

Continuous chiral resolution by diastereomeric salt formation of racemic Ibuprofen in a Couette-Taylor crystallizer

Laureline Marc, Sabrina Guillemer, Jean-Marie Schneider, Gérard Coquerel

▶ To cite this version:

Laureline Marc, Sabrina Guillemer, Jean-Marie Schneider, Gérard Coquerel. Continuous chiral resolution by diastereomeric salt formation of racemic Ibuprofen in a Couette-Taylor crystallizer. ISIC 2021, Aug 2021, Online event, France. hal-03359396

HAL Id: hal-03359396 https://normandie-univ.hal.science/hal-03359396

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Continuous chiral resolution by diastereomeric salt formation of racemic Ibuprofen in a Couette-Taylor crystallizer

Laureline Marc^{1,2}, Sabrina Guillemer², Jean-Marie Schneider², Gérard Coquerel¹

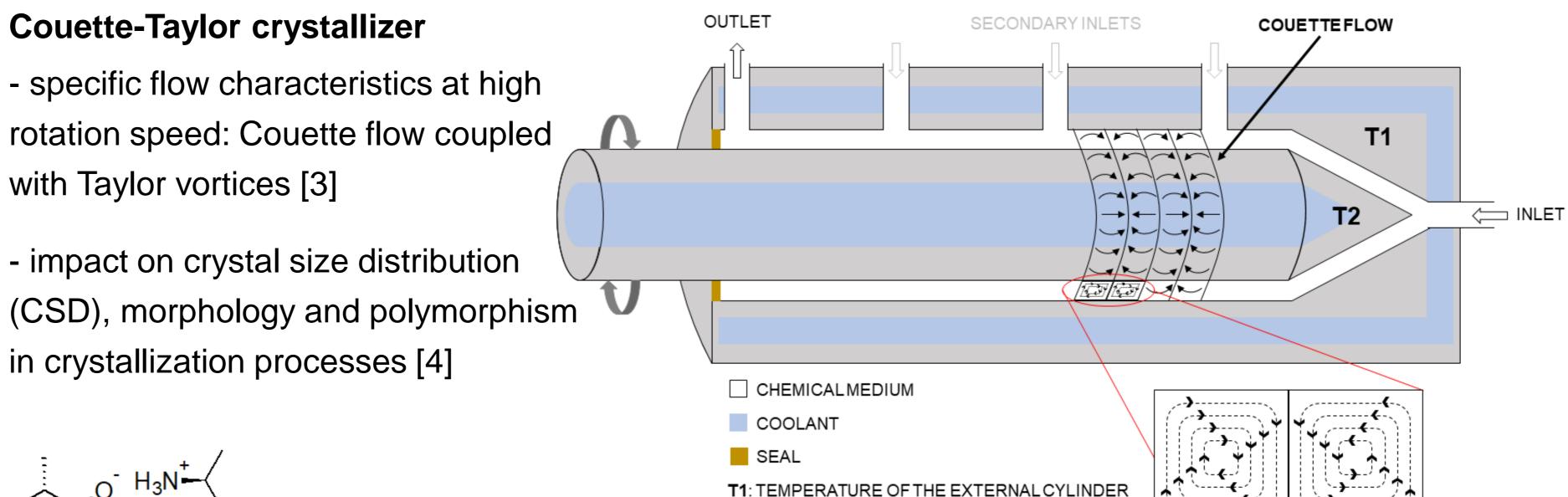
¹ University of Rouen, SMS Laboratory - UPRES EA 3233, 76821 Mont-Saint-Aignan, France ²Segens Porcheville, 2-8 rue de Rouen, 78440 Porcheville, France

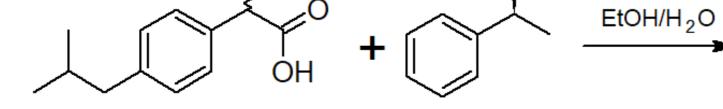
laureline.marc@univ-rouen.fr

Batch production mode [1]

