the environment (INERIS, 2011). The temporal trend of aldrin 339 

could indicate that the decline in applications was gradual until the 1980s. Moreover, the 340 

recorded concentrations of aldrin are stable since the 1980s, i.e. approximatively a decade 341 

before the ban of use declared in France in 1992 (Decree 92-1074, 1992). Post-ban releases 342 

are also recorded in recent sediment deposits at low and stable contents probably due to 343 

erosion of agricultural soils and/or remobilization of sediments-associated contaminants 344 

trapped in the river (Fig. 6).  345 

 346 

4.2. Historical and potential post-ban applications of lindane 347 

 348 
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Lindane is an organochlorine insecticide (Walker et al., 1999) used for a wide range of crops 349 

(e.g. corn, beet, cereals, colza, flax) and also vegetables, wood preservative, or seed treatment 350 

(Villanneau et al., 2009; Orton et al., 2013). France has been one of the main lindane users 351 

and emitters in Europe since the 1940s (Prevedouros et al., 2004). Lindane is 99% composed 352 

of γ-HCH (Willett et al., 1998; Wang et al., 2013; Cai et al., 2016), but the detection of β-353 

HCH could reflect lindane applications since i. it can be derived from the slow conversion of 354 

α-, and γ-HCH in soils and sediments (Buser and Mueller, 1995; Willett et al., 1998; Walker 355 

et al., 1999; Zhao et al., 2010), and ii. it is the most stable isomer, less soluble in water, and 356 

more resistant to microbial degradation (Walker et al., 1999; Lee et al., 2001; Götz et al., 357 

2007). As aldrin, β-HCH presented an affinity for the refractory Corg, and the recorded 358 

concentrations were detected as early as the 1940s, when lindane was introduced to the 359 

French market. The temporal trend of β-HCH revealed the widespread use of lindane during 360 

the period 1955–1975, followed by a decline in its applications until the ban on the use in 361 

France in 1998 (Fig. 6) (decree 92-1074, October 2
nd

, 1992 and the Aarhus Protocol, June 362 

25
th

, 1998). Despite this ban on the use, lindane and its conformers are still detectable, 363 

particularly in agricultural soils (e.g. north regions of France) (Villanneau et al., 2009; Orton 364 

et al., 2013), and erosion of these soils could be the main factor explaining the post-ban 365 

detection in sediment deposits.   366 

Unlike β-HCH, α-, γ-HCH presented an affinity to labile Corg and the algal-derived OM. 367 

Thus, the bonding between α-, and γ-HCH and OM may have occurred during aquatic 368 

primary OM production under very low flow conditions, i.e. in the Martot Pond, as algal OM 369 

can accumulate hydrophobic organic contaminants in the water column (Taylor et al., 1991; 370 

Berrojalbiz et al., 2011; Duan and Ran, 2015). Moreover, as β-HCH comes from the 371 

conversion of α- or γ-HCH, their surprising post-ban peaks during the 2000s may indicate 372 

local post-ban applications of lindane and can likely reflect short transport time (i.e. short 373 
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distance) before sedimentation, without the conversion of these isomers. Nevertheless, in 374 

order to go correct the process of algal scavenging on the temporal trends of α-, and γ-HCH, 375 

they have been normalized by the S2 fractions. The normalized temporal trends showed 376 

significant levels during the 1950s–1960s and low levels afterwards, which is more in 377 

agreement with lindane applications (Fig. 6A). In addition, the amplitude of post-ban peaks of 378 

concentrations was significantly decreased, and therefore could be mainly explained by 379 

sedimentary matrix effects. This overestimation of the post-ban peaks demonstrated the 380 

importance of taking account the process of algal scavenging in the investigation of historical 381 

trends of organic contaminants releases (Duan and Ran, 2015), and the importance of the 382 

normalization process. 383 

 384 

4.3. Recent releases of historical OCPs  385 

 386 

4,4'-DDT is the active component and represents ~80% of the composition of DDT 387 

formulation (Bopp et al., 1982; Hendy and Peake, 1996), used to control pests since the mid-388 

1940s. Its use declined steadily from 1972 after it was banned in the US and France, but 4,4'-389 

DDT can persist in the environment for decades along with the primary metabolites 4,4'-DDE 390 

and 4,4'-DDD. DDE results from the degradation of DDT by dehydrochlorination under 391 

aerobic conditions while DDD results from the degradation of DDT by dechlorination under 392 

anaerobic conditions (Hitch and Day, 1992; Hendy and Peake, 1996; Aislabie et al., 1997; 393 

Gong et al., 2007; Anderson et al., 2013; Li et al., 2015). Heptachlor is an insecticide (also 394 

present in technical chlordane) used for insect control, seed treatment, wood protection, and 395 

agricultural uses since the mid-1940s (Berntssen et al., 2017). Its use has been banned in UE 396 

since 1984 but the ban for agricultural use could be pushed back to 1988 (Convention de 397 

