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Simple Summary: Tumor-associated macrophages (TAMs) play major roles in solid tumor develop-
ment. They can have both anti-tumor and pro-tumor properties depending on their polarization. In
this review, we summarize the observations and associations made between the presence of TAMs
and their subtypes within bladder cancer and the type of disease, its evolution, the prognostic value
for patients and the impact on current treatments. Only few studies focused on the effect of targeting
TAMs in bladder cancer thus far. We propose several potential targets/treatments that may benefit
for the limitation of pro-tumor TAMs and thus for the improvement of bladder cancer therapies.

Abstract: Tumor-associated macrophages (TAMs) are one of the most abundant infiltrating immune
cells of solid tumors. Despite their possible dual role, i.e., pro- or anti-tumoral, there is considerable
evidence showing that the accumulation of TAMs promotes tumor progression rather than slowing it.
Several strategies are being developed and clinically tested to target these cells. Bladder cancer (BCa)
is one of the most common cancers, and despite heavy treatments, including immune checkpoint
inhibitors (ICIs), the overall patient survival for advanced BCa is still poor. TAMs are present in
bladder tumors and play a significant role in BCa development. However, few investigations have
analyzed the effect of targeting TAMs in BCa. In this review, we focus on the importance of TAMs in a
cancerous bladder, their association with patient outcome and treatment efficiency as well as on how
current BCa treatments impact these cells. We also report different strategies used in other cancer
types to develop new immunotherapeutic strategies with the aim of improving BCa management
through TAMs targeting.

Keywords: macrophages; bladder cancer; macrophage-targeting immunotherapy

1. Introduction
1.1. Tumor-Associated Macrophages

Macrophages are phagocytic immune cells found in most tissues, including healthy
bladder [1], with diverse functionalities. They are essential in maintaining homeostasis
through their sentinel functions and ability to adapt and respond to physiological changes
or challenges from the outside. They maintain tissue integrity by eliminating damaged cells
and matrices and play a role during development, regulating tissue remodeling. Moreover,
they are important players in host defense and partake in the immune response.

In the mouse bladder, a large population of macrophages is present in the submucosa
of the bladder and increases upon infection [2]. Their activation through pattern recog-
nition receptors (PRRs) and intracellular receptors, such as the inflammasomes, triggers
cytokine and chemokine production [3]. Macrophages have been shown to negatively
affect the development of adaptive immunity to urinary tract infection [1,4] and although
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the functions of macrophages in bladder immunity, tissue integrity and homeostasis are
not well understood, there is mounting evidence that resident macrophages can have a
negative impact in bladder disease.

In cancer, macrophages are one of the major populations of infiltrating leukocytes in
solid tumors [5]. Tissue-resident macrophages or monocyte-derived macrophages can infil-
trate the tumor and are then called tumor-associated macrophages (TAMs). In the tumor,
these cells can present two extreme phenotypes across a continuum of activation states,
which are known as M1-like (pro-inflammatory) and M2-like (anti-inflammatory) TAMs [6].
M1-like TAMs have been reported to inhibit tumor development, progression, angiogene-
sis and promote adaptive immune responses through the secretion of pro-inflammatory
cytokines [7]. M1-like TAMs can kill tumor cells through, for instance, nitric oxide (NO)
production. They also have the capacity to present tumor antigen to Th1 CD4+ T cells
and drive the activity of cytotoxic CD8+ T cells [8]. During tumor progression, tumor
cells can subvert TAMs to prevent M1-like accumulation and favor M2-like pro-tumor
TAMs. These macrophages stimulate tumor initiation, progression and survival. They
promote tumor growth and angiogenesis by providing cell growth factors and angiogenic
molecules [9]. M2-like TAMs also favor cancer metastasis, as they stimulate tumor cell
motility, invasion, and extravasation. In addition, M2-like TAMs have the capacity to
secrete anti-inflammatory cytokines or inhibitory molecules, such as programmed death-
ligand 1 (PD-L1) [10]. As a result, the activity of cytotoxic CD8+ T cells is suppressed,
preventing tumor cell elimination [11]. Likewise, CD4+ T cells are prompted to differentiate
into regulatory T cells, known to contribute to immune response suppression [12].

To characterize macrophages, specific robust markers and markers to differentiate M1-
from M2-like TAM are still subject of debate [13]. Macrophages have two origins. During
embryonic development, the yolk sac gives rise to organ-resident macrophages which
are locally self-maintained [14]. However, upon infection or tissue damage, macrophages
are released from the bone marrow as immature monocytes that will circulate in the
blood until they reach the targeted site. Two monocyte subsets can be described and
present with different chemokine receptors and surface molecules: the inflammatory CD11
b+Ly6 Chi (CD14+CD16− in human) and the patrolling CD11 b+Ly6 Clow (CD14+CD16+

in human) monocytes [15]. Once monocytes enter the target tissue, they differentiate
into macrophages expressing F4/80 and CD11 b in mice and CD14, CD68 and CD16 in
humans [16,17]. Inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) can be used to
describe M1- and M2-like TAM, respectively [18]. Other M2-like TAM markers were used,
such as CD163, CD204, CD206, DC-SIGN, Galectin-9 or hypoxia-inducible factor-2α (HIF-
2α). They were generally used alone in immunohistochemistry, making a comparison of
possible different populations of M2-like macrophages impossible. We will further discuss
these populations and their importance in the context of BCa. Within the same tumor, it has
been shown that M1-like and M2-like TAMs can coexist. However, in advanced tumors,
TAMs generally present an M2-like state that correlates with poor cancer prognosis [19].

A closely related subtype to macrophages which can also be recruited to the site of
inflammation is the myeloid-derived suppressor cell (MDSC). MDSCs are known to be
immature cells deriving from the myeloid lineage. These cells are a heterogeneous popula-
tion, but in this review, we will focus on one subtype, the monocytic MDSCs (M-MDSCs),
expressing CD11 b+Ly6 ChighLy6 G− in mice and CD33+CD14+HLA-DRlowCD15− in hu-
man [12]. It is still unclear whether these cells give rise to macrophages or represent a
specific terminal population [11]. The initial defining feature of MDSCs is their activity to
suppress the adaptive immune response, thus, potentially influencing the fate of certain
diseases, such as cancer.

1.2. Bladder Cancer

Bladder cancer (BCa) represents the fourth most common cancer type in men [20],
with about 430,000 new cases per year worldwide [21]. The most common forms of BCa are
urothelial carcinomas, which are classified using the tumor–node–metastasis system (TNM
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system) that characterizes first the degree of invasion of the primary tumor (pathologic
T (pT) stage from pTis to T4), then tumor spreading to nearby lymph nodes, and lastly,
whether there is a development of distant metastases. These tumors are also graded
according to the cellular anaplasia which predicts the low-risk (low grade) or the high-risk
(high grade) of tumor growth, spreading or recurrence [22].

Among urothelial carcinomas, about 75% are a non-muscle-invasive bladder cancer
(NMIBC, pTis-T1) where the tumor localizes to the urothelium or lamina propria but
does not invade the muscle layers. The other 25% of urothelial carcinomas are a muscle-
invasive bladder cancer (MIBC, pT2-T4) and metastatic disease [22]. Within 5 years,
between 50% and 70% of NMIBC will recur and 10% to 30% will progress toward MIBC or
metastatic disease despite treatments [21]. For MIBC, the 5-year survival is about 50% with
50% of patients developing metastases. Patients with metastatic disease have a median
survival of 15 months [23]. These numbers highlight the urgent need to improve treatment
management for BCa patients, but this first requires a detailed understanding of BCa
pathogenesis.

2. Macrophages in Bladder Cancer
2.1. Association of Macrophages, Clinicopathological Features and Outcomes in Bladder Cancer

The tumor immune microenvironment of BCa remains poorly investigated compared
to other solid tumors. Macrophages represent the most abundant infiltrating immune cells
with a mean density of 14.55 cells/mm2 in the tumor core of MIBC [24]. Several studies on
patient samples have reported that TAMs, and specifically M2-like TAMs, are present in
both the stroma and the tumor core of BCa [24–27].