SEOZNS

- legacy in pharmaceutical industry


Introduction


- weaknesses such as batch-to-batch quality variation

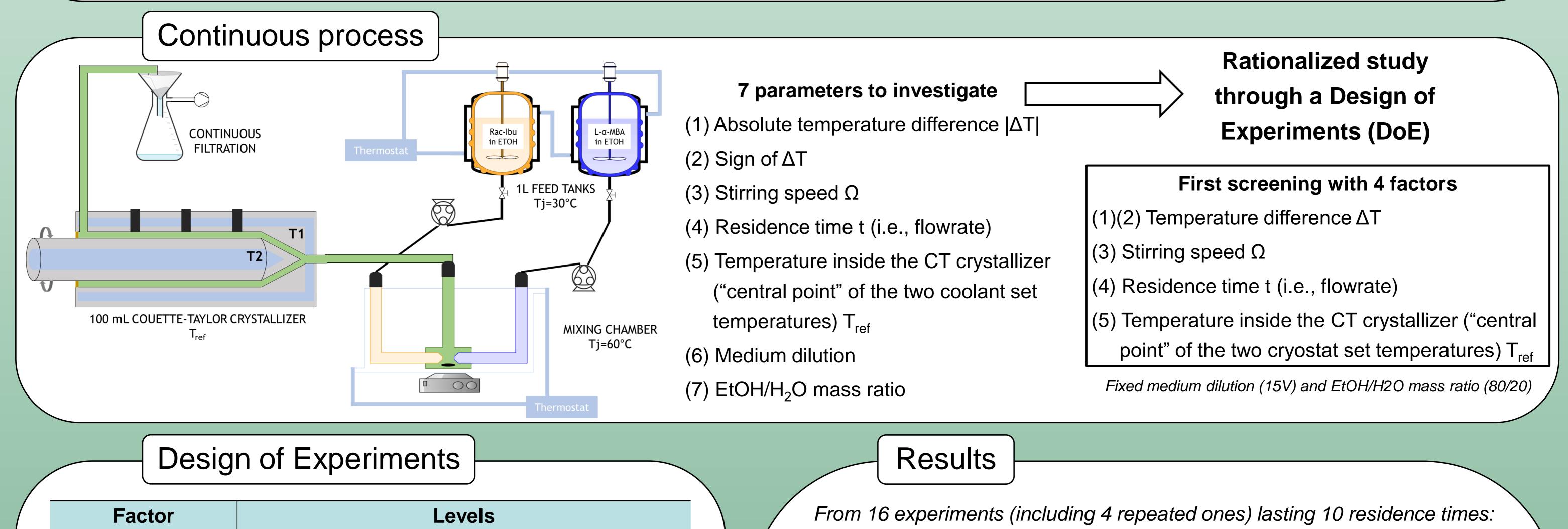
Continuous production mode [2]

- steady-state functioning, i.e., more constant quality product
- better process control

