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Abstract

A strategy based on machine learning is discussed to close the gap between the detailed description

of combustion chemistry and the numerical simulation of combustion systems. Indeed, the partial

differential equations describing chemical kinetics are stiff and involve many degrees of freedom,

making their solving in three-dimensional unsteady simulations very challenging. It is discussed

in this work how a reduction of the computing cost by an order of magnitude can be achieved

using a set of neural networks trained for solving chemistry. The thermochemical database used

for training is composed of time evolutions of stochastic particles carrying chemical species mass

fractions and temperature according to a turbulent micro-mixing problem coupled with complex

chemistry. The novelty of the work lies in the decomposition of the thermochemical hyperspace

into clusters to facilitate the training of neural networks. This decomposition is performed with

the Kmeans algorithm, a local principal component analysis is then applied to every cluster. This

new methodology for combustion chemistry reduction is tested under conditions representative of

a non-premixed syngas oxy-flame.

Keywords: Combustion chemistry, Micro-mixing modeling, Principal component analysis,

Artificial neural network, Chemistry reduction

1. Introduction1

Despite of the continuous progress in supercomputing methodologies, all the degrees of free-2

dom required to fully describe the detail of combustion chemistry cannot be introduced in the nu-3
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merical simulations of large-scale combustion systems, such as boilers and furnaces. Several meth-4

ods have been proposed in the literature to reduce and optimize large chemical kinetic schemes,5

such as Quasi-Steady State Approximation (QSSA) and partial equilibrium [1], Directed Rela-6

tion Graph (DRG) [2], Directed Relation Graph with error propagation [3], DRG-aided sensitivity7

analysis (DRGASA) [4] or again unimportant reaction elimination [5] (not exhaustive list).8

Even after reducing the number of differential equations solved, because of the very stiff char-9

acter of differential systems associated to combustion chemistry, the CPU time devoted to their10

integration remains quite significant and in most cases, too large to allow for performing the mul-11

tiple simulations needed to complete the quest of the optimal design for a combustion system.12

These computing limitations motivated the introduction of artificial neural networks (ANN) to13

deal with chemistry reduction and its time integration [6] and also to develop data driven turbulent14

combustion modeling [7], or to analyse experimental measurements [8] and to setup digital-twins15

for process control [9].16

Among these works, ANN and convolutional neural networks (CNN) were trained on a repre-17

sentative dataset to replace chemistry integration [10] and the method was applied to perform direct18

numerical simulation (DNS) of a syngas oxy-flame. Nevertheless, the training of the full dataset19

using a single or two ANNs required specific treatments, such as data augmentation through man-20

ufactured intermediate solution points for dealing with some fast reacting species [10]. These21

operations requiring fine tuning by the user were found necessary to secure good accuracy over22

the whole domain covering from chemically frozen-flow mixing up to the equilibrium state and23

pollutant emissions, with fast ignition and fuel oxidation in between.24

To avoid relying on these additional more or less ad-hoc operations, thus allowing for having25

a computerised and fully automatic procedure, a novel method is proposed in the present study26

for turbulent non-premixed flames in which techniques such as data clustering with K-means [11]27

and dimension reduction using LPCA [12], are combined with ANN training to secure, by con-28

struction, accuracy over the entire composition space domain (mixing, ignition, combustion and29

equilibrium state).30

The paper is organised as follow, in the subsequent section the operating conditions considered31

and the novel methodology proposed are discussed. After that, the obtained ANN is tested in a32
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posteriori manner for chemistry integration, to study the robustness of the method and the CPU33

time reduction.34

2. Chemistry integration with machine learning35

2.1. Thermochemical conditions36

The operating condition considered in this study is taken from previous works on syngas, with37

a chemical composition representative of those found in the steel industry in recycled exhaust38

gases [13]. This non-premixed syngas oxy-flame operates under a pressure of 341.3kPa, with the39

two inlets: (i) syngas fuel injected at 1223K for a mass flow rate of 0.74kg/s and the composition40

in mass fraction H2: 0.0085, CO: 0.7852, CO2: 0.0514, N2: 0.1549; (ii) pure oxygen at 298K with41

a mass flow rate of 0.69kg/s.42

2.2. Database generation43

A database of chemical evolutions is first generated by solving for the mass fractions and the44

enthalpy of a set stochastic particles featuring at initial condition the concentration in the fuel or45

in the oxidizer inlet. Then, the species mass fraction Y p
i (t) and sensible enthalpy hp

s (t) of each46

stochastic particle evolve according to the following equations:47

dY p
i (t)

dt
= MIXp

i (τT ) + ω̇
p
i , (1)

dhp
s (t)

dt
= MIXp

hs
(τT ) + ω̇

p
hs
, (2)

where ‘MIX’ denotes the stochastic turbulent micro-mixing closure for the diffusive budget in48

a non-premixed system. τT denotes the micro-mixing time and ω̇
p
i and ω̇

p
hs

are the species and49

enthalpy chemical sources, respectively. In the present study, the Euclidean minimum spanning50

tree (EMST) micro-mixing model [14] is used to model the turbulent micro-mixing.51