In NMIBC, TAM infiltration is less intense in the bladder wall compared to normal
control bladder wall [28]. Studies analyzing NMIBC and MIBC cohorts have reported that
TAM count, determined by the pan-macrophage marker CD68, positively correlates with
high pathologic T stages and a high grade [29–33]. However, two studies have declared
no correlation between TAM count, detected by CD204 or CD163 markers, and tumor
stage or grade [34,35]. One explanation for these opposite results may be the use of unique
and different markers to detect TAMs in human tissues emphasizing the lack of robust
macrophage markers for pathologists [13].

The CD163+ M2-like phenotype is also associated with tumor stage and grade in
patients with BCa [26,36–38]. Wang and colleagues have reported that the localization
of M2-like macrophages in the tumor tissue is important to consider as their density in
the stroma, but not in the tumor core, is positively associated with tumor stage [25]. The
correlation between TAMs, especially M2-like TAMs, and grade and stage of BCa has been
confirmed at the largest scale by RNA-seq on the TCGA MIBC cohort [38]. In support of
this, it was observed in a genetically-engineered mouse model of BCa that TAM number,
composed of M2-like TAMs, increases with tumor progression [39]. However, TAM count
is not associated with any other clinicopathological feature such as gender, age, tumor
volume or multifocality in BCa [26,32,34].

In peripheral blood, CD33+ and CD14+ myeloid cells increase in BCa patients com-
pared to healthy donors [32,40,41]. In parallel to TAMs, the level of circulating myeloid
cells is higher in BCa patients with pT2-T4 stages than with pTa-T1 stages [32] suggesting a
communication between the systemic and tumor inflammation.

The increase of TAMs with malignant progression suggests a role of these cells in
BCa aggressiveness and clinical outcome. The presence of TAMs has been correlated with
several unfavorable clinical outcomes in different solid tumors, including BCa (Table 1).
Additionally, TAMs are associated with tumor recurrence in NMIBC patients [42,43]. In
both NMIBC and MIBC patients, a high number of TAMs is associated with a higher risk
of tumor progression [31,44], as well as a worse progression-free survival (PFS) and overall
survival (OS) [27,29,35,45]. Depending on the phenotype and localization, macrophages
can be associated with opposite clinical outcomes in BCa. By using DC-SIGN and CD68 to
characterize M2-like TAMs, it was shown that they may contribute to tumor progression
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and poor prognosis [46]. Study of CD204+ staining of macrophages showed that their
presence in the tumor stroma, but not in the tumor core, is associated with poor OS [25].
Using a broader M2-like signature, TCGA database analyses revealed that M2-like TAMs
are significantly associated with a decreased OS and disease-free survival (DFS) [38,47].
In the blood, patients with a high level of circulating myeloid cells have a poor OS [32].
Conversely, CD169+ M1-like macrophages in the tumor-draining lymph nodes [48], but
not in the tumor [25], are positively correlated with a favorable prognosis in MIBC patients.
However, single-cell RNA-seq from immune-infiltrating cells revealed the wide diversity of
TAMs in MIBC patients [49]. In this study, six different subsets of monocytes/macrophages
were found in MIBC tumor, and their gene signatures did not correlate with the classical
M1-like versus M2-like signatures. Moreover, the authors also identified another subset
of TAM that shares both TAM-like and MDSC-like gene signatures [49], supporting the
theory of the MDSC-to-macrophage differentiation. In the future, determining the origin
of TAM (from tissue-resident macrophages, monocytes-derived macrophages or MDSC
differentiation) could improve knowledge on TAM diversity and complexity but this is
still limited by the lack of specific markers for each subtype. Altogether, this shows how
complex it is to classify these cells by using a limited number of markers, leading to possible
false positive count [13].

Table 1. Macrophages and bladder cancer clinical outcomes.

Cell Types and
Markers

Bladder Cancer
Cohorts Types of Sample Findings References

CD68+ (TAM) 40 pTa-pT1
23 ≥ pT2 FFPE tissue

High TAM count was
associated with poor

5-year survival
Hanada et al. [29]

CD68+ (TAM) 81 pTa-pT1
11 pT2 FFPE tissue

High number of TAMs
was significantly

associated with risk of
progression

Bostrom et al. [31]

CD68+ (TAM)
112 pTa
89 pT1

93 MIBC
FFPE tissue

High CD68/CD3 ratio
was associated with

poor OS
Sjödahl et al. [45]

CD68+ (TAM) 10 low grades
34 high grades FFPE tissue

High TAM count was
associated with poor

DFS but not OS
Chai et al. [50]

CD163+ (TAM) 115 MIBC FFPE tissue
High TAM count was
associated with poor

PFS and OS
Xu et al. [35]

CD163+ (TAM) 94 high grade pT1 FFPE tissue
TAMs were associated
with tumor recurrence

and progression
Yang et al. [43]

CD204+round cells
(TAM) 155 NMIBC FFPE tissue

High number of TAMs
correlated with a high

risk of recurrence
Miyake et al. [42]

TAM MIBC (no metastatic
disease) TCGA database

A signature with low T
cells, low NK cells,
high Treg and high
TAMs is associated

with poor DFS and OS

Fu et al. [24]
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Table 1. Cont.

Cell Types and
Markers

Bladder Cancer
Cohorts Types of Sample Findings References

TAM 406 MIBC TCGA database

Patients in the high-risk
group had a signature
with low CD8+ T cells,
CD4+ T cells and high

abundance of M0
macrophages

Li et al. [44]

CD204+CD68+ (CD204+

macrophages)
212 pTa-pT1
90 pT2-pT4 FFPE tissue

High number of
CD204+ macrophages
in tumor stroma was
associated with poor

OS

Wang et al. [25]

DC-SIGN+CD68+

(DC-SIGN+TAM) 257 MIBC FFPE tissue

DC-SIGN+ TAMs may
contribute to

progression and poor
prognosis

Hu et al. [46]

M2-like TAM 429 MIBC TCGA database

High M2-like TAM
signature was

associated with poor
OS and DFS

Xue et al. [38]

M2-like TAM 402 MIBC TCGA database

M2-like TAM signature
was associated with
significantly worse
5-year OS and DFS

outcomes

Jiang et al. [47]

CD169+CD68+

(CD169+macrophages) 44 MIBC FFPE tissue

CD169+ macrophages
in tumor-draining
lymph nodes were

positively correlated
with a favorable

prognosis

Asano et al. [48]

CD33+ (MDSC) 70 NMIBC
27 MIBC FFPE tissue

The number of
tumor-infiltrating

CD33+ MDSCs was
significantly inversely
correlated with patient

OS

Zhang et al. [27]

CD11b+CD33lowHLA-
DR−

(MDSC)

71 pTa-pT1
42 pT2-pT4 PBMC

High numbers of
circulating CD11b+

CD33lowHLA-DR−

cells were correlated
with poor OS

Yang et al. [32]

CSS: cancer-specific survival; DFS: disease-free survival; FFPE: formalin-fixed paraffin-embedded; MDSC: myeloid-derived suppressor cell;
MIBC: muscle-invasive bladder cancer; NK cells: natural killer cells; NMIBC: nonmuscle-invasive bladder cancer; OS: overall survival;
PBMC: peripheral blood mononuclear cell; PFS: progression-free survival; TAM: tumor-associated macrophage; TCGA: The Cancer Genome
Atlas; Treg: regulatory T cells.

In summary, despite possible caveats related to the limited number of markers used
to characterize TAM, M2-like TAMs were associated with higher tumor grade and bad
prognosis for patients. Understanding how BCa favors this accumulation becomes critical
in finding new strategies to prevent this accumulation and to treat patients.