Reaction scheme

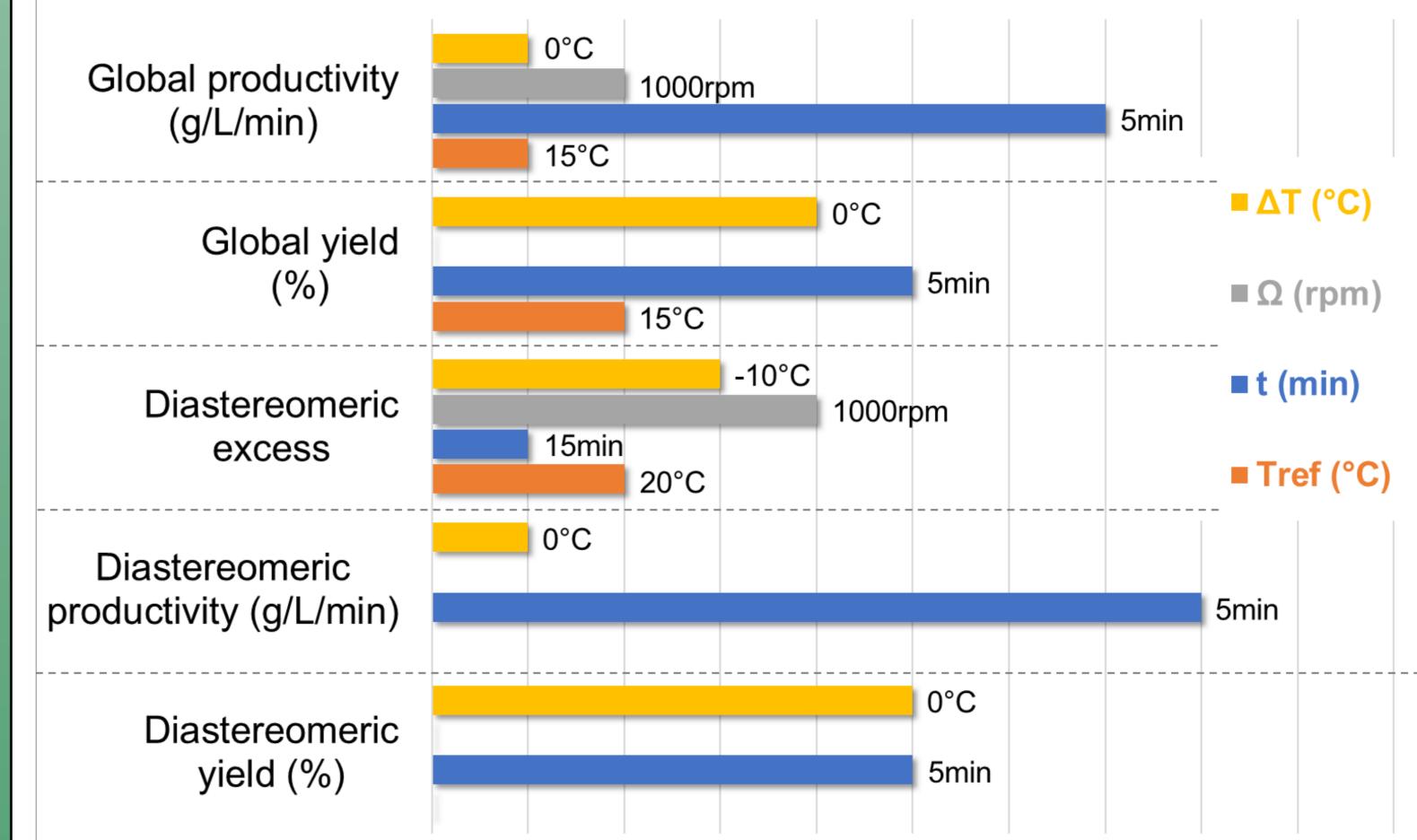
 NH_2

L-a-MethylBenzylAmine **Racemic Ibuprofen**


S-Ibuprofen-L-α-MethylBenzylAmine

T1: TEMPERATURE OF THE EXTERNAL CYLINDER

T2: TEMPERATURE OF THE INTERNAL CYLINDER


TAYLOR VORTICES

	Factor		Levels		
	ΔT (°C)	-10 (T1>T2)	0 (T1=T2)	+10 (T1 <t2)< td=""><td></td></t2)<>	
	Ω (rpm)	200	500	1000	
	t (min)	5	15	30	
-	T _{ref} (°C)	15	20	25	
	 5 main response Global productivity Global yield (%) Diastereomeric exe Diastereomeric productivity 	y (g/L/min) cess oductivity (g/L/min)		Most impacting factor(s) Best factor level	3
		usions and p	•		
:	⇒ Thanks to the set identified on the 4 and/or diastereo	studied factors in o	•		/

Relative influence of each studied factor on the main

responses and best factor level for influence score ≥1

- \Rightarrow With the suitable parameter set, the chiral purity of the recovered product is **higher** than that obtained in **batch mode**.
- \Rightarrow The **yield** is generally **lower** than that obtained in batch mode. However, experiments performed on a period exceeding **10 residence** times suggest that it improves after 14 resident times. Changes should be done on the **current set-up** in order to confirm this trend.
- \Rightarrow Further work should be done on specific ranges determined by this first screening, in order to draw a **response surface** for the **7** parameters to be studied.
- **Potential interaction(s) between factors** should also be examined, \Rightarrow as it has already been seen that the **combination of both** Ω and ΔT can have an influence on chiral purity and crystal size [5].

		0	1	2	3	4	5	6	7	8	9	1(
						Influ	ence	score				
	Temperature difference ΔT (°C)	Stirring speed Ω (rpm) ⇒ 1000rpm seems to be the best factor level		<section-header>Residence time t (min) ⇒ Favor lower residence times</section-header>		Cryostat average set temperature T _{ref} (°C)						
	$\Rightarrow \Delta T > 0$ seems to enhance chiral purity					⇒ Apparent poor influence						
\Rightarrow Avoid T1 <t2< td=""><td colspan="2">\Rightarrow 200 and 500rpm eliminated</td><td colspan="3">\Rightarrow Avoid 30min</td><td colspan="3">⇒ Favor lower temperatures</td></t2<>		\Rightarrow 200 and 500rpm eliminated		\Rightarrow Avoid 30min			⇒ Favor lower temperatures					