Rotterdam, 1991). Heptachlor can persist in soils and sediments, but heptachlor epoxide, its 398 
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photo-oxidation transformation product, is more persistent (Barakat et al., 2013; Qu et al., 399 

2018).  400 

Thus, 4,4’-DDE and heptachlor epoxide have been detected several decades after the ban of 401 

use of their parent compounds (Fig. 6). While post-ban applications of lindane may have been 402 

previously suggested because of the short-time interval between its ban of use and the 403 

potential post-ban applications, this hypothesis is not applicable for 4,4’-DDE and heptachlor 404 

epoxide because of the long-time intervals between ban of uses of DDT and heptachlor and 405 

the detection of their stable transformation products. Moreover, the affinity between these 406 

metabolites and the main sediment characteristics were less pronounced than for the other 407 

studied OCPs (Fig. 4). As a matter of fact, these increases could be related to that of soil 408 

erosion since previous studies have shown that the reemergence of historical OCPs (e.g. 409 

DDTs, chlordecone) in the recent years can be induced by land transformation and changes in 410 

agricultural practices and land uses, (Santschi et al., 2001; Zhang et al., 2002; Sabatier et al., 411 

2014, 2021). In Zhang et al. (2002); and Sabatier et al. (2014, 2021), post-ban releases 412 

(expressed as fluxes) which were higher than whose recorded during the authorised 413 

applications of the studied OCPs, were associated to an increase in terrigenous flux and 414 

sediment accumulation rate due to a greater soil erosion. As in Santschi et al. (2001), post-ban 415 

releases in the Eure River watershed were also higher than whose recorded during the 416 

authorised applications, but might be not related to an increase in soil erosion as the sediment 417 

accumulation rate is constant in the accumulation area (Fig. 2). Thus, the detection of 4,4'-418 

DDE since the early 1990s and of heptachlor epoxide since the 2000s, while they were almost 419 

undetected when their parent compounds were used, could be the result of recent inputs from 420 

erosion of deeper and older soils where parent OCPs were still present. The emergence of 421 

deep soils to the surface could explain the prevalence of 4,4'-DDE over 4,4’-DDD, DDE 422 

being the DDT transformation product under aerobic conditions (Hendy and Peake, 1996; Cai 423 
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et al., 2016), and could explain the transformation of heptachlor into heptachlor epoxide under 424 

sun irradiation (Fig. 6).  425 

 426 

 427 

Fig. 6. Chronology of aldrin; α-HCH, β-HCH, γ-HCH, α-HCH / S2; and, γ-HCH / S2; and 4,4’-DDE and heptachlor epoxide 428 
historical releases recorded in the Martot Pond.  429 

 430 

5. Conclusions 431 

 432 

The chronology of OCP releases in the Eure River have been reconstructed from dated 433 

sediment cores collected in homogeneous riverine sediment deposits, and this study 434 

demonstrated the necessity to examine the relationships between OCPs and sediment 435 

characteristics to discriminate the influence of former applications, soil erosion, and also 436 

potential post-ban applications in these temporal trends.  437 
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The affinity of aldrin and β-HCH for the refractory Corg indicated that these OCPs have been 438 

bound to OM in agricultural soils after their deposit, and their inputs into the river system was 439 

a result of the erosion of these soils. Thus, the temporal trends of aldrin and lindane have been 440 

reconstructed and showed former widespread applications during the 1950s–1960s and 441 

1955s–1975s respectively, followed by declines in applications before their ban of uses 442 

because of the highlighting of their toxicity. Thereafter, low and stable contents in recent 443 

sediment deposits were measured, due to the continuous erosion of agricultural soils and/or 444 

remobilization of contaminants associated to trapped sediments in the river.  445 

α- and γ-HCHs have the same origin as β-HCH, i.e. lindane applications; but - and - 446 

isomers, unlike - isomer,  were preferentially bound to labile Corg. Their sorption process 447 

occurred in the river system, during aquatic primary OM production under very low flow 448 

conditions. Moreover, a potential local post-ban application might have been recorded in the 449 

Martot Pond, but its amplitude was overestimated. Indeed, it appeared that the process of algal 450 

scavenging must not be neglected when lindane chronology is studied.  451 

The detection in recent sediment deposits of 4,4’-DDE and heptachlor epoxide, i.e. several 452 

decades after the ban of use of their parent compounds, showed the influence of soil erosion 453 

in the chronology of OCP releases. Indeed, remobilization and erosion of old deep soils led to 454 

the reemergence of stable transformation products from historical OCPs, undetected during 455 

their period of application. 456 

This study highlighted that i. the chronology of OCP releases recorded in sediment deposits 457 

is not always an indicator of active applications and of direct releases in the environment (i.e. 458 

in agricultural soils), ii. investigations of OCP temporal trends require an interest in sediment 459 

characteristics, and the role of the different fractions of OM on the sorption and transport of 460 

organic pollutants deserves to be further investigated. 461 

 462 
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