2.2. Bladder Cancer Recruits TAMs

Tumor cells are the first actors to influence macrophages recruitment, as they are
known to produce several chemokines and cytokines. In several solid tumors, macrophages
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are recruited to the tumor site through a gradient of chemotactic molecules, such as CCL2
(also known as MCP-1), colony stimulating factor 1 (CSF-1, also known as M-CSF) or
several CXCL chemokines. In BCa (Figure 1), tumor cells are implicated in macrophage
recruitment via the secretion of CCL2 [51] and MIF/CXCL2 [27]. However, the tumor is
heterogeneous and different tumor clones can be found in the same tumor mass and can
affect macrophages differently. Cheah and colleagues indicated that CD14high bladder
tumor cells developed more vascularized and more infiltrated tumors than did CD14low

bladder tumor cells. This was explained by the fact that CD14high tumor cells have a higher
production of IL6, IL8/CXCL5, CXCL1, CXCL2, M-CSF, VEGF-A, FGF-2 than CD14low

tumor cells [52]. Tumor heterogeneity is also the result of the oxygen level in the tumor
microenvironment where hypoxia is a common characteristic. In BCa, TAM infiltration is
higher in tumors presenting a high expression of HIF-1α or HIF-2α [50,53] and they are
particularly concentrated in the hypoxic/necrotic areas of the tumor core [54], suggesting
that hypoxic cells synthetize molecules that recruit TAMs in these specific areas. These
mechanisms of TAM recruitment in BCa are potential new targets as we will discuss later
in this review.
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2.3. Bladder Cancer Favors M2-like Polarization of TAM to Promote Tumor Progression

In addition to TAM recruitment, bladder tumors also influence TAM phenotype by
inducing the establishment of an M2-like phenotype that will enhance tumor development
in return (Figure 1). Bladder tumor cells increase expression of CD206, CD163, PD-L1 and
IL10 in macrophages [55,56] through the secretion of IL10 [57], chemokines [42,51], metabolic
products [55,58], growth factors [37] and micro-RNA via exosome exchange [59]. More-
over, hypoxic areas, where TAMs are particularly concentrated in BCa [54], favor M2-like
macrophages [60] through intracellular signaling and tumor-derived metabolites [61,62],
which could contribute to the accumulation of pro-tumor macrophages in BCa.

In return, M2-like macrophages provide support for tumor progression. They con-
tribute to an increase in bladder tumor cell proliferation and viability by the secretion
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of CXCL1 and collagen-I [63,64]. Macrophage count is also correlated with lymphatic
metastasis underlying their role in the development of metastasis [29,35,65]. Macrophages
promote lymphangiogenesis by the secretion of VEGF-C/D [51,66] and increase the ability
of bladder tumor cells to form colonies and generate tumor spheres [56,67]. Macrophages
further favor the development of metastasis by inducing tumor cell invasion through the
production of CXCL8 and osteopontin [33,59,68,69]. This, together with the fact that in the
tumor core TAMs are particularly concentrated at the proximity of basal-like layer/invasive
front [37], indicates that macrophages could be involved in the transition from NMIBC
to MIBC by supporting the invasion of tumor cells through the muscle layers. Moreover,
because of the positive correlation between TAM counts and micro-vessel counts [42,63,70]
and because of their localization in hypoxic/necrotic areas, TAMs are suspected to promote
tumor angiogenesis. Macrophages provoke angiogenesis directly by producing VEGF [71]
or indirectly by stimulating tumor cells to produce pro-angiogenic factors [67,68,72]. Finally,
macrophages help to promote tumor progression by their capacity to inhibit anti-tumor
immunity. Two studies have shown from fresh human tissues that CCR8+ TAMs and
hyaluronidase 2-expressing TAMs increase the level of inflammatory factors in bladder
tumor tissues, such as IL6, CXCL8 and CCL2 [71,72]. In parallel, CCR8− TAMs secrete
CCL1 that will activate CCR8 on nearby TAMs increasing tumor inflammation [71]. In this
study, Eruslanov and coworkers stated that CCR8+ TAMs are able to induce FoxP3 in lym-
phocytes, thus favoring regulatory T cells (Tregs) in the tumor microenvironment of BCa.
The accumulation of Tregs in the bladder tissue is promoted by DC-SIGN+ TAMs [46]. The
accumulation of suppressor lymphocytes is accompanied by a reduction of cytotoxic lym-
phocytes coordinated by DC-SIGN+ TAMs and PD-L1-expressing myeloid cells [46,55,57].
Furthermore, the expression of Galectin-9 by TAMs seems to promote exhaustion in T
cells as they are associated with a decrease of IFNγ, GrzB, PRF1 and an increase of PD-1
and Tim3 in CD45+ cells [73]. Suppression of myeloid cells leads to an increased infiltra-
tion of CD8+ T cells in the tumor [74]. It seems that several specific subsets of M2-like
macrophages are present in the environment of BCa, each having a specific role in tumor
development. This concept shows the difficulty in finding common markers that can
target all M2-like macrophages without depleting M1-like macrophages. As detailed later,
M1-like macrophages can be important for the anti-tumor response during BCa therapy.

3. Macrophages Influence Bladder Cancer Treatments

Currently, the major challenge in the management of BCa is the prevention of re-
currence and progression of the disease. For NMIBC, the initial step is the transurethral
resection of the bladder tumor (TURBT). For patients with intermediate- or high-risk dis-
ease, the gold-standard treatment is TURBT followed by intravesical immunotherapy based
on Bacillus Calmette-Guérin (BCG). However, BCG failures can occur and for these patients
the most effective treatment is radical cystectomy (RC) [21]. For MIBC patients, the gold-
standard treatment consists of RC with or without neoadjuvant systemic cisplatin-based
chemotherapy. Patients with metastatic urothelial carcinoma are treated with adjuvant
chemotherapy after RC [21]. For advanced MIBC, immune checkpoint inhibitors (ICIs) are
now approved as second-line therapy and as first-line treatment for cisplatin-ineligible
patients [75].

Poor patient survival highlights the fact that BCa tumors are resistant. This can rely
on the interaction between tumor cells and their surroundings. Among them, macrophages
were described to be involved in several types of tumor-treatment resistance [76], including
in BCa (Table 2).
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Table 2. Macrophages and responses to bladder cancer treatments.

Cell Types and
Markers.

Bladder Cancer
Cohorts Treatments Findings References

CD68+ (TAM) 40 pTa-pT1
23 ≥ pT2 TURBT or RC

Patients with a high TAM count
showed higher rates of cystectomy
than those with a low TAM count

Hanada et al. [29]

CD68+ (TAM)
and MAC387+ CD68+

(MAC387+ TAM)

81 pTa-pT1
11 pT2 TURBT or RC

• TURBT tumors have lower
TAM counts than RC tumors

• High TAM counts were
associated with poorer
survival in TURBT patients

• MAC387+ CD68+ cells were
associated with poorer
survival in RC patients

Bostrom et al. [31]

CD68+ (macrophage)
and CD204+ CD68+

(CD204+macrophages)

212 pTa-pT1
90 pT2-pT4 TURBT or RC

Total macrophages and CD204+

macrophages in the stroma were
associated with poor OS after

surgery

Wang et al. [25]

CD68+ (TAM) and
HIF-2α+ CD68+

(HIF-2α+ TAM)

22 pT1
20 pT2
23 pT3
4 pT4

RC

• No significant association
between TAM indexes and
the prognosis in patients
undergoing RC

• HIF-2α+ TAMs were
associated with a poor
prognosis after RC

Koga et al. [54]

CD33+ HLA-DR−

(MDSC)
65 pTa-pT1
44 ≥ pT2 RC

The percentage of total MDSC in
PBMC before RC was significantly
lower in patients who experienced

pathological complete response

Fallah et al. [77]

CD68+ (TAM)
3 pTa
9 pT1

18 pTis
BCG Higher CD68+ cells in tumor after

BCG are correlated with better RFS Kitamura et al. [78]

CD68+ (TAM) 53 NMIBC BCG High TAM is associated with poor
RFS in high-risk NMIBC after BCG Ayari et al. [30]

CD68+ (TAM) 41 CIS BCG Low TAM count is associated with
good RFS after BCG Takayama et al. [79]

CD68+ (TAM) 12 pTa
15 pT1 BCG

High TAM count is associated
with shorter RFS after BCG

treatment
Aliji et al. [80]

CD68+ (TAM) 304 NMIBC BCG
Pre-BCG treatment TAMs are
associated with worse RFS in

patients with NMIBC
Kardoust et al. [81]

CD204+ (TAM)
68 pTa
73 pT1
13 pTis

BCG
High counts of TAM showed

association with short PFS after
BCG

Miyake et al. [34]

CD163+ CD68+

(CD163+ macrophages)
40 pTa
59 pT1 BCG

High density of CD163+

macrophage counts in the stroma
but not in the tumor was related

with BCG failures

Lima et al. [26]
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Table 2. Cont.