This approach to generate thermochemical conditions representative of those observed in a real52

system for studying its chemical response, without explicitly solving for the flow, has been shown53

effective for partial oxidation of natural gas [15], aircraft engines combustion chambers [16], large-54
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scale furnaces with urea DeNOx automated control [17], micro- and meso-scale combustion sys-55

tems [18] and also to build the database for machine learning application to sooting flames [19].56

Here a total number of 1429 stochastic particles is employed with 740 particles (corresponding57

to the mass flow rate of 0.74kg/s) assigned to Fuel inlet and 689 particles (corresponding to the58

mass flow rate of 0.69kg/s) to O2 inlet.59

Figure 1: Clustering with K-means

From the evolution of these particles, the first step consists of identifying, from a detailed60

chemical scheme, the important species to be retained and whose evolutions shall be learned by the61

ANNs. This is done using the direct relation graph with error propagation method (DRGEP) [3].62

For the present operating conditions, this step was previously performed and reported in [10].63

Starting from the detailed scheme GRI3.0 [20], 11 species were identified as essential to follow64

the dynamics of the syngas chemical evolutions: O, O2, H, H2, OH, HO2, H2O, H2O2, CO, CO265

and N2. A companion reduced chemistry involving 23 reactions was then optimised (see Table 266

of [13]).67

To save CPU time during training and to demonstrate the integration of chemistry with ANN,68
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Figure 2: Data clustering for parentCluster1. Temperature [K] (a) and species mass fraction [-] (b)-(j) vs H2 mass
fraction. Red: childCluster1 0. Black: childCluster1 1. Blue: childCluster1 2.

this 11-species and 23 elementary reactions scheme is used to build the time evolution dataset of69

all stochastic particles, over 4999 time-steps of 0.3µs with a mixing time τT = 0.3ms (a repre-70

sentative value for a characteristic turbulent mixing-time as observed in shear layers for Reynolds71
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numbers typical of burners). N2 was removed from the database for the pre-treatment and ANN72

learning steps. The full database thus consists of the 11 feature columns (10 species and temper-73

ature) of the 1429 stochastic particles collected over 4999 time-steps, therefore the raw data is74

composed of 1429×4999=7143571 vectors of 10 components.75

2.3. Data pre-treatment76

To secure an appropriate analysis of the multivariate nature of the problem, the thermochem-77

ical variables obtained from the solving of Eqs. 1 and 2 are going through pre-treatments, such78

as centering and rescaling and unsupervised machine learning, like clustering with K-means [11],79

and dimension reduction with LPCA [21], before the ANN training is to be applied. This strategy80

is expected to close the gap between the previous works [10], in which artificial data augmenta-81

tion was required to secure accuracy, and the introduction of complex chemistry in the numerical82

simulation of large scale furnaces.83

Following the recent study by D’Alessio et al. [22] in the context of adaptive chemistry for84

reacting flow simulation, the original dataset is first pre-processed with centering and auto-scaling85

(standardizing) to insure reliable and robust results.86

2.3.1. Data clustering87

K-means [11] is a widely used and well-established unsupervised machine learning algorithm,88

which consists in grouping similar data into different clusters. K-means is particularly suited for89

the classification of the micro-mixing stochastic particles, which evolve through a large variety of90

stages from chemically-frozen flow mixing, rapid ignition, fuel oxidation and combustion up to91

the chemical equilibrium state. Moreover, the particles from Fuel and O2 inlets feature different92

time histories, which benefit from being classified in separate clusters for chemistry ANN integra-93

tion. After clustering into separate groups, every individual subset of data has similar and regular94

distribution to ensure effectiveness of the subsequent operations.95

The different steps in K-means used for the thermochemical quantities (species mass fractions96

and temperature) are illustrated in Figure 1 and summarized as follows:97

• Definition of the number of clusters.98
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Figure 3: Repartition of data points in childCluster1 0, childCluster1 1 and childCluster1 2. Abscissa is cluster
numbering, ordinate is number of data points. Orange: particles from O2 inlet. Blue: particles from Fuel inlet.