Cell Types and
Markers.

Bladder Cancer
Cohorts Treatments Findings References

iNOS+ CD68+ (iNOS+

TAM) and CD163+

CD68+ (CD163+ TAM)
40 NMIBC BCG

• High iNOS+ TAM counts
were associated with better
DFS after BCG instillation

• High CD163+ TAM counts
were associated with poor
DFS after BCG instillation

Suriano et al. [82]

CD68+ (TAM) and
CD163+ CD68+

(CD163+ TAM)

9 pTa
21 pT1
10 pTis

BCG

• The median number of total
CD68+ TAMs and CD163+

TAMs were significantly
increased in patients with
BCG failure compared to
BCG responders

• High numbers of CD68+

TAMs, high numbers of
CD163+ TAMs and a high
CD163/CD68 ratio were
associated with a greater risk
of recurrence after BCG

Pichler et al. [83]

Lin−CD14+ CD33+

HLA-DR− (M-MDSC)

4 pTa
20 pT1
3 pTis
1 pT2

BCG
Low T cell/M-MDSC ratio after
BCG treatment correlates with

poor RFS & PFS
Chevalier et al. [41]

CD68+ (TAM) 49 pT2
69 ≥ pT3

platinum-based
chemotherapy

An immunotype containing low T
cells, low NK cells, high Treg and

high TAM is associated with
increase OS and DFS after

chemotherapy in pT3-T4 patients

Fu et al. [24]

DC-SIGN+ CD68+

(DC-SIGN+ TAM) 137 pT2 cisplatin-based
chemotherapy

High DC-SIGN+ TAM infiltration
was strongly associated with
unresponsiveness to adjuvant

chemotherapy in MIBC

Hu et al. [46]

Galectin-9+ CD68+

(Gal9+ TAM) 141 ≥ vpT2 platinum-based
chemotherapy

Survival benefits after
postoperative adjuvant

chemotherapy among patients
with high Gal9+ TAM, whereas
patients with low Gal9+ TAM

showed no benefit to
chemotherapy

Qi et al. [73]

CD68+ (TAM) and
CD163+CD68+

(CD163+TAM)

44 pT2
85 pT3
39 pT4

Adjuvant
chemotherapy

• Chemotherapy was
associated with a longer OS
and DSS and showed a trend
with a longer RFS in pT3 and
pT4 patients with low CD68
expression

• Chemotherapy was
associated with a trend
toward longer OS compared
with no chemotherapy in pT3
and pT4 patients with low
CD163 expression

Taubert et al. [84]
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Table 2. Cont.

Cell Types and
Markers.

Bladder Cancer
Cohorts Treatments Findings References

CD33+ HLA-DR−

(MDSC)
49 < pT2
36 ≥ pT2

Neoadjuvant
chemotherapy

Circulating MDSCs were
negatively associated with

pathologic complete response in
patients treated with neoadjuvant

therapy

Ornstein et al. [85]

PD-L1+

tumor-infiltrating
immune cells

Metastatic
urothelial
carcinoma

(IMvigor210)

Atezolizumab
PD-L1 expression on immune cells
was significantly associated with

response to Atezolizumab

Mariathasan et al.
[86]

PD-L1+

tumor-infiltrating
immune cells

Metastatic
urothelial bladder

cancer
(IMvigor211)

Atezolizumab

Tumors expressing PD-L1+

tumor-infiltrating immune cells
had particularly high response

rates

Powles et al. [87]

PD-L1+

tumor-infiltrating
immune cells

Metastatic
urothelial
carcinoma

Atezolizumab

Higher levels of PD-L1
immunohistochemistry expression
on immune cells were associated

with a higher response rate to
Atezolizumab and longer OS

Rosenberg et al. [88]

PD-L1+

tumor-infiltrating
immune cells

Metastatic
urothelial bladder

cancer
(IMvigor211)

Atezolizumab

Overexpression of PD-L1 resulted
in a more favorable outcome with

both chemotherapy and
Atezolizumab

Powles et al. [89]

PD-L1+

tumor-infiltrating
immune cells

Advanced
urothelial cancer
(KEYNOTE-045)

Pembrolizumab

The benefit of Pembrolizumab
appeared to be independent of

PD-L1 expression on infiltrating
immune cells

Bellmunt et al. [90]

PD-L1+ cells

Unresectable
locally advanced

or metastatic
urothelial
carcinoma

(CheckMate 032)

Nivolumab +
Ipilimumab

Responses were observed
regardless of PD-L1 expression

levels
Sharma et al. [91]

M1-like TAM

Metastatic
urothelial
carcinoma

(IMvigor210)

Atezolizumab

M1 frequency is a robust
biomarker for predicting the
prognosis and response to

immune checkpoint blockades

Zeng et al. [92]

Pro-tumorigenic
inflammation signature

Metastatic
urothelial
carcinoma

(IMvigor210)

Atezolizumab Pro-tumorigenic inflammation in
individual tumor

microenvironments is associated
with PD-1 and PD-L1 resistance

Wang et al. [93]

Metastatic
urothelial
carcinoma

(CheckMate 275)

Nivolumab

BCG: Bacillus Calmette-Guérin; DFS: disease-free survival; FFPE: formalin-fixed paraffin-embedded; MDSC: myeloid-derived suppressor
cell; M-MDSC: monocytic-MDSC; MIBC: muscle-invasive bladder cancer; NK cells: natural killer cells; NMIBC: nonmuscle-invasive
bladder cancer; OS: overall survival; PBMC: peripheral blood mononuclear cell; PFS: progression-free survival; RC: radical cystectomy; RFS:
recurrence-free survival; TAM: tumor-associated macrophage; T cells: lymphocytes; TCGA: The Cancer Genome Atlas; Treg: regulatory T
cells; TURBT: trans-urethral resection of bladder tumor.
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3.1. Macrophages and NMIBC Treatments
3.1.1. Transurethral Resection of Bladder Tumor (TURBT)

The role of macrophages on TURBT efficacy is poorly documented, mainly because
there are few patients that undergo tumor removal only, generating powerless cohorts
for statistics. Nevertheless, tumors removed via TURBT present lower TAM counts than
tumors undergoing RC [31] and a high TAM number is associated with shorter survival in
TURBT patients [31]. In a cohort that underwent only TURBT or RC, Wang and colleagues
showed that total macrophage, and CD204+ macrophage, only in the stroma and not in the
tumor core were associated with poor OS after surgery [25].

3.1.2. Bacillus Calmette-Guérin (BCG)

As reviewed in detail by Redelman-Sidi and colleagues, the therapeutic effect of
BCG is based on the induction of a local inflammation that includes cytokine/chemokine
secretion and the recruitment, as well as the activation, of several immune cells including
macrophages [94]. BCG treatment is known to increase monocytes in the blood [95], as well
as macrophage infiltration in the bladder wall [28] and urine [41,96]. These macrophages are
probably recruited to the bladder from monocytes through chemokine production, as it is
known that BCG treatment increases the level of chemokines, such as MCP-1 and CXCL8, in
the serum and urine of patients [97–100]. Chemokines can be secreted by healthy and tumor
urothelial cells, as well as PBMCs after BCG exposure [99]. Several cytokines (IL1, IL6,
TNFα and IFNγ) were also increased in the urine of patients after BCG treatment [97,101],
suggesting the activation of macrophages after the intravesical administration of BCG.
In vitro experiments confirmed that BCG treatment efficiently induces the production of
Th1-cytokines in macrophages but also macrophage-mediated cytotoxicity toward bladder
tumor cells [102–104]. Consequently, macrophages are important in the beneficial response
to BCG immunotherapy. This was supported by Kitamura and coworkers, who have
communicated that a higher CD68+ cell count in the tumor following intravesical BCG
immunotherapy was correlated with better RFS in NMIBC patients [78].