• Selecting randomly an initial cluster centroid: To ensure the quality of clustering and im-99

prove the convergence speed, the K-means++ initialization algorithm [23] is applied. The100

algorithm assigns randomly a first centroid, a second centroid is then chosen as farthest101

as possible to the first centroid, a third centroid is as farthest as possible to the first two102

centroids, and so on.103

• Assigning data point to cluster with shortest Euclidean distance.104

• Updating centroid locations by averaging all data points in each cluster.105

• Repeat the process until the centroid locations are converged by evaluating the shifting tol-106

erance, which is chosen at 1e-20.107

Defining an adequate number of clusters is crucial. The usual K-means++ initialization algo-108

rithm may lead to poor clustering in our case, where the majority of clusters concentrate in the109

ignition and combustion stages. To overcome this difficulty, an additional hierarchical clustering110

strategy was adopted; the first clustering leads to only 2 clusters (named parentCluster0 and parent-111

Cluster1), which separates the low and high temperature zones. The first parent containing the data112

of mixing, ignition and combustion stages is then clustered into 14 child clusters (childCluster0 0113

to childCluster0 13). The subset of data in the second parent, representing the end of combustion114
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followed by the equilibrium state, requires a special treatment to guarantee the accuracy of ANN115

training and prediction. For this reason, the second parent is classified into only 3 child clusters116

(childCluster1 0, childCluster1 1 and childCluster1 2), and then these 3 child clusters will have,117

respectively, 20, 10, 10 grandchildren (grandChild1 0 0 to grandChild1 0 19, grandChild1 1 0 to118

grandChild1 1 9, grandChild1 2 0 to grandChild1 2 9). Each child cluster of the first parent and119

each grandchild cluster of the second parent benefits from its own ANN training.120

The effectiveness of K-means algorithm applied to the flame turbulence/chemistry interaction121

(Eqs. 1 and 2) is illustrated in figures 2 and 3. Figure 2 shows how K-means automatically classifies122

data in parentCluster1 (representing the end of combustion and the equilibrium state) into 3 distinct123

subsets, i.e. childCluster1 0, childCluster1 1 and childCluster1 2. The childCluster1 1 contains124

the particles from O2 inlet, while the childCluster1 2 gathers the particles from Fuel inlet (Figure125

3); both childClusters represent the end of combustion. The particles from O2 and Fuel inlets126

finally approach the equilibrium state and their data points are classified in a single common cluster127

childCluster1 0.128

2.3.2. Local principal component analysis (LPCA)129

Principal component analysis (PCA), also known as a dimensional reduction technique, is130

used to reduce a large number of correlated variables (species mass fractions and temperature,131

in our case) to a smaller number of uncorrelated variables (principal components) [24]. Because132

of the strongly non-linear character of combustion chemistry, it is usually recommended to adopt133

a locally linear approach called ‘local PCA’ (LPCA) [21], to properly describe such dynamical134

system.135

In our case, each cluster represents a piece-wise variation of species mass fractions and tem-136

perature during a specific combustion stage. The application of LPCA in each cluster transforms137

correlated variables of high variance into the most important uncorrelated principal components138

(PCs), which will be carefully addressed during the ANN training process. The choice of the139

number of PCs is essential to secure a good quality of ANN prediction, and a quite high number140

of PCs is usually required dealing with chemistry in reacting flows [22].141

In practice, it was observed that reducing from 11 PCs to 6-8 PCs would still allow for keeping142
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Figure 4: Heat map showing correlation coefficients of data in grandChildCluster1 1 5. (a) Original variables in
composition space. (b) PCs in PCA space.

more than 98% of the relevant information. However, here the full set of control variable is trans-143

formed into PC (i.e., 10 chemical species and temperature). Therefore, this does not reduce the144

size of the problem to be learned, but the parametrisation of the data from the PCs considerably145

eases the ANN learning process. Indeed, species and temperature are usually well-correlated, the146

PCA analysis transposes these variables to non-correlated PCs and the performances of ANNs147

then become much greater with these non-correlated inputs.148

Two heat maps are presented in Figure 4 to show the correlation of original variables in com-149
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Figure 5: Chemistry reduction with trained ANN.