Despite their importance in BCG treatment, high counts of TAMs pre-BCG treatment
are associated with poor RFS [30,79–81] and PFS [34]. BCG can also induce pro-tumor
functions in macrophages. Macrophage-produced IL10 following BCG exposure reduced
the cytotoxic activity of macrophages themselves [105], as well as induced the expression of
PD-L1 on antigen-presenting cells, including macrophages [106]. Increased expressions of
PD-L1 together with PD-L2 and PD-1 were also observed on cells from patients’ urine after
BCG treatment [95]. Moreover, BCG-stimulated macrophages can support the proliferation,
differentiation and activation of fibroblasts [107], which are well-known to promote tumor
progression [108]. Another hypothesis to explain this dual role of macrophages during
the BCG response could be that pre-BCG treatment TAMs, which are mainly M2-like
TAMs, could not be repolarized by BCG immunotherapy and that their phenotype would
determine the outcomes of the BCG response. High counts of M2-like TAMs before BCG
immunotherapy are correlated with BCG failure, whereas pre-BCG treatment M1-like
TAMs are associated with better DFS [26,82,83]. Moreover, a low T cell to immunosup-
pressive myeloid cell ratio in the post-BCG urine, but presumably already present before
BCG treatment, correlates with poor RFS and PFS [41]. Therefore, the beneficial effects of
macrophages in BCG immunotherapy would be based on the recruitment and differen-
tiation of fresh macrophages that will not be corrupted by a prolonged exposure to the
tumor microenvironment. Furthermore, it seems that an immune signature, with a focus
on macrophages, in tumor and/or urine of NMIBC patients before BCG immunotherapy
can be a useful biomarker to discriminate BCG responders.

3.2. Macrophages and MIBC Treatments
3.2.1. Radical cystectomy (RC)

As for TURBT, the impact of macrophages on RC is not well understood because of the
small size of cohorts that will undergo only surgery. However, studies revealed that higher
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TAM counts were associated with higher rates of RC [29] and that tumors undergoing
RC present higher TAM counts than tumors undergoing TURBT as mentioned before [31].
Total TAM number was not associated with survival [54] but specific subsets of TAMs were
correlated with poor survival, such as MAC387+ TAMs [31] or HIF-2α+ TAMs [54] in RC
patients. Moreover, it seems that circulating CD33+ cells could be predictive of a poor RC
response as patients with low circulating CD33+ cells before RC experience a pathological
complete response [77]. However, in this study, all RC patients were incorporated in the
analysis, regardless of neoadjuvant or adjuvant therapies, and thus the predictive role of
CD33+ PBMCs on surgery efficacy needs further investigation.

Altogether, these studies support the fact that macrophages may be involved in blad-
der tumor recurrence and/or progression after tumor resection. One of the physiological
functions of macrophages is their capacity to repair and remodel tissue after injury. As
surgery inflicts damage to the affected tissue, one could hypothesize the likely concept
that the macrophages in the surroundings/around the wound start the repair and in the
process benefit remaining tumor cells.

3.2.2. Chemotherapy

The effect of macrophages on chemotherapy in BCa patients depends on the sub-
type of macrophage and the disease stage. Taubert et al. declared that high TAM count
was associated with poor outcomes in pT2-pT4 patients [84] contrary to Fu et al., who
showed that an immune signature containing high TAM was correlated with increased
OS and DFS in pT3-pT4 patients [24]. One explanation for the differences observed in the
two studies could be that the CD68 marker is a pan-macrophage marker, but it cannot
differentiate the specific subtypes. High infiltration of M2-like TAMs, such as CD163+

TAMs [84] and DC-SIGN+ TAMs [46], was associated with unresponsiveness to chemother-
apy. However, including if galectin-9+ TAMs are associated with poor outcomes in BCa,
this subset presents a survival benefit after adjuvant chemotherapy [73]. Circulating CD33+

HLA-DR− cells were negatively associated with a pathologic complete response after
neoadjuvant chemotherapy [85]. In summary, it seems that macrophages are detrimental
for chemotherapy responses.

3.2.3. Immune Checkpoint Inhibitors (ICIs)

The use of PD-1 and PD-L1 blockade in BCa therapy is consistent with the fact that PD-
1 and PD-L1 expression is detected in bladder tumors and that their expression increases
with tumor stage and grade [109–111]. In the majority of RC patients, PD-1 was observed
in the tumor area but not in the normal urothelium [112]. PD-1 can be expressed by tumor-
infiltrating lymphocytes (TILs) [111,113] and TAMs. PD-1+ TAMs were found in 47.5% of
MIBC patients and were positively associated to pT stage clinicopathological features [47].
PD-1+ TILs were also positively associated with pathological stage [114] and negatively
associated with OS in BCa patients [111]. Concerning PD-L1, it can be expressed by both
TAMs and bladder tumor cells [57,115]. Most studies have declared that PD-L1 expression,
on infiltrating immune cells and bladder tumor cells, is correlated with a poor patient
prognosis [47,111,113,116,117], except in pT1 NMIBC [118,119].

Despite the infatuation for ICIs and the fact that bladder tumors are one of the most
immunogenic tumors [120], only 15–20% of patients will respond to PD-1/PD-L1 block-
ade [121]. Regarding the mechanisms behind resistance, Mariathasan and collaborators
have demonstrated that the lack of response to Atezolizumab (anti-PD-L1) in metastatic
BCa patients was associated with TGFβ-inducing cytotoxic T cell exclusion. TGFβ block-
ade restored the infiltration of T cells, inducing a profound anti-tumor immunity after
anti-PD-L1 treatment [86]. Whether in this study, the authors declared that fibroblasts
were responsible for the TGFβ-induced T cell exclusion, Peranzoni and colleagues have
demonstrated that TAMs can also participate in T cell exclusion in lung cancer [122]. TAM
depletion resulted in the increase of T cells in the tumor, which enhanced the efficacy of
anti-PD-1 treatment in different tumor models [122,123]. We have shown that M1-like
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TAMs are important players for the efficacy of an anti-CD40/anti-PD-1 combo therapy in a
MIBC mouse model [39]. This was also confirmed by other studies which demonstrated
that a reeducation of M2-like TAM toward M1-like TAM enhanced the efficacy of anti-PD1
and anti-PD-L1 immunotherapies [124,125]. The M1-like TAM signature was associated
with an improved prognosis after PD-1/PD-L1 blockade [126]. Thus, targeting of TAM
should be directed toward M2-like macrophages.

Studies to determine biomarkers to predict anti-PD-1 and anti-PD-L1 responders
focused mostly on PD-L1 expression. In phase II and III clinical trials investigating the
safety and efficacy of Atezolizumab in BCa patients, high PD-L1 expression on immune
cells, but not on tumor cells, was associated with response [86–89]. Other clinical trials
evaluating Pembrolizumab (anti-PD-1) and Nivolumab (anti-PD-1)+ Ipilimumab (anti-
CTLA4) efficiencies have declared that responses were observed regardless of PD-L1
expression levels [90,91]. A meta-analysis of 45 FDA-approved drugs indicated that PD-
L1 expression was not predictive in 53.3% of cases across 15 tumor types [127]. Thus
far, the expression of PD-L1 in BCa as a biomarker for the response to anti-PD-1/anti-
PD-L1 immunotherapies is still controversial. Recent studies have analyzed if myeloid
cells could be a relevant biomarker for ICI efficiency in BCa patients. Zeng et al. have
analyzed the gene expression in the IMvigor210 cohort (Atezolizumab in BCa patients)
and they declared that the M1-like TAM signature was a robust biomarker for predicting
the prognosis and response to anti-PD-L1 [92]. Wang and collaborators demonstrated
that a pro-tumorigenic inflammation signature was correlated with poor survival in the
IMvigor210 and CheckMate275 (Nivolumab in BCa patients) cohorts [49]. They determine
a score where TAMs and monocytes were not defined by the classical M1/M2 signature.
With this scoring, they demonstrated that monocytes with a low score were enriched in the
peripheral blood of metastatic BCa patients with resistance to anti-PD-L1 [49], suggesting
that pro-tumorigenic myeloid cells could be a pertinent biomarker for ICI efficiency.

To conclude, it seems that pro-tumoral TAMs can limit the efficacy of ICIs from the
PD-1/PD-L1 axis and thus may be relevant to discriminate responder from nonresponder
patients. Because of their implication in treatment efficacy, the combination of current
treatments with macrophage-targeting strategies is appealing in the case of BCa. However,
it is important to consider that M1-like TAMs are beneficial for immunotherapies and that
the drastic depletion of these cells is probably not the best strategy.

4. Targeting TAMs to Improve Bladder Cancer Outcome

At the moment, BCG and PD-1/PD-L1 blocking antibodies are the only immunother-
apeutic strategies for the management of BCa. However, considering the effect of TAMs
on BCa progression and therapeutic efficacy, targeting them as future immunotherapeutic
strategies to improve current treatments seems appropriate. Although several strategies
to target TAMs are being clinically tested in different cancers [93] and include hundreds
of registered clinical trials, only a few focus on BCa (Table 3). Here, we review several
macrophage-targeting strategies that seem relevant for BCa (Figure 2).

4.1. Strategies to Inhibit Macrophage Recruitment in Bladder Cancer

In several solid tumors, inhibition of macrophage recruitment is one of the most
tested strategies toward TAMs. As described above, strong evidence, such as the in-
crease of myeloid cells in the blood parallel to bladder tumor progression [32], indicates
that macrophages are recruited during systemic inflammation through tumor-derived
chemokines and then accumulated in the bladder tumor. The tumor-derived chemokines
implicated in TAM recruitment in BCa include CCL2, SDF-1 and the ligands of CXCR2.
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Table 3. Clinical trials including bladder cancer with agents targeting macrophages.

Targeted
Pathways Agent Names Combinations Tumor Types Clinical

Phases Trial Numbers

TLR BDB001 Atezolizumab +
Radiotherapy Advanced solid tumors * II NCT03915678

Imiquimod Carcinoma in situ bladder
cancer II NCT01731652

Imiquimod TRK-950 Advanced solid tumors * I NCT03872947

Poly(I:C) PGV001 +
Atezolizumab Urothelial/bladder cancer I NCT03359239

Poly(I:C) Durvalumab +/−
Tremelimumab Advanced solid tumors * I/II NCT02643303

HDAC Abexinostat Pembrolizumab Advanced solid tumor * I NCT03590054

Belinostat Bladder cancer I/II NCT00421889

Chidamide Tislelizumab Bladder cancer stage IV II NCT04562311

Domatinostat Nivolumab +/−
Ipilimumab Urothelial carcinoma I NCT04871594

Entinostat Pembrolizumab MIBC II NCT03978624

FR901228 Advanced urothelial
carcinoma II NCT00087295

Mocetinostat Urothelial carcinoma II NCT02236195

Romidepsin Solid tumors * I NCT01638533

Vorinostat
Locally recurrent or
metastatic urothelial

carcinoma
II NCT00363883

Vorinostat Docetaxel Advanced and relapsed
solid tumors * I NCT00565227

Vorinostat Pembrolizumab Advanced urothelial cell
carcinoma I NCT02619253

PI3K Buparlisib Metastatic urothelial
carcinoma II NCT01551030

Copanlisib
Copanlisib

Hydrochloride
GSK2636771

Taselisib

Advanced solid tumors * II NCT02465060

Eganelisib Nivolumab Advanced urothelial
carcinoma II NCT03980041

CD40 APX005M Urothelial carcinoma I NCT02482168

CDX-1140

+/− CDX-301
+/−

Pembrolizumab
+/−

Chemotherapy

Advanced solid tumors * I NCT03329950

CD47 Hu5F9-G4 Atezolizumab

Cisplatin-ineligible MIBC
and locally advanced or

metastatic urothelial
carcinoma

I/II NCT03869190

*: in tumor types, the study specified that bladder cancer or urothelial carcinoma are included. HDAC: histone deacetylase; PI3 K:
phosphoinositide 3-kinase; TLR: Toll-like receptor.
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4.1.1. CCL2-CCR2 Axis

CCL2 is seen as a major chemokine involved in the recruitment of TAMs through the
CCL2-CCR2 axis [128]. Several pre-clinical studies have demonstrated that targeting TAMs
via the CCL2-CCR2 pathway, with CCR2 antagonists or CCL2 neutralizing antibodies,
increases the survival of tumor-bearing mice [129,130]. Recruitment inhibition of myeloid
cells through this axis improved chemotherapy [131], radiotherapy [132] and ICI [133] re-
sponses in different tumor models. However, Bonapace and colleagues have demonstrated
that a discontinuation of anti-CCL2 treatment accelerates tumor development in a breast
cancer model [134]. Concerning BCa, CCL2 was detected in the urine of patients and an
increased level was correlated with an increased tumor stage and grade [135]. High CCL2
level also correlated with high CD68 and CD163 staining in tumor tissues, supporting
the role of CCL2 in TAM recruitment [136]. It was shown that CCL2 can be produced by
both tumor and myeloid cells [51,136,137], inducing an autocrine loop in the recruitment
of TAMs. In BCa models, inhibition of TAMs with an anti-CCL2 neutralizing antibody
results in a reduction of lymph node metastasis [51] and increased mouse survival after
chemotherapy [138].

4.1.2. Stromal Cell-Derived Factor 1 (SDF-1)-CXCR4 Axis

Another chemokine involved in TAM recruitment is SDF-1, also known as CXCL12,
which binds to its receptor CXCR4 [128]. This axis was demonstrated to be involved in
TAM recruitment in several solid tumors, especially to promote angiogenesis in hypoxic
tumors [139]. TAM inhibition with a CXCR4 antagonist, AMD3100, delayed recurrence
after radiotherapy [139,140] and chemotherapy [141] but also improved ICI efficiency by
increasing T cell recruitment [142]. Blocking this axis seems to be a relevant strategy for
BCa treatment as SDF-1 and CXCR4 are expressed in bladder tumor tissue [143]. Their
expression is associated with tumor pT stage and grade [144–146] but also with poor patient
OS [147]. Moreover, TCGA analysis demonstrated that SDF-1 gene expression positively
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correlates with M2-like TAMs [146], confirming the relationship between the SDF-1-CXCR4
axis and TAM recruitment in BCa. Despite that, no preclinical study has evaluated the
effect of blocking TAMs via the SDF-1-CXCR4 pathway in BCa.

4.1.3. CXCL-CXCR2 Axis

CXCR2 is a C-X-C chemokine receptor that is known to recruit immunosuppressive
myeloid cells through their secretion of several chemokines, such as CXCL1, CXCL2, CXCL5
and CXCL8/IL8 [148]. While most studies focused on the neutrophil/polymorphonuclear-
MDSC recruitment via CXCR2, CXCL5-CXCR2 axis blocking resulted in a dramatic re-
duction of monocytic myeloid cells in prostate tumors [149]. In BCa, Zhang et al. demon-
strated that CXCL2, produced by BCa cells, was responsible for the recruitment of CXCR2-
expressing CD33+ myeloid cells. Also, a high CXCL2 expression was correlated with poor
OS [27]. Moreover, CXCL1 levels in the urine of BCa patients were higher compared to
control subjects but no statistical differences were noted between high and low grade or
tumor stages [150,151]. However, in bladder tumor tissues, CXCL1 staining was observed
in 40% of pTa tumors as well as 75% of pT1-4 tumors [152] and its expression was increased
with tumor stage and grade [153]. Increased levels of CXCL5 in bladder tumors, as well as
in urine, were associated with tumor stage, grade and lymph node metastasis [154,155].
Concerning CXCL8, a higher level was detected in the urine of patients compared to
noncancer patients [156] and a stronger CXCL8 expression was observed in high grade,
compared to low grade, bladder tumors [68]. High expression of CXCL8 in tumor tissues
was correlated with a high infiltration of TAMs [68]. Moreover, BCG immunotherapy
is known to induce CXCL8 production which is essential for the recruitment of several
immune cells [94], supporting the hypothesis that the CXCR2-CXCL8 axis can be involved
in TAM recruitment in BCa. To the best of our knowledge, only one preclinical study has
demonstrated that blocking CXCL8 with a blocking antibody resulted in decreased tumor
growth and invasion in an athymic mouse model [157].