position space and of PCs in PCA space. These heat maps display the Pearson correlation coef-150

ficients, negative (respectively positive) value means that two variables vary in opposite (respec-151

tively same) directions, zero shows the absence of correlation. It is confirmed that the original152

variables in composition space are strongly correlated (Figure 4.a) and that PCs in PCA space are153

clearly uncorrelated, with practically zero correlation coefficients (Figure 4.b).154
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Layer Activation function Output shape

Input - (None,11)
Dense ReLU (None,512)
Dense ReLU (None,256)
Dense ReLU (None,128)
Dense ReLU (None,64)

Dense (Output) - (None,11)

Table 1: Structure of ANNs [10, 13]

2.4. Artificial neural network155

The ANN regression structure (Table 1) used in this study is adopted from our previous156

works [10]. The ANN consists of 1 input layer, 4 dense hidden layers with the rectified linear157

activation function (ReLU) and 1 output layer. The total number of parameters (weights and bi-158

ases) is 179851.159

Figure 6: Flowchart of the a posteriori test. (‘ORCh’: Optimised and Reduced Chemistry.)

The ANN input is fed by the data in PCA space, composed of 11 PCs which are obtained by160

the projection of the 11 original variables from composition space into PCA space. The target is161

the increment of species composition and temperature (i.e., the ANN learns how to integrate the162

time evolution of chemistry). The database is split into training set (81%), validation set (9%) and163
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test set (10%) for model performance evaluation.164
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Figure 7: Time evolution of temperature [K] averaged over stochastic particles. Symbols: reference reduced scheme
(Table 2 of [13]). Continuous line: Kmeans-PCA-ANN. Dashed-line: ANN without data pre-treament. Green: O2

inlet. Red: Fuel inlet.

The training process is performed using Tensorflow 2 with GPU support (NVIDIA GeForce165

GTX 1080 Ti) and the Adam optimizer in default setting. To prevent the overfitting, the early166

stopping callback is adopted and set as 200 epochs, which means that the training will be halted167

after 200 epochs without improvement. Additionally, the check point callback saves the best model168

with the lowest mean squared error (MSE) during the training process. The total training time for169

all ANNs is about 11 hours.170

3. Results171

The methodology adopted in the study is summarised in Figure 5. To perform a posteriori tests172

of the model, the evolutions of the stochastic particles are recomputed replacing the integration of173

chemistry by the ANN, as summarised in Figure 6.174

The time evolutions of temperature and species mass fractions averaged over the stochastic175

particles issued from one of the inlets and computed with and without ANNs, are shown in figures176

7-9.177

The case without any pre-treatment of the data (dashed-line) and a single ANN rapidly deviates178

from the reference solution (symbols). Without pre-treatment, the ANN captures the very first part179
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Figure 8: Time evolution of major species mass fractions averaged over stochastic particles. Symbols: Reference
chemical scheme (Table 2 of [13]). Continuous line: Kmeans-PCA-ANN. Dashed-line: ANN without data pre-
treament. Green: O2 inlet. Red: Fuel inlet.

of ignition, but fails to reach the equilibrium condition, see for instance the temperature response in180

figure 7. (Notice that one does not make use here of the introduction of manufactured intermediate181

solutions for H2O2, as discussed in [10].)182
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Figure 9: Time evolution of radicals and intermediate species mass fractions averaged over stochastic particles. Sym-
bols: Reference chemical scheme (Table 2 of [13]). Continuous line: Kmeans-PCA-ANN. Dashed-line: ANN without
data pre-treament.Green: O2 inlet. Red: Fuel inlet.

The solution with data pre-treatment (solid lines in figures 7-9) is in good agreement with the183

reference solution obtained using a CPU consuming stiff-solver for chemistry (symbols). This is184

the case for temperature and all species considered, even radicals and intermediate ones such as O,185

14



H, OH, HO2 and H2O2. All the evolution stages (mixing, ignition, combustion and equilibrium)186

are well predicted.187

Figure 7 shows that the ignition delay of 0.08 ms is correctly predicted by the ANN model.188

After the ignition, the temperature profiles feature a sharp increase to attain high values due to oxy-189

combustion (the highest value is 3081K for the particles from the fuel side). Then, the temperature190

proceed towards its equilibrium state at 3037K. The trajectories of reactants (H2, CO, O2), and191

main combustion products (CO2, H2O) are also perfectly captured by the ANNs-based model192

during their evolution in all specific stages, i.e. mixing, ignition, combustion and equilibrium193