Targeting the recruitment of TAMs, via different signaling pathways, has proven
beneficial at the preclinical level and is now being tested in several cancer clinical trials
for cancer [93]. Despite evidence for this strategy in BCa, no clinical study is currently
targeting this tumor type.

4.2. Macrophage Depletion for Bladder Cancer Treatment
4.2.1. CSF1-CSF1 R Axis

Another well-investigated strategy toward TAMs is their depletion. CSF1 is a growth
factor essential for the proliferation, differentiation, survival and recruitment of bone
marrow-originated macrophages. This makes the CSF1-CSF1 R pathway an interesting
target to deplete macrophages. CSF1 R inhibition, with small molecules or neutralizing
antibodies, results in macrophage reduction and increased mouse survival in models of
fibrosarcome, melanoma and mammary, colon and pancreatic tumors [158–161]. However,
the relevance of blocking the CSF1-CSF1 R pathway in BCa is not yet clear as only a few
studies have analyzed this axis and without convincing results. Even if CSF1 was secreted
by bladder tumor cells [162,163], only 34% of patients have a high expression of CSF1 in
tumor tissues. Moreover, CSF1 expression was neither associated with clinicopathological
features nor correlated with RFS or CSS [164]. However, CSF1 serum and urine levels of
MIBC patients were higher than those of NMIBC patients and controls [164].

4.2.2. Trabectedin

Another method found to specifically deplete macrophages is Trabectedin. Trabecte-
din, a DNA binder of marine origin, was first used as a chemotherapy for leukemia.
However, preclinical and clinical analyses have demonstrated its efficacy in depleting
monocytes and MDSCs in blood, macrophages in spleen and TAMs, without affecting T
cells or neutrophils [165,166]. TAM reduction following Trabectedin results in decreased an-
giogenesis and metastasis development [167–169] but also induces a better immunotherapy
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efficacy in a mouse model of chronic lymphoid leukemia [166]. Germano and cowork-
ers demonstrated that Trabectedin induced macrophage apoptosis through a pathway
involving the TNF-related apoptosis-inducing ligand (TRAIL) receptors 1 and 2, which are
expressed on monocytes and macrophages but not on T cells and neutrophils [165]. This
recent strategy is appealing in targeting TAMs; however, no study has reported trying this
molecule in BCa.

4.2.3. Bisphosphonates

Bisphosphonates are inorganic compounds that include clodronate. Even if bis-
phosphonates were first used as anticancer agents for hematologic and solid tumors,
it was shown that they decrease proliferation, migration and invasion of macrophages,
resulting in their apoptosis [170]. A classical approach to use bisphosphonates to tar-
get macrophages is to encapsulate clodronate in liposomes, which will be preferentially
taken up by macrophages due to their phagocytic properties. This strategy was demon-
strated as efficient in depleting monocytes, resulting in TAM reduction, accompanied by
the decrease of tumor size, angiogenesis and metastasis development in different tumor
models [64,171,172]. TAM depletion by clodronate liposomes improves the efficacy of
chemotherapy [173] and anti-angiogenic therapy [174]. In the MBT-2 model of BCa, TAM
depletion reduced lymphangiogenesis, and in consequence, some lymphatic metastases.
However, we demonstrated that the depletion of TAMs in a MIBC model decreases the
efficacy of the anti-CD40/anti-PD-1 combination therapy [39], suggesting that the therapy-
induced M1-like TAMs are essential for the response to the therapy itself. Our results
were in accordance with the study of Klug et al., which indicated that M1-like TAMs
were required for the beneficial effect of low dose irradiation and that clodronate-induced
TAM depletion inhibited the positive response of the treatment [175]. These strategies
are evaluated in different clinical trials [93] but not specifically for BCa. Moreover, even
if TAM depletion is an attractive strategy, it will not conserve M1-like TAMs, which are
important for the anti-tumor response. For this reason, TAM-targeting strategies now try
to reprogram/deplete M2-like TAMs and enhance the M1-like TAMs.

4.3. Reprogramming of Tumor-Associated Macrophages in Bladder Cancer
4.3.1. Chemokines

Inhibitors or blocking antibodies for certain chemokines described above were shown
to efficiently reprogram TAMs, instead of depleting them or inhibiting their recruitment.
BLZ945, a small molecule against CSF1 R, reprogramed TAMs in brain tumors, resulting
in increased survival [176]. The combination of TAM reprograming following BLZ945
treatment and radiotherapy significantly prolonged survival in glioma-bearing mice [177].
A reduction of M2-like TAMs was also observed with an anti-CSF1 R blocking antibody
in a model of pancreatic ductal adenocarcinoma, additionally improving the efficacy of
ICIs [178]. In a model of prostate cancer, an anti-CXCR2 blocking antibody induced the
reeducation of TAMs, resulting in a decrease in tumor volume [179].

4.3.2. Toll-like Receptor (TLR) Agonists

TLRs are a family of PRRs that are fundamental for the activation of innate immune
cells [180]. TLR engagement results in nuclear factor-κB (NF-κB) translocation into the
nucleus, which will induce the expression of inflammatory genes [181]. Several in vitro
experiments have demonstrated that TLR engagement with TLR agonists reprograms
M2-like macrophages toward the M1-like phenotype [182–187]. Among all TLR agonists,
the first FDA-approved was BCG. It is recognized by TLR2/4/9 on urothelial and immune
cells and induces the secretion of pro-inflammatory cytokines [94]. As discussed above,
BCG treatment increases macrophage infiltration and their cytotoxic activity, supporting
the use of TLR agonists in TAM reprogramming. Imiquimod, a TLR7 agonist, was also
efficient in inducing an intense local inflammation and a decrease in tumor growth in
models of BCa [188–190]. A clinical study on NMIBC patients indicated that a TLR7
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agonist, in combination with BCG, induced a significant increase of cytokines in the
urine of patients and increased clinical responses [191]. The same report was noted for
polyinosinic:polycytidylic acid (poly(I:C)), a TLR3 agonist, also in combination with BCG
in models of BCa [192,193]. Moreover, poly(I:C) treatment was efficient to enhance the
anti-PD-1 response in a NMIBC model [193]. These results indicate that TLR agonists could
be further investigated for the treatment of BCa to complement or replace BCG in NMIBC,
or to improve ICIs in advanced BCa. Different agonists are currently being tested in phase
I and II clinical trials for BCa (Table 3).

4.3.3. Histone Deacetylase (HDAC) Inhibitors

HDACs are enzymes implicated in the epigenetic regulation of gene expression and
are responsible for the removal the acetyl groups on histones. HDAC inhibitors are the
first class of epigenetic drugs to be FDA-approved for cancer therapy and can be classified
according to their HDAC specificity [194]. They can inhibit the deacetylation of histones or
nonhistone proteins and have direct effects on tumor cells, as well as immune cells. TMP195,
a selective competitive class IIa HDAC inhibitor, has shown to alter monocyte/macrophage
gene expression without affecting lymphocytes [195]. In vitro and in vivo studies have
reported that TMP195 reprograms M2-like macrophages toward M1-like macrophages,
resulting in the reduction of tumor growth [124,195]. The authors demonstrated that M1-
like macrophages, IFNγ and CD8+ T cells were required for the anti-tumor effect of the
TMP195 treatment [124]. This phenomena of TAM reprogramming was also demonstrated
with other HDAC inhibitors [196,197]. However, it has been proposed that the reduction
in M2-like TAMs after HDAC inhibition could be an indirect effect. HDAC inhibition
could downregulate CCR2 expression, resulting in a decrease of MDSCs and hence skew
the M-MDSC-to-macrophage differentiation [198]. In different tumor models, TAM repro-
graming via HDAC inhibitors enhances the efficacy of anti-PD1 and anti-PD-L1 blockade
antibodies [124,197,199]. In BCa, several HDAC inhibitors have been tested as anti-tumor
agents resulting in bladder tumor cell cytotoxicity [200–203]. Only one preclinical study has
demonstrated that Vorinostat, a pan-HDAC inhibitor, can modify the tumor microenviron-
ment of the MB49 NMIBC model [204]. In this study, the authors declared that Vorinostat
treatment enhances the anti-PD-1 response and that the combination therapy was effective
at inducing CD8+ T cell recruitment. Even if TAM numbers were unaffected after HDAC
inhibition, their phenotype and their role in the anti-tumor response of the treatment was
not investigated [204]. Two HDAC inhibitors, Mocetinostat and Vorinostat, have been
administered to patients with metastatic BCa (NCT02236195 and NCT00363883) but both
treatments were associated with limited efficacy and significant toxicity [205,206]. Even if
the first clinical trials in BCa present limited results, HDAC inhibitors seem promising to
reprogram TAMs and others are currently being tested in BCa (Table 3).

4.3.4. Phosphoinositide 3-Kinase (PI3 K) Inhibitors

PI3 K is involved in almost all types of cell signaling and is divided in several sub-
classes, from which the class IB isoform PI3 Kγ is mainly expressed by hematopoietic
cells [207]. It was shown that the inhibition of PI3 Kγ results in impaired recruitment of
myeloid cells, mainly macrophages and neutrophils, to the tumor site [208]. More recently,
Varner’s lab has demonstrated that the inhibition of PI3 Kγ could reprogram M2-like
myeloid cells toward an M1-like phenotype resulting in the recruitment of cytotoxic T cells
and the reduction of tumor growth [209–211]. This strategy also enhanced the efficacy
of chemotherapy and ICIs in different tumor models [209,210]. In BCa, no study has in-
vestigated the inhibition of PI3 Kγ in TAMs. It seems that the PI3 K signaling pathway
is essential in bladder tumor cells, regulating their proliferation, migration, invasiveness
and metastasis [212]. For that, several PI3 K inhibitors have been tested in clinical trials
(Table 3).

For the moment, the molecules that could reprogram TAMs are being tested because
of their direct effect on tumor cells. It seems that reprograming TAMs toward an anti-tumor
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phenotype is the most interesting method but it appears to be more complicated than
what has been observed in vitro. Due to this, another way to target TAMs is to activate
their anti-tumor functions via the activation of stimulatory molecules or the blocking of
inhibitory molecules.

4.4. Activation of Tumor-Associated Macrophages in Bladder Cancer
4.4.1. CD40-CD40 L Pathway

CD40 is a receptor of the TNF receptor family that is widely expressed on antigen-
presenting cells. The CD40-CD40 L interaction is important in cross-priming T cells and
consequently for the amplification and regulation of the inflammatory response [213].
Based on that, Beatty et al. have demonstrated that an agonistic CD40 antibody activated
TAMs in a model of pancreatic cancer, induced tumor regression and enhanced the efficacy
of chemotherapy [214]. These results were confirmed in patients with pancreatic ductal
adenocarcinoma. This demonstrated for the first time the efficacy of anti-CD40-activated
TAMs [214]. Several preclinical studies have then followed to demonstrate the efficacy of
anti-CD40 therapy in stimulating TAMs and resulting in tumor regression [215–217] and
improvement of chemotherapy [218,219], anti-angiogenic therapy [217] and ICI [220,221]
efficacies in different tumor models. Anti-CD40 immunotherapy has also been tested
in several BCa preclinical studies. However, it seems that its efficacy was mediated
by the activation of dendritic cells (DCs) instead of TAMs. In bladder tumors, CD40
is mainly expressed by DCs and MHCII+ TAMs [222]. Its expression decreases with
tumor progression [39], confirming the need to revitalize antigen-presenting cells via this
pathway. In the MB49 model, an anti-CD40 agonist antibody activates DCs and then
reverses CD8+ T cell exhaustion signatures, resulting in the reduction of tumor burden
and increase of survival [222,223]. Garris and coworkers also demonstrated that the
intravesical delivery of anti-CD40 antibody induces local anti-tumor activity in a BCG-
unresponsive BCa model [222]. However, in an anti-PD-1-resistant model of MIBC, we
demonstrated that anti-CD40 therapy induced an anti-PD-1 response by activating DCs in
tumor-draining lymph nodes but not in the tumor [39]. This resulted in the activation of
CD8+ T cells in tumor-draining lymph nodes, egress of the T cells from the lymph nodes
and infiltration into the bladder tumor. The effect of anti-CD40 antibodies to induce a
systemic inflammation was confirmed by Sandin et al., who revealed that the CD40-specific
antibody accumulated in the bladder tumor-draining lymph nodes and the spleen [224];
organs where antigen-presenting cells are abundant. Even if TAMs did not seem to be the
direct targets of anti-CD40 antibodies in BCa, we demonstrated that the critical CD8+ T
cell activation generated a switch from M2-like to M1-like TAMs and this was important
for the anti-CD40+ anti-PD-1 combination therapy [39]. These studies indicate that TAM
activation via CD40 agonists is an appealing strategy for BCa treatment and several are
being tested in clinical trials (Table 3).

4.4.2. CD47-Signal Regulatory Protein-α (SIRPα) Axis

CD47 is a transmembrane protein found ubiquitously expressed on normal cells as a
“self” marker, but it is also overexpressed by tumor cells. CD47 can bind to SIRPα, which is
mainly expressed on phagocytic myeloid cells. CD47-SIRPα engagement results in a “do
not eat me” signal that provides an immune escape pathway for tumor cells [225]. Blocking
the CD47-SIRPα pathway with anti-CD47 blocking antibodies increases phagocytosis of
tumor cells by macrophages in vitro [226–229]. It seems that anti-CD47 blockade increases
the phagocytosis of tumor cells [229] and the secretion of cytokines and chemokines, which
promote macrophage recruitment [227]. Anti-CD47 treatment elevates the number of
TAMs in an ovarian cancer model, yet still resulting in a reduction of tumor cell numbers
and an increase in survival [228]. The beneficial effect of anti-CD47 immunotherapy was
confirmed in other tumor models [226,227,230]. In the case of BCa, it was shown that
CD47 was expressed by at least 80% of tumor cells [230,231]. Incubation with an anti-
CD47 antibody induced phagocytosis of bladder tumor cells by macrophages, inhibiting
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primary tumor growth and preventing tumor metastasis in vivo [230,231]. Recently, Kiss
et al. combined an anti-CD47 antibody with an infrared dye to perform near-infrared
photoimmunotherapy (NIR-PIT) in a model of BCa. They demonstrated that the NIR-
PIT had the advantage of inducing direct tumor cell death and enhancing macrophage
phagocytic abilities, which resulted in a higher TAM density and slower tumor growth
compared to monotherapy [232]. Blocking this innate immune checkpoint is a strategy
that is now being tested in clinical trials as a monotherapy for hematologic tumors and as
combination therapy for solid tumors [93] and is starting to be investigated in the context
of BCa (Table 3).

5. Conclusions

In this review, we provided evidence of the presence and importance of macrophages
in BCa. Pro-tumor macrophages influence the stage of the disease, are associated with poor
patient outcome, and play deleterious roles in ongoing treatments. Several macrophage-
targeting strategies are promising for future BCa treatment, but only a few investigations
have explored this possibility for BCa immunotherapy. A better characterization of TAMs
in BCa remains necessary to establish the best targets, both in preclinical models and in
patients. We believe that in a near future, macrophage-targeting therapies can be used in
adjuvant or neo-adjuvant settings for current treatments, i.e., surgery and chemotherapy,
but also in combination with immunotherapy to increase the efficacy of PD-1/PD-L1
blocking antibodies to benefit the patients.
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