(Figure 8).194

Regarding minor and radicals species (Figure 9), the shape and peak of the trajectories are also195

correctly predicted except a very slight discrepancy for H2O2 species departing from the oxygen196

inlet.197

The computation time is drastically reduced by using the ANN model as given in Table 2. The198

simulation with ANNs (single processor calculation) is 8 times faster than the simulation for the199

reduced scheme, and 80 times faster than the simulation with the detailed GRI3.0 scheme. The200

CPU time reduction is measured here solving for micro-mixing and chemistry (Eq. (2)). This201

relative CPU reduction thus differs from our previous works [10], also relying on ANN for chem-202

istry, in which the speed-up was measured solving for the aerothermochemical equations in three-203

dimensional flows.204

This quantification of the speed-up does not account for the preprocessing time needed to train205

the neural networks. However, the CPU effort required for training stays much smaller than the206

time spent performing the numerous operations required to generate a reduced chemical scheme207

(analysis of the most important chemical species and reaction paths and optimisation of the rate208

constants). What could slightly increase the CPU cost with ANN is the introduction of more209

degrees of freedom which may become mandatory to reproduce very specific combustion charac-210

teristics (cool flame effects, etc.).211

15



Chemistry Speed-up

GRI3.0 detailed scheme 1
Reduced scheme 10

ANNs (present work) 80

Table 2: Speed-up between chemistry descriptions.

4. Conclusion212

A novel methodology based on the training of neural networks was proposed to reduce com-213

bustion chemistry and applied to a non-premixed syngas oxy-flame canonical configuration. The214

unsupervised learning technique K-means was used to cluster the entire dataset, obtained from215

the solution of stochastic particles in a turbulent micro-mixing system, into multiple subsets. In216

the case of a two-inlet problem, with one of the streams bringing the energy necessary for igni-217

tion, the proposed decomposition in clusters is likely to be robust and generic. Indeed, after some218

turbulent mixing, the mixture will always ignite to then evolve towards equilibrium. Some level219

of finite rate chemistry may appear, but full quenching is very unlikely, especially in the case of220

oxy-combustion studied here. However, the addition of heat losses and of non-adiabatic recircu-221

lating burnt gases may require further examination to determine the best compromise in terms of222

clustering, still following a similar approach.223

Local Principal Component Analysis (LPCA) was then applied on each subset to reduce the224

dimension of the problem and most important principal components were retained for the ANN225

training process. Neural networks were finally trained with the aim to replace expensive chem-226

istry integration. The simulation results showed that the proposed method is able to predict the227

evolution of the thermochemical variables (temperature and species concentration) with excellent228

accuracy over the whole domain covering from mixing to ignition, combustion and finally chemi-229

cal equilibrium. All of those with a drastically reduced simulation time.230

This promising result is paving the way for the introduction of reduced chemical schemes based231

on ANN training in reacting flow simulations, in order to mitigate CPU times without accuracy232

loss.233
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state and pollutant emissions, with fast ignition and fuel oxidation in between.

To avoid relying on these additional operations, thus allowing for having a comput-

erised and fully automatic procedure, a novel method is proposed in the present study in

which machine learning techniques, such as data clustering with K-means [28] and dimension

reduction using LPCA [29, 30], are combined with the deep learning ANN to secure, by con-

struction, accuracy over the entire composition space domain (mixing, ignition, combustion

and equilibrium state).

The paper is organised as follow, in the subsequent section the operating conditions

considered and the novel methodology proposed are discussed. After that, the obtained

ANN is tested in a posteriori manner for chemistry integration.

2. Chemistry integration with machine learning and deep learning

2.1. Thermochemical conditions

The operating condition considered in this study is taken from previous works on syngas,

steel industry [26, 27]. This non-premixed syngas oxy-flame operates under a pressure of

0.74kg/s and the composition in mass fraction H2: 0.0085, CO: 0.7852, CO2: 0.0514, N2:

0.1549; (ii) pure oxygen at 298K with a mass flow rate of 0.69kg/s.

2.2. Database generation

A database of chemical evolutions is first generated by solving for the mass fractions and

the enthalpy of a set stochastic particles featuring at initial condition the concentration in

the fuel or in the oxidizer inlet. Then, the species mass fraction Y p
i (t) and sensible enthalpy

hp
s(t) of each stochastic particle evolve according to the following equations:

dY p
i (t)

dt
= MIXp

i (⌧T ) + !̇p
i (1)

dhp
s(t)

dt
= MIXp

hs
(⌧T ) + !̇p

hs
(2)
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Database